
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 275

An Efficient Searching and an Optimized Cache Coherence
handling Scheme on DSR Routing Protocol for MANETS

Mr. Rajneesh Kumar Gujral1, Dr. Anil Kapil

2

1

Assoc. Professor, Computer Engineering Department, M. M. Engineering College, M. M. University, Ambala, Haryana, India-
133207.

2

Professor M. M. Institute of Computer Technology and Business Management, M. M. University, Ambala, India-133207.

Abstract

Mobile ad hoc networks (MANETS) are self-created and self
organized by a collection of mobile nodes, interconnected by
multi-hop wireless paths in a strictly peer to peer fashion. DSR
(Dynamic Source Routing) is an on-demand routing protocol for
wireless ad hoc networks that floods route requests when the
route is needed. Route caches in intermediate mobile node on
DSR are used to reduce flooding of route requests. But with the
increase in network size, node mobility and local cache of every
mobile node cached route quickly become stale or inefficient. In
this paper, for efficient searching, we have proposed a generic
searching algorithm on associative cache memory organization to
faster searching single/multiple paths for destination if exist in
intermediate mobile node cache with a complexity)(nO
(Where n is number of bits required to represent the searched
field).The other major problem of DSR is that the route
maintenance mechanism does not locally repair a broken link and
Stale cache information could also result in inconsistencies
during the route discovery /reconstruction phase. So to deal this,
we have proposed an optimized cache coherence handling
scheme for on -demand routing protocol (DSR).

Keywords: DSR, Efficient Searching, Cache Coherence,
MANETS etc.

1. Introduction

Mobile ad hoc networks (MANETS) are self-created and
self organized by a collection of mobile nodes,
interconnected by multi-hop wireless paths in a strictly
peer to peer fashion [1]. Caching is an important part of
any on-demand routing protocol for wireless ad hoc
networks. In mobile ad hoc network (MANETS)
[2],[3],[4] all node cooperate in order to dynamically
establish and maintain routing in the network , forwarding
packets for each other to allow communication between
nodes not directly within wireless transmission range.
Rather than using the periodic or background exchange of

routing information common in most routing protocols , an
on-demand routing protocols is one that searches for the
attempts to discover a route to some destination node only
when a sending node originates a data packet addressed to
the node. In order to avoid the need for such a route
discovery to be performed before each data is sent, an on-
demand routing protocol must cache routes previously
discovered. Such caching then introduces the problem of
proper strategies for managing the structure and contents
of this cache, as nodes in the network move in and out of
wireless transmission range of one another, possibly
invalidating some cached routing information.
Several routing protocols for wireless ad hoc networks
have used on-demand mechanisms, including temporally-
ordered routing algorithm (TORA) [8], Dynamic source
Routing protocols (DSR) [5]. Ad hoc on demand distance
vector (AODV) [6], Zone routing protocol (ZRP) [7], and
Location-Aided Routing (LAR) [9]. For example, in the
Dynamic Source Routing protocol [5] in the simplest
form, when some node S originates a data packet destined
for a node D to which S does not currently know a route, S
initiates a new route discovery by beginning a flood a
request reaches either D or another node that has a cached
route to D, this node then returns to S the route discovered
by this request. Performing such a route discovery can be
an expensive operation, since it may cause a large number
of request packets to be transmitted, and also add latency
to the subsequent delivery of data packet that initiated it.
But this route discovery may also result in the collection of
a large amount of information about the current state of
network that may be useful in future routing decision. In
particular, S may receive a number of route replies in
response to its route discovery flood, each of which returns
information about a route to D through a different portion
of the network. In high-mobility environment the
performance degrades rapidly of this protocol because the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 276
ISSN (Online): 1694-0814
www.IJCSI.org

route maintenance mechanism does not locally repair a
broken link. Stale cache information could also result in
inconsistencies during the route reconstruction phase. In
this paper, for efficient searching, we have proposed a
generic searching algorithm on associative cache memory
organization to faster searching single/multiple paths for
destination if exist in intermediate mobile node cache with
a complexity)(nO (Where n is number of bits required
to represent the searched field).The other major problem of
DSR is that the route maintenance mechanism does not
locally repair a broken link and Stale cache information
could also result in inconsistencies during the route
discovery/reconstruction phase. So to deal this, we have
proposed an optimized cache coherence handling scheme
for on -demand routing protocol (DSR). In this paper,
Section 2, we describes the Dynamic Source Routing
Protocol (DSR), Section 3, we describe related work,
Section 4, we describe associative searching Flowchart,
Algorithm and their implementation with example, Section
5, we describe proposed an optimized cache handling
scheme and Section 6,we had concluded the paper and
future works.
2. Overview of the Dynamic Source Routing
Protocols (DSR))

Dynamic source routing protocol (DSR) is an on-demand
protocol designed to restrict the bandwidth consumed by
control packets in ad hoc wireless networks by eliminating
the periodic table-update messages required in the table-
driven approach [10]. The major difference between this
and other on-demand routing protocols is that it is beacon-
less and hence does not require periodic hello packet
(beacon) transmission, which are used by a node to inform
its neighbors of its presence. The basic approach of this
protocol (and all other on-demand routing protocols)
during the route construction phase is to establish a route
by flooding Route Request packets in the network. The
destination node, on receiving a RouteRequest packet,
responds by sending a RouteReply packet back to the
source, which carries the route traversed by the
RouteRequest packet received.
 Consider a Source node that does not have a route to the
destination. When it has data packets to be sent to that
destination, it initiates a RouteRequest packet. This
RouteRequest is flooded throughout the network. Each
node, upon receiving a RouteRequest packet, rebroadcasts
the packet to its neighbors if it has not forwarded already
or if the node is not the destination node, provided the
packets time to live (TTL) counter has not exceeded. Each
RouteRequest carries a sequence number generated by the
source node and the path it has traversed. A node, upon
receiving a RouteRequest packet, checks the sequence
number on the packet before forwarding it. The packet is
forwarded only if it is not a duplicate RouteRequest. The

Sequence number on the packet is used to prevent loop
formations and to avoid multiple transmissions of same
RouteRequest by an intermediate node that receives it
through multiple paths. Thus, all nodes except the
destination forward a RouteRequest packet during the
route construction phase.

Figure 1. Route establishment in DSR

Network Link

RouteRequest

RouteReply

Path1: 1-2-3-7-9-13-15
Path2: 1-5-4-12-15
Path3: 1-6-10-11-14-15

2

3

4

13

9
8

7

6 5

15

14

12

10

11

SourceID

DestinationID

A destination node, after receiving the first RouteRequest
packet, replies to the source node through the reverse path
the RouteRequest packet had traversed. In Figure 1, source
node 1 initiates a RouteRequest packet to obtain a path for
destination node 15. This protocol uses a route cache that
stores all possible information extracted from the source
route contained in a data packet. Nodes can also learn
about the neighboring routes traversed by data packets if
operated in the promiscuous mode (the mode of operation
in which a node can receive the packets that are neither
broadcast nor addressed to itself). This route cache is also
used during the route construction phase. If an
intermediate node receiving a RouteRequest has a route to
the destination node in its route cache, then it replies to the
source node by sending a RouteReply with the entire route
information from the source node to the destination node.
2.1 Optimizations:

Several optimization techniques have been incorporated
into the basic DSR protocol to improve the performance of
the protocol. DSR uses the route cache at intermediate
nodes. The route cache is populated with routes that can be
extracted from the information contained in the data
packets that get forwarded. This cache information is used
by the intermediate nodes to reply to the source when they
receive a RouteRequest packet and if they have a route to
the corresponding destination. By operating in the
Promiscuous mode, an intermediate node learns about

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 277
ISSN (Online): 1694-0814
www.IJCSI.org

route breaks. Information thus gained is used to update the
route cache so that the active routes maintained in the
route cache do not use such broken links. During network
partitions, the effected nodes initiate RouteRequest
packets. An exponential backoff algorithm is used to avoid
frequent RouteRequest flooding in the network when the
destination is in another disjoint set. DSR also allows
piggy-backing of a data packet on the RouteRequest so
that a data packet can be sent along with the
RouteRequest.

Figure 2. Route maintenance in DSR

Network Link

Selected Path

Route Error

Broken Link

2
1

3

4

13

9
8

7

6 5

15

14

12

10

11

SourceID

DestinationID

 If optimization is not allowed in the DSR protocol, the
route construction phase is very simple. All the
intermediate nodes flood the RouteRequest packet if it is
not redundant. For example, after receiving the
RouteRequest packet from node 1 from Figure 1,all its
neighboring nodes , that is, nodes 2,5, and 6, forward it.
Node 4 receives the RouteRequest from both nodes 2 and
5. Node 4 forwards the first RouteRequest it receives from
any one of the nodes 2 and 5 and discards the other
redundant/duplicate RouteRequest packets. The
RouteRequest is propagated till it reaches the destination
which initiates the RouteReply. As part of optimizations, if
the intermediate nodes are also allowed to originate
RouteReply packets, then a source node may receive
multiple replies from intermediate nodes. For example, in
figure 2, if the intermediate node 10 has a route to the
destination via node 14, it also sends the RouteReply to
the source node. The Source node selects the latest and the
best route, and uses that for sending data packets. Each
node packet carries the complete path to its destination.
When an intermediate node in the path moves away,
causing a wireless link to break, for Example, the link
between nodes 12 and 15 in Figure 2, a RouteError

message is generated from the node adjacent to the broken
link to inform the source node. The source node reinitiates
the route establishment procedure. The cached entries at
the intermediate nodes and the source node are removed
when a RouteError packet is received. If a link breaks due
to the movement of the edge nodes (node 1 and node 15),
the source node again initiates the route discovery.
3. Related Works.
3.1 Cache data and cache path

The cache data scheme considers the cache placement
policy at intermediate nodes in the routing path between
the source and destination. The node caches a passing by
data item locally when it finds that the data item is
popular, i.e., there were many requests for data item, or it
has enough free cache space. Since cache data needs extra
space to save the data, it should be used prudently. A
conservative rule is proposed as follow: A node does not
cache the data if all requests for the data are from the same
node. However, it uses cooperative caching protocol
among mobile node. Each mobile node does not
independently perform the caching tasks such as
placement and replacement. Cache path is also proposed
for redirecting the requests to the cache node. In
MANETS, the network the network topology changes fast
and thus, the cached path may become invalid due to the
movement of mobile nodes [11].
3.2 Neighbor Caching Technique

The concept of neighbor caching (NC) is to utilize the
cache space of inactive neighbors for caching tasks. The
basic operations of NC are as follow. When a node fetches
a data from remote node, it puts the data in its own
caching space for reuse. This operation needs to evict the
least valuable data from the cache based on a replacement
algorithm. With this scheme, the data that is to be evicted
is stored in the idle neighbor nodes storage. In the near
future if the node needs the data again, it requests the data
not from the far remote source node but from the near
neighbor that keeps the copy of data. The NC scheme
utilizes the available cache space of neighbor to improve
the caching performance. However, it lacks the efficiency
of the cooperative caching protocol among the mobile
nodes [12].
3.3 Node caching schemes

This is a novel approach to constrain route request
broadcast based on node caching. The Intuition used is that
the nodes involved in recent data packet forwarding have
more reliable information about its neighbors and have
better locations (e.g., on the intersection of several data
routes) than other MANET nodes. The nodes which are
recently involved in data packet forwarding are considered
as cache nodes, and only they are used to forward route

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 278
ISSN (Online): 1694-0814
www.IJCSI.org

requests. The modified route request uses a fixed threshold
parameter H. The first route request is sent with the small
threshold H. When a node N receives the route request, it
compares the current time T with the time T(N) when the
last data packet through N has been forwarded. If T-H >
T(N), then N does not belong to the current cache and ,
therefore, N will not propagate the route request.
Otherwise, if T-H <= T(N), then N is in the node ache and
the route request is propagated as usual[13].
3.4 Group Caching

There are some challenges and issue such as mobility of
mobile nodes, power consumption in battery , and limited
wireless bandwidth when caching techniques are
employed in MANETs for data communication .Due to the
movement of mobile nodes, MANETs may be partitioned
into many independent networks. Hence, the requester
cannot retrieve the desired data from the remote server
(data source) in another network. The entire data
accessibility will be reduced. Also, the caching node may
be disconnected from the network for saving power. Thus,
the cached data in a mobile node may not be retrieved by
other mobile nodes and then usefulness of the cache is
reduced. The mobile nodes also decide the caching policy
according to the caching status of other mobile nodes.
However, the existing cooperative caching in a MANET
lack an efficient protocol among the mobile nodes to
exchange their localized caching status for caching tasks.
In this work a novel cooperative caching scheme called
Group caching (GC) which maintains localized caching
status of 1 hop neighbors for performing the tasks of data
discovery, caching placement, and caching replacement
when a data request is received in a mobile node. Each
mobile node and its 1 hop neighbors form a group by
using the “Hello” message mechanism. In order to utilize
the cache space of each mobile node and its 1 hop
neighbors form a group by using space of each mobile in a
group, the mobile nodes periodically send their caching
status in a group. Thus, when caching placement and
replacement need to be performed, the mobile node selects
the appropriate group member to execute the caching task
in the group; this reduces redundancy of cached data
objects [14].
 Another work is intelligent caching a technique in which,
a node not only saves the path discovered during route
discovery for itself but also for others who are located
close to it. This technique reduces the number of route
request packets unnecessarily circulating in the network,
when the path it requires is present in its
neighborhood.[15]. Authors of [16] in order to share
internet contents among mobile users by utilizing low cost
wireless connectivity, a content delivery framework with a
new content perfecting strategy (AGCS).Another work in
which cache management, cooperative caching increase
the effective capacity of cooperative caches by minimizing

duplications within the cooperation zone and
accommodating more data varieties. In this work authors
evaluate the performance of the neighbor Group Data
caching by using NS2 and compare it with the existing
schemes such as Neighbor caching and Zone Cooperative
[17].In[18] Authors Proposed epoch numbers, to reduce
the problem of cache staleness, by preventing the re-
learning of stale knowledge of a link after having earlier
heard that the link has broken. In [19] Authors discuss
undesirable side effect including cache inefficiencies due
to stale paths, and the use of low quality paths even when
significantly shorter path become available .
 4. An Efficient Associative Search Scheme

 Associative memories are mainly used for the faster
search and ordered retrieval of large files of records. Many
researchers have suggested using associative memories for
implementing relational database machines. In this paper,
we have proposed a generic searching algorithm on
associative cache memory organization to faster searching
single/multiple paths for destination if exist in
intermediate mobile node cache with a complexity)(nO
(Where n is number of bits required to represent the
searched field).So for that tabulation of routing records of
mobile nodes can be programmed into the cells of an
associative memory.
Various Associative Search operations have been
classified in to the following categories.
Extreme Search:
Maxima: Find the largest one among a set of records.
Minima: Find the smallest one among a set of records.
Median: Find the median according to a particular
ordering.
Equivalence Search:
Equal To: Search is made for a exact match.
Not Equal To: Find all the records which are not equal to
given key.
Similar To: Search is made within a masked field.
Proximate To: Find all the records which satisfy a
proximate condition.
Threshold Search:
Smaller Than: Find all the records which are strictly
smaller than the given key.
Greater Than: Find all the records which are strictly
greater than the given key.
Not Smaller Than: Find all the records which are equal to
or greater than the given key.
Not Greater Than: Find all the records which are equal to
or less than the given key.
Adjacency Search:
Nearest Below: Find nearest record in which key is
smaller than the given key.
Between limit Search

],[yx : find all records within the closed range.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 279
ISSN (Online): 1694-0814
www.IJCSI.org

}|{ YZXZ ≤≤
:),(YX Find all records in the open range.

}|{ YZXZ <<
:),[YX Find all records within in the range.

}|{ YZXZ <≤

:],(YX Find all records within in the range
}|{ YZXZ ≤<

Ordered Search:
Ascending Sort: List all records in the ascending order.
Descending Sort: List all records in the descending order.
 Table 1.List of Abbreviations:

C n bit comparative register

M n bit masking register
)0(I and)0(T)0(I and)0(T are Index and Temporary 1*N bit

registers initially set.
N Number to be searched

K The Index within the field, where fk ≤≤1

J The index for successive bit slices, where mj ≤≤1

RI
and si

 The reset and set signals of flip flop I i
 are denoted

as Ri
 and si

S The starting bit address of a field, where ns ≤≤1
f The field length in bits.

i The index for different bit slices, where ni ≤≤1
Bij

 Represent jth bit position of ith memory word

 Figure 3. Show flowchart for Generic Searching

 START

 STOP

NC ←

;1,1 =← sM
1)0(←I

1)0(←T

1←k

1++= ksj

0=c j

)()1()(BcTT ijjii kk ⊕∧−=

)1()(−= kk II ii for ni ≤≤1

)()1()(BcTR ijjii kk ⊕∧−=

)1()(−= kk TT ii for ni ≤≤1

 1+= kk

fk ≤

Y N

Y

 1−= kK
Read all the enteries for

• 1)(=fI // which contain the greater than equal to from searched number.
• 1)()(=∧ fTfI // For equal to search.

•
−−−

)(fI // For less than search.

• 1)()(=∧
−−−−−−−−−−−−−

fTfI // For Not equal to search.

• ∧)(fI 1)()(=∧
−−−−−−−−−−−−−

fTfI // For greater than search.

 N

4.1 Generic search algorithm for search number from
Associative Cache memory Organization

Generic-search (C,N,n,f,s,Si,Ri,m,k,I(0),T(0))

NCStep ←:1
;1,1:2 =← sMStep //M is n bit masking register

 & all its bits are 1 (to search all
 the bits of register C)

1)0(:3 ←IStep // I (0) is an N*1 bit Index Register
 (Initially set)

1)0(:4 ←TStep // T (0) is an N*1 bit Temporary
 Register (initially set)
 1:5 ←kStep // k is used for two purpose

I) To point the next bit position in the
field.
II) To represent stage number.

1:6 ++= ksjStep

)0(=c jif
)()1()(BcTT ijjii kk ⊕∧−=

)1()(−= kk II ii
 for ni ≤≤1

else
)()1()(BcTR ijjii kk ⊕∧−=

)1()(−= kk TT ii
 for ni ≤≤1

6)(
1:7

epthengotoStfkif
kkStep

≤
+=

Read the Index register 1)(=fI their set bits positions
contain the number greater than equal to from searched
number.
Read all the enteries of 1)()(=∧ fTfI its set bits
position for equal to search.
Read all the enteries of 1)(=

−−−

fI its set bits position for
less than search.
Read all the enteries of 1)()(=∧

−−−−−−−−−−−−−

fTfI its set bits
position for Not equal to search.
Read all the enteries of ∧)(fI 1)()(=∧

−−−−−−−−−−−−−

fTfI its set
bits position for greater than search.
4.2. Implementation of Generic Search Algorithm
with example.

 In associative memory time required to find an item
stored in memory can be reduced considerably because
stored data can be identified by the content of the data

1−= kk
else

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 280
ISSN (Online): 1694-0814
www.IJCSI.org

itself rather than by the address. An associative memory is
also known as content addressable memory (CAM).The
block diagram of an associative memory is shown in
figure. It consists of a memory array for 4 words with 4
bits per word. The comparative register C hold the item
that you want to search and masking register M are also
4bits. The masking register provides a mask for choosing a
particular field. The entire bits of register C are compared
with each memory word if the masking register contains
all 1’s.There are also two 4*1 bit size index (I) and
temporary (T) which are initially set. In this section,
Implementation of Generic search Algorithm on example
is shown below.

1 1 1 0
0 1 0 1
1 0 0 0
1 0 1 0

Associate Cache Memory 4*4

1 0 1 0
C 1*4

1 1 1 1

M 1*4

Figure 4. Shows Associate
Memory

1
1
1
1

I (0)
1
1
1
1

T (0)

:1step ,1=k 11 =−+= ksj and ;4=f

:2step 11 =c \\There fore the Index Register effected
 and no change in Temporary Register.

0)11()1()1(1 =⊕∧=R i.e. No Change

1)01()1()1(2 =⊕∧=R Reset

0)11()1()1(3 =⊕∧=R i.e. No Change

0)11()1()1(4 =⊕∧=R i.e. No Change

 So the value of I (1) & T (1)

1
0
1
1

I (1)
1
1
1
1

T (1)

:1step ,2=k 21 =−+= ksj

:2step 02 =c \\There fore the Temporary Register
 effected and no change in Index Register

0)1()2(101 =∧= ⊕
−−−−−−

T
0)1()2(102 =∧= ⊕

−−−−−−

T
1)1()2(003 =∧= ⊕

−−−−−−

T
1)1()2(004 =∧= ⊕

−−−−−−

T

 So the value of I (2) & T (2)

1
0
1
1

I (2)
0
0
1
1

T (2)

:1step ,3=k 31 =−+= ksj

:2step 13 =c \\There fore the Index Register effected
 and no change in Temporary Register.

0)11()0()3(1 =⊕∧=R i.e. No Change

0)01()0()3(2 =⊕∧=R i.e. No Change

1)01()1()3(3 =⊕∧=R Reset

0)11()1()3(4 =⊕∧=R i.e. No Change.

So the value of I (3) & T (3)

1
0
0
1

I (3)
0
0
1
1

T (3)

:1step ,4=k 41 =−+= ksj

:2step 04 =c \\There fore the Temporary Register

 effected and no change in Index Register.

0)0()4(001 =∧= ⊕
−−−−−−

T
0)0()4(102 =∧= ⊕

−−−−−−

T

1)1()4(003 =∧= ⊕
−−−−−−

T

1)1()4(004 =∧= ⊕
−−−−−−

T

So the value of I (4) & T (4)

1
0
0
1

I (4)
0
0
1
1

T (4)

Read the Index register 1)4(=I its set bits position
contain the number greater than equal to from searched
number
Read all the enteries of 1)4()4(=∧TI its set bits
position for equal to search.
Read all the enteries of −−−−−

= 1)4(I its set bits position for
less than search.
Read all the enteries of 1)4()4(=∧

−−−−−−−−−−−−−

TI its set bits
position for Not equal to search.
Read all the enteries of ∧)4(I 1)4()4(=∧

−−−−−−−−−−−−−

TI its set
bits position for greater than searched number.

5. Proposed an Optimized Cache Coherence
Handling Scheme

Ad hoc networks (MANETS) are self-created and self
organized by a collection of mobile nodes, interconnected
by multi-hop wireless paths in a strictly peer to peer
fashion. Caching is an important part of any on-demand
routing protocol for wireless ad hoc networks. In mobile
ad hoc network (MANETS) all nodes cooperate in order to
dynamically establish and maintain routing in the network,
forwarding packets for each other to allow communication
between nodes not directly within wireless transmission
range. For that Several optimization techniques have been
incorporated into the basic DSR protocol to improve the
performance of the protocol. DSR uses the route cache at
intermediate nodes. The route cache is populated with
routes that can be extracted from the information
contained in the data packets that get forwarded. This
cache information is used by the intermediate nodes to
reply to the source when they receive a RouteRequest
packet during Route Discovery Phase.
Due to presence of private cache for each mobile node in
an ad hoc network necessarily introduces problems of
cache coherence, which may result in data inconsistency.
Clearly, the cache coherence problem cannot be solved by
a memory Write-through policy. If a Write-through policy
is used, the main memory location is updated, but the
possible copies of the routing information in other caches
are not automatically updated by the write-through
mechanism. So “Write-through: is neither necessary nor
sufficient for cache coherence. For that in this paper, we
have proposed a dynamic coherence check scheme for

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 281
ISSN (Online): 1694-0814
www.IJCSI.org

cache coherence in routing table of mobile nodes for
MANETs.
 In this existing scheme, called dynamic coherence check,
multiple copies are allowed. However, whenever a mobile
node moves and modifies routing information in its local
cache, it must check the other caches to invalidate possible
copies. This operation is referred to as a cross-interrogate
(XI). In other words, when a mobile node writes into a
shared block X in its cache, the node sends a signal to all
the remote caches to indicate that the “data at memory
address X has been modified.” At the same time, it writes
through memory. Note that, to ensure correctness of
execution, a mobile node which requests an XI must wait
for an acknowledge signal from all other mobile nodes
before it can complete the write operation. The XI
invalidates the remote cache location corresponding to X if
it exists in that cache. When the other mobile node
references this invalid cache location, it results in a cache
miss, which is serviced to retrieve the block containing the
updated information. In this approach, for each write
operation, (n – 1) XIs result, where n is the number of
mobile nodes. Note that the two sources of inefficiency for
this technique are the necessity of a write-through policy,
which increases the network traffic, and the redundant
cache XIs which are performed. In the latter case, a cache
is purged blindly whether or not it contains the data item
X.
 In our proposed scheme, our objective is to optimize
cache coherence handling scheme .In this scheme, we
focus on a more refined technique filters the cross-
interrogate (XI) requests before they are initiated on
reactive routing protocol DSR for mobile ad hoc network.
For that, we have ad hoc network in which every mobile
node having own local cache and there is one mobile node
having the centralized shared main memory. This main
memory contains the memory control element (MSC)
maintains a central copy of the directories of all the
caches. We will elaborate on a similar scheme called the
presence flag technique, which assumes a write-back main
memory update policy. There are two central tables
associated with the blocks of main memory (MM) as
shown in Figure5. The first table is a two-dimensional
table called the Present table. In this table, each entry

,1],[=ciP contains a present flag for the ith block in
MM and the cth cache. If ,1],[=ciP then the cth
cache has a copy of the ith block of MM, otherwise it is
zero. The second table is the Modified table and is one-
dimensional. In this table, each entry M[i] contains a
modified flag for the ith block of MM. If ,1][=iM it
means that there exists a cache with a copy of the ith block
more recent than the corresponding copy in MM. The
Present and Modified tables can be implemented in a fast
random-access memory. The philosophy behind the cache
coherence check is that an arbitrary number of caches can

have a copy of a block, provided that all the copies are
identical. They are identical if the Mobile node associated
with each of the caches has not attempted to modify its
copy since the copy was loaded in its cache. We refer to
such a copy as read only (RO) copy. In order to modify a
block copy in its cache, a mobile node must own the block
copy with exclusive read only (EX) or exclusive read-write
(RW) access rights. A copy is held EX in a cache if the
cache is the only one with the block copy and the copy has
not been modified. Similarly, a copy is held RW in a cache
if the cache is the only one with the block copy and the
copy has been modified. Therefore, for consistency, only
one mobile node can at any time own an EX or RO copy
of a block.

Figure 5. Organization of flags for dynamic solution to cache coherence

L[k,0]
L[k,1]

0 1 n-1

P[i,0] P[i,1] P[i, n-1] M[i]

Present table Modified table

Block 0

Block i

Block N - 1

Cache number

Cache
Block-frame
Containing block
k

Lo
ca

l fl
ag

s

Va
lid

 fl
ag

s

Lo
ca

l fl
ag

s
Va

lid
 fl

ag
s

Lo
ca

l fl
ag

s

Va
lid

 fl
ag

s

Figure 5. Organization of flags for dynamic solution to cache coherence

L[k,0]L[k,0]
L[k,1]L[k,1]

0 1 n-1

P[i,0] P[i,1] P[i, n-1] M[i]

Present table Modified table

Block 0

Block i

Block N - 1

Cache number

Cache
Block-frame
Containing block
k

Lo
ca

l fl
ag

s

Va
lid

 fl
ag

s

Lo
ca

l fl
ag

s
Va

lid
 fl

ag
s

Lo
ca

l fl
ag

s

Va
lid

 fl
ag

s

Fetch block i
in local cache c

Hit?
yes

no

Find block j to replace.
If block j is RW,
MM BLOCK[j,c].

Is there a copy of
block i in any remote
cache r? yes: RO

copy exists
yes: EX
copy exists

GT

yes: RW
copy exists

WB

L[i,r] RO MM BLOCK [i, r]
L[i,r] RO

L[i,c] RO

Copy block i from MM
to cache c
M[i] R0

Send word to
Mobile Node C

End

GT: possible access to global table
WB: possible MM update
MM: main memory
M[i]: modified bit of block i in GT
MM :BLOCK [i,r]: update MM with
 modified copy of i in cache r
L[i,r]: state flag of block i in cache r

Figure6. Coherence check for fetch operation

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 282
ISSN (Online): 1694-0814
www.IJCSI.org

 To enforce the cache consistency rule, local flags are
provided within each cache in addition to the global tables.
A local flag],[ckL is provided for each block k in cache
c. This flag indicates the state of each block in the cache.
A block in a cache can be in one of three states: RO, EX,
or RW. Figure 6 shows the flowchart for the HIT or MISS
when mobile node c fetches the block ith from their local
cache.
 As long as the copy of block i remains present in the
cache, mobile node c can fetch it without any consistency
check. If mobile node c attempts to store into its copy of
block i, it must ensure that all other copies (if any) of
block i are invalidated. To do this, the global table is
consulted. It should indicate the mobile node caches that
own a copy of block i. The modified bit for block i is
updated in the global table to record the fact that mobile
node c owns block i with RW access rights. Finally, the
local],[ckL flag is set to RW to indicate that the block is
modified.

 Figure 7. Coherence check for store operation

GT: possible access to global table
WB: possible write-back to memory
PI: pure invalidation
MM: main memory

Store into
block i in

local cache c

Hit?
yes

no

Find block j to replace.
If block j is RW,
MM BLOCK[j,c].

Other
copies of
block i

?

GT

PI

End

GT, WB

Invalidate all RO
copies of block i
in other caches

Request cache r to
invalidate its copy of
block I and to write it

to MM

Get copy of block i
from MM with RW access

Store in cache c

Invalidate all RO
copies of block i
in other caches

Record block i
as RW in GT

Block i
status in cache

(L[i,c])

no yes, one RW copy in cache r

yes

EX RW

RO

The flowchart for a store is shown in Figure 7.In this
implementation, a block copy in a cache is invalidated
whenever the cache receives a signal from some other
mobile node attempting to store into it. Moreover, a cache
which owns an RW copy may receive a signal from a
remote cache requesting to own an RO copy. In this case,
the RW copy’s state is changed to RO.
6. Conclusions and Future work

In this paper, we have proposed a generic searching
algorithm on associative cache memory organization to
enhance the searching of single/multiple path for
destination, if exist, in intermediate mobile node cache
with a complexity)(nO (Where n is number of bits
required to represent the searched field).The proposed
algorithm reduces the route discovery over head. We have
proposed an optimized dynamic coherence check scheme
to reduce the number of cross-interrogate (XI) signal
sends to different mobile node caches resulting in the
reduction of routing over head on DSR protocols. In future
work, the focus will be on the effect of different page
replacement polices [FIFO, LRU etc.] of cache and to
reduce the number of conflicts that occurs when
concurrent access to the global table occurs.

References

[1]Jeremy Pitt, Pallapa Venkatarram, and Abe Mamdani, “QoS

Management in MANETS Using Norm-Governed
AgentSocieties” ESAW 2005, LNAI 3963, Page(s): 221- 240,
2006.

[2]Internet Engineering Task Force MANET Working Group.
Mobile Ad hoc networks (Manet) Charter Available at http://
www.ietf.org/html.charters/manet-charter.html.

[3]Asis Nasipuri, Mobile Adhoc networks,Department of
Electrical and Computer Engineering, The university of North
Carolina at charlotte.Charlotte,NC 28233-0001.

[4] C.E. Perkins, Ad hoc networking, Addison-Wesley, 2001.
[5] D.Johnson, Rice University; Y. Hu,UIUC and D.Maltz,

Microsoft Research The Dynamic Source Routing Protocol
(DSR) for mobile ad hoc networks for IPV4, February 2007
http://www.ietf.org/rfc/rfc4728.txt.

[6] C. Perkins and S. Das, Ad hoc On Demand Distance Vector
(AODV) Routing IETF, Internet Draft, draft-ietf-manet-
aodv-13,RFc 3561, 17,February -17- 2003.

[7] Z. Haas, M. Pearlman nad P. Smar, Zone routing protocol
(ZRP), Internet Draft, Internet Engineering Task Force , Jan
2001,http://www.ietf.org/internet-drafts-ietf-manet-
zoneierp-00.txt.

[8] S. Bradner , temporally-ordered routing algorithm (TORA)
Routing IETF, Internet draft-ietf-manet-tora-spec-
04.txt,RFC 2026,July 2001.

[9] Y. Kuo, and N.H. Vaidya, “ Location –Aided Routing (LAR)
Mobile Ad Hoc Networks,” In proceedings of the
International Conference on Mobile Computing and
Networking (MobiCom’98),Oct.1998.

[10] David .B Johnson, David. A. Maltz, and Josh Broch, “
Dynamic Source Routing protocol for Multihop Wireless
Ad Hoc Networks,” In Ad Hoc Networking, edited by
Charles E. Perkins, chapter 5, pages 139-172. Addison-
Wesley, 2001.

[11] LiangZhong Yin and Guohong Cao, “ Supporting
Cooperative caching in ad hoc networks ,” IEEE
Transactions on Mobile computing, Vol. 5, Issue 1,pages
77-89,jan. 2006.

[12] Joonho Cho, Seungtaek Oh, Jaemyoung Kim, Hyeong Ho
Lee, and Joonwon Lee, “ Neighbor caching in multi-hop

http://www.ietf.org/html.charters/manet-charter.html�
http://www.ietf.org/rfc/rfc4728.txt�
http://www.ietf.org/internet-drafts-ietf-manet-zoneierp-00.txt�
http://www.ietf.org/internet-drafts-ietf-manet-zoneierp-00.txt�

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 283
ISSN (Online): 1694-0814
www.IJCSI.org

wireless ad hoc networks,” IEEE Communications Letters,
Vol 7,issue Nov. ,pages 525-527,2003.

[13] Sunlook Jung,Nisar Hundewale, and Alex Zelikovsky, “
Node Caching Enhancement of Reactive Ad hoc routing
Protcols,” IEEE Wireless Communications and Networking
Conference, 2005.

[14] Yi-Wei Ting and Yeim-Kuan Chang, “ A novel Cooperative
Caching Scheme for Wireless Ad hoc Networks;
GroupCaching,” International Conference on Networking
Architecture and storage ,NAS 2007.

[15] Shobha.K.R., and K. Rajanikanth “Intelligent caching in
On-Demand Routing Protocol for Mobile Adhoc Networks”
World Academy of Science Engineering and Technology 56
pages 413-420,2009.

[16] Yaozhou Ma, M. Rubaiyat Kibria, and Abbas Jamalipour
“Cache-based Content Delivery in Opportunistic Mobile Ad
hoc Networks” IEEE “GLOBECOM”, 2008.

[17] Mrs. K. Shanmugavadivu and Dr. M. Madheswaran
“CachingTechnique for Improving Data Retrieval
Performance in Mobile Ad Hoc Networks” In International
Journal of Computer Science and Information Technologies
(IJCSIT),Vol. 1(4),pages 249-255,2010.

[18]Yih-Chun Hu and David B.Johnson “ Ensuring Cache
Freshness in On-Demand Ad hoc Network Routing
Protocols” In POMC’02, October 30-31, Toulouse, France
,2002.

[19] Nikhil I. Panchal and Nael B. Abu-Ghazaleh “Active Route
Cache Optimization for Ad hoc Networks” In Infocom
2002.

First Author Rajneesh Kumar Gujral is working as Assoc.
Professor Department of Computer Engineering, M.M Engineering
College, M.M.University Mullana, Ambala. He obtained his BE
(Computers) in 1999 unit SLIET Longowal from Punjab Technical
University(PTU), Jalandhar. He also obtained his MTECH (IT) in
2007 from University School of Information Technology, GGSIP
University Delhi. He has about 10 publications in journals and
International Conferences to his credit. His current research
interest includes Wireless communications which include mobile,
Adhoc and sensor based networks, Network Security and
computer communication networks etc.

Second Author Dr. Anil Kumar Kapil is working as
Professor. & Principal M. M. Institute of Computer Technology and
Business Management, M. M. University Mullana, Ambala, India.
He obtained his Ph.D. (Computer Science & Engineering) in 2007.
He has about 25 publications in journals and International
Conferences to his credit. His current research interest includes
Wireless communications which include mobile, Adhoc and sensor
based networks, computer communication networks, Distributed
networks and Concurrency control etc.

