
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 242

A Remote Robotic Laboratory Experiment Platform
with Error Management

Chadi Riman

1

1

Computer Engineering, Fahad Bin Sultan University, Tabuk, KSA

Abstract

Remote control of experiments is gaining more
importance in training and education. However, remote
real-time training on instruments programming still have
some unresolved problems such as error management.
In this paper, a platform for training students on system’s
control by Tele-Programming is presented. Programming
sessions can be done by the trainee at many levels of
control with built-in error management in order to avoid
system freezing or malfunction. We showed an
illustrative application: programming navigation control
of a mobile robot in the presence of obstacles using fuzzy
control.
Keywords: Remote lab experimentation, HCI, Robotics,
Computer Simulation.

1. Introduction

Remote Experimentation is a distant control of an
experimental setup accessed from different places
and by different users (figure 1). The application
carried out in Remote Experimentation can vary
from a simple demonstration where interaction
between the student and the experiment is on a
simple level (view only), to a complex application
where the student has more control over the
experiment. The first case is safe with limited
teaching possibilities. The complex case has more
teaching advantages but it also has malfunction
risks due to a higher probability in committing
errors by students. This type of training can be
improved if it is accompanied with a tutorial and
simulation software to be used before the real
experiment.
Tele-Programming is a remote laboratory platform
in which control is done using program files
exchange. These files are usually text files of small
size which requires very low bandwidth. This type
of remote experimentation is therefore suitable to
low speed networks. This study evaluates some
existing major platforms in tele-programming and
suggests an improved low-cost platform with three
programming levels based on student and course
levels. For illustration purposes, this platform will
be used for remote training on a mobile robot in a
fuzzy logic environment.
The main problem in self programming is the need
of a tutor either in the local place or in the remote

lab, which can be replaced by a tele-tutorial system
[1-3]. This is also achieved in our platform by an
error management module to identify errors, notify
the student, and prevent system malfunction. Our
idea is to support the training of the students by
allowing failures in the experimentation. The
system can manage different kind of failures and
then send feedback to student. Moreover, all
processes are built using free software.
In this paper, section 2 presents an analysis of some
existing tele-experimentation training platforms
used in robotics. The need of different
programming levels in training is discussed in
section 3. The suggested platform architecture is
given in section 4. Section 5 presents the robot and
its fuzzy controller module which is used for
training in our suggested platform. Error
managements and Simulation modules are
respectively described in sections 6 and 7. A case
study is given in section 8 and concluding remarks
are given in section 9.

Figure 1. Remote Experimentation

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 243

2. Existing Robotics Platforms

Distance Learning platforms on robotics (DLR) are
mainly concerned with learning, evaluation and
security. In this section, the characteristics of some
Existing DLR platforms [4-7] will be studied and
used in the analysis of our suggested one.

The Open Learning platform presented in [4] uses
MS NetMeeting and Matlab real-time tools for
control purposes. It has the following
characteristics:
• Software development is simple, reducing

expenses and minimizing faculty work.
• Existing off-the-shelves freeware software, are

used.
• No need for Web-enabled Interfaces

This platform uses the Learning-by-Doing
methodology but it doesn't present any solution
related to safety problems.

The platform described in [5] uses the Active-
Learning methodology. The design provides the
remote user with the perception of reality which is
due to the use of Learning Objects. Safety is
provided by running a VRML (Virtual Reality
Module Language) simulation before executing the
control program, which may reduce any damage
due to some manipulation errors. Control learning
is limited to changing pre-defined controllers with
their parameters.

In the Platform described in [6] uses the Learning
by Tele presence, the Learning-by-Doing or Active-
Learning. The remote user indicates obstacles to be
avoided and the target to be reached. A simulation
module based on a potential field algorithm draws
the path and a control program runs in order to
follow it. Infrared sensors are installed on the robot
to provide security and increase autonomy. This
system has some deficiencies due to the limited
interaction with the user and limited experience of
the student.
The platform developed in [7] uses all learning
methodologies previously mentioned for remote
control of Lego mobile robots. The student uses
Matlab/Simulink in order to design a controller to
track a user defined trajectory. The control program
is next transmitted to the server and executed.
Three lights have been placed on the top of the
robot in order to detect position and direction by
means of a camera. A safety mechanism stops the
experiment whenever the robot reaches a forbidden
region. The control accuracy is based on a
predefined model of the robot dynamics and needs
to be changed with the physical environment.

The platform suggested in our work focuses on
displacement control of a mobile robot. It benefits
from useful techniques and methodologies

developed in previous studies and add
improvements to them.

3. Programming Protocol

The suggested protocol for training on
programming shows that there are three levels of
tele-programming (Figure 2):

Figure 2. The three programming levels

1) The direct action level is for introductory
courses where a program corresponds to a sequence
of instructions (advance, turn…). The first set of
experiments is made at this level where the student
will be learning the system specifications
(functionalities and workspace) and the basic
programming structures (loops, iterations…).
2) The configuration level is used for more
specialized courses where programming integrates
internal specifications. The student can modify
internal parameters. This facilitates the
understanding of control principles.
3) At the operational level the student learns how
to control system by advanced programming. The
program file is transmitted for execution on the
server. The program can be directly executed either
on the robot or its virtual simulated model. Virtual
reality, for design engineer workshop, allows
transmitting control instructions without syntax
constraints. Contrarily, a textual way for
transmission of control instructions needs more
abstraction in the programming phase.

Figure 3. Process of failure supervision

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 244

An error management module (Figure 3) is
included to deal with failures produced at any of the
described levels. This module prevents deadlocks
[8] and system freezing, and transmits feedback
information which improves the student learning. It
runs on the server in order to validate syntax and
semantics of programs. It also supervises program
execution like in a watchdog concept. In addition, it
controls the execution time and odometrical task
limits. Therefore, students can test their programs
without human tutor because of the feedback
provided due to an abnormal response of the robot.

4. Architecture of Suggested Platform

Figure 4. The platform architecture

The suggested platform uses client-server
architecture (figure 4). The server provides training
information such as description of programming
methods, programming steps, and programmable
devices. It is also responsible of communication
with the remote client and with the robot.
Interoperability among users is achieved by using
an Apache server and an HTTP browser. Apache
server is very stable and widely available. The
server software includes the modes of
displacements, the reachable workspace of the
robot, the response times of the actuators and the
sensors as well as the sequence of procedures
required for a given task. Interactions between the
user interface and the platform is based on sending
predefined instructions to the robot, and receiving
its status (Figure 5).
This interaction is performed in order to explore the
robot parameters and them to program its operation.
Exploring parameters allows the understanding and
the comparison between structures and sensitivity
ranges of various controllers. Programming
provides the ability of integrating the controller in a
programming language. The program has to follow
a predefined structure in order to be compatible
with the error management module. In case of
errors, the system sends an error report and
reinitializes the platform for restarting the exercise.

Figure 5. Interface process

The Apache server communicates with the robot
through a Common Gateway Interface (CGI) using
C language. The user program is transmitted by the
server to the CGI which transmits information to
the robot according to the programming level. The
robot is connected to the server through an RS232
HF serial port. Next, the CGI Program returns
results to the client. A Webcam connected to the
site returns feedback information on the framework
environment.

5. The Robot and its Fuzzy Controller

The Khepera robot (Figure 6) has a diameter of 55
mm and a height of 30 mm. It is controlled by a
Motorola processor 68331 with 256 KB of RAM
and 18 KB of ROM. Its motion is due to two DC
motors with encoders. It is also provided with 8
infra-red sensors. Because of its modularity and its
important number of options, this product is widely
used by researchers and teachers. It can be
programmed in GNU C with LabView or Matlab.

Figure 6. Khepera mobile robot

At the first level of programming, operations are
based on actions available in the robot integrated
libraries. These actions are simple: advance, turn,
pause, avoid, measure sensors values... The user is
therefore able to carry out a simple task in a
complex environment.
At the configuration level, uploaded programs use
fuzzy controllers that are structured with heuristic
features close to human actions. Configuration is
done on parameters relative to a classification of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 245

entries (data generated by sensors or robot status)
and on fuzzy rules.
At the operational level, the transmitted source code
implements the algorithmic structure and the robot
control.

6. Error Management

For a navigation task towards a goal in a complex
space, two situations are considered as [8]:
• Blocking (figure 7): a bad choice of control
parameters (control law or range of operation of
proximity sensors) may cause a freezing in
operation during obstacles crossing.
• Vagrancy (figure 8): the error causes
divergence from the goal.

Figure 7: blocking situation

Figure 8. Vagrancy situation

A first type of errors is due to a bad parameters
configuration. These fuzzification parameters on
inputs and on selected rules of inference, lead to
freezing during a simple navigation task in presence
of obstacles. This allows students to understand the
structural and logical definition of the configured
fuzzy subsets. A simple modification of the number
of subsets or the use of a symmetrical or
asymmetrical triangular structure makes a
navigation task successful or not.

The second type of errors occurs because of a
programming problem (infinite loops, interruption,

exception...). For example, infinite loops are
suspected when blocking occurs without being
associated with sensors configuration. Memory
allocation problem is detected by the mechanism of
integrated watchdog: the robot must send
periodically information on the execution status.
The training at this stage is concerned with the
algorithm, its implementation, and its execution.
Tools for coding and reliability analysis could be
used during this learning stage [9].

7. Simulation Module

The aim of the simulation module is to perform a
local test on the student program before being
uploaded. The simulation phase has the following
objectives:
1- Understanding the robot specifications and
functions.
2- Testing programs without risks or without using
the robot.
Simulation is done in a VRML (Virtual Reality
Modeling Language) environment, which is a 3-
dimentional scene description language installed on
the client station. First, the server transmits various
documents to the client browser which interprets
these documents with a possible help of plug-ins. In
case this interpretation fails, these documents are
transmitted to the VRML.

Figure 9. VRML Simulator

In a first step, the simulator visualizes the robot in
order to present its functionalities (figure 9):
motion, perception and processing devices.
Students, at this stage of training, can study these
functions relative to mechanical, electronic and data
processing concepts:
• Perception: Allows studying the principles,
types, ranges, and positioning measurements of
infra red sensors.
• Motion: Allows to study actuators
specifications and types, as well as kinematics
and power module devices.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 246

• Processing: Allows studying processor
characteristics (memory, temporal diagrams...).

In a second step, VRML simulator serves as a trial
stage for programming. Students can study the
behavior of the simulated robot in the action
programming level.

8. Case Study

Experiments were carried out between Lebanon and
France for various levels of programming. This
allows evaluating the risks of operation due to the
reduced quality of connection. The system was
installed on a computer server at the LISV lab
(Versailles University). The server was connected
by wireless link to the robot. A visual feedback was
used during the experiment in order to simplify
operations and to improve learning process.
The test task was a simple navigation with obstacle
avoidance. The Khepera mobile robot was installed
in a limited enclosure for a safe displacement.
Examples are given for various types of users
(specialized engineers, students without or with
limited experience) operating at different
programming levels.

a. Direct Action level
This level is tested with high school students. They
have to program the robot in order to test sensors
and control strategies based on program files
composed of predefined orders. A list of commands
accessible from the client site in action mode is
given in Appendix.
Table 1 summarizes the common errors which are
mainly due to bad values of PID parameters or
other parameters relative to uploaded actions.
Errors are always detected by means of mobility
status.

Cause Effect
Bad choice of PID terms,
Often Integral term too
high

Instability and Vagrancy
situation

Displacement without
sensors feedback

Blocking situation because
of security process
occurrence

Table 1. Common Students errors in the Task level

b. Configuration level
At this level, a student tests his/her knowledge of
control based on fuzzy logic. Thus, to simplify
illustration of obstacle avoidance management,
outputs of sensors will be fuzzified in terms of
detected distance and orientation. An example in
figure 10 can be adapted by modifying the structure
of the fuzzy subsets: i.e. by modifying each subset
limits FSij. This information will modify the mobile
robot behavior by affecting its sensitivity to sensors

values. In the same way, it is possible to modify the
rules of fuzzy inferences. This technique is based
on the Sugeno-takagi approach [10], in which
conclusions of the rules are singletons Si (Figure
11). The file of the program on the configuration
level contains the parameters FSij and Si. Table 2
summarizes common errors that may occur at this
level.

Figure 10. Example of fuzzy sub sets

Figure 11. Inference rule table with singletons

Cause Effect
FSij terms shift on the left
space (obstacle detection
too close)

Blocking situation

FSij terms shift on the right
space (far obstacle
detected)

Vagrancy situation

Si terms in the inference
rule table are symmetric

Blocking situation by
opposition between two
obstacles

Table 2. Common Students errors in the

Configuration level

c. Operational level
At this level, students must carry out the complete
compilation in order to upload the program file. To
simplify this phase, students may use a library of
programs made of classical Khepera instructions
and stored in the server. It is possible to proceed to
simple actions like flickering LEDs of the robot,
reading values of the infra-red sensors or writing a
program containing navigation instructions with

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 247

obstacle avoidance such as the one based on the
principle of Braitenberg [11]. Uploaded files in this
level must respect the S37 format [12]. The robot
being provided with a microcontroller Motorola
68331, programs written in C language, must be
compiled using an appropriate cross-compiler like
KTproject compiler under Windows. In this mode,
the program is automatically executed after it is
uploaded on the robot.
Table 3 contains common errors that may occur at
this level.

Cause Effect
Braitenberg simple control Blocking situation by

antagonism between two
obstacles

Bad choice of control law Vagrancy or blocking
situations

Infinite loop problem Hazardous direction
vagrancy situation

Memory allocation problem On place blocking situation

Table 3. Common Students errors in the
Operational level

9. Conclusion

In this study, a platform for training on systems
control by tele-programming was presented.
According to the student academic profile, and in
order to improve self-learning process, a protocol
including various training levels and error
management was validated.
This approach was evaluated based on experiments
carried out through Internet connection between
Lebanon and France. The experiment for the
student learning phase was a mobile robot
programming using different levels: from
predefined order to fuzzy logic programming.
During this stage, we tested the error management
to improve knowledge feedback for students.
The realized platform uses free software and works
with low bandwidth Internet connection. Our idea is
to answer typical student constraints in term of
flexibility and cost.

After this first trial supported by CEDRE program1

1 "Coopération pour l'Évaluation et le
Développement de la Recherche", Cooperative
program between Lebanese and French
Governments.

,
different modes of operation will be introduced in a
future work. A suggested mode of operation is to
configure the system to be used by handicapped
persons. For this purpose, the learning platform
would integrate an adaptable and easy configurable
man machine interface.

Appendix

List of commands accessible from the client site in
action mode

A: for parameters configuration of the PID
velocity controller: proportional (Kp), integral
(Ki) and derivative (Kd
Default values of these parameters are: K

).
p=3800,

Ki=800, Kd
C: Indicates to the position controller the absolute
position to reach. The robot trajectory will
produce three phases: acceleration, constant
velocity and braking.

=100.

D: Configures the velocity of both wheels. The
unit is pulse/10ms which corresponds to a
velocity of 8mm/s, its maximum value is 1m/s.
E: Reads the instantaneous wheels velocity.
H: Reads the position 32 bits counter of each
wheel.
I: Reads on 10 bits the value of the analog input
relative to the selected channel. Its maximum
digital value corresponds to an analog input of
4.09 Volts.

Channel 0: Detects battery status.
Channel 1: Measures instantaneously the
intensity of the reflected light.
Channel 2: Measures instantaneously the
intensity of the ambient light.
Channels 3, 4, 5: Free channels to be used by
analog inputs: 36, 37 and 38 of the KBus.
Channel 6: Reads the Khepera current
consumption in mA.

J: Configures velocity profiles using motion
parameters (Maximum velocities and
accelerations).
N: Reads on 10 bits each value of all eight
proximity sensors.
P: Configuration of the desired amplitude of the
PWM relative to each wheel. The modulation
factor varies between 100% lagging and 100%
leading with 0% as middle range. These values
correspond respectively to +255, -255 and 0 as
binary reading.

Acknowledgments

The author thanks the Assistance and Handicap
team headed by Dr. Eric Monacelli in LISV
research laboratory of Versailles University
(France) for their help in applying this work.

References
[1] A. Böhn, K. Rütter, B. Wagner, “Evaluation of tele-
tutorial in a remote programming laboratory”, American
society for engineering education annual conference,
2004
[2] C. Riman, A. El Hajj and I. Mougharbel. “A Remote
Lab Experiments Improved Model”, International Journal
of Online Engineering, Volume 7 Number 1, 2011.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 248

[3] I. Mougharbel, A. El Hajj, H. Artail, and C. Riman.
Remote Lab Experiments Models: A Comparative Study,
International Journal of Engineering Education, Volume
22 Number 4, 2006.
[4] N. Swamy, O. Kuljaca, F.L. Lewis, “Internet-Based
Educational Control Systems Lab Using NetMeeting”,
IEEE Transactions on Education, VOL. 45, N°. 2, May
2002.
[5] D. Fabri, C. Falsetti, S. Ramazzotti, T. Leo, “Robot
Control Designer Education on the Web”, Proceedings of
the 2004 IEEE International Conference on Robotics and
Automation, New Orleans, April 2004.
[6] F.D. Von Borstel, B.A.. Ponce, J.L. Gordillo, “Mobile
Robotics Virtual Laboratory Over the Internet”,
Proceedings of the Fourth Mexican International
Conference on Computer Science (ENC’03), 2003.
[7] F. Carusi, M. Casini, D. Hattichizzo, A. Vicino,
"Distance Learning in Robotics and Automation by
Remote Control of Lego Mobile Robots", Proceedings of
the 2004 IEEE International Conference on Robotics and
Automation, New Orleans, April 2004.
[8] A. Smirnov, E. Monacelli, S. Delaplace
“Single adaptation mechanism for collaborating multi-
robots”,

[9] M. H. Klein, and al., “

ICINS’2002 conference, St Petersburg, Russia,
2002.

A Practitioners' Handbook for
Real-Time Analysis: Guide for Real-Time Systems

[10] F. Abdessemed, K. Benmahammed, E. Monacelli,
“A fuzzy based reactive controller for a non holonomic
mobile robot”, Robotic and autonomous systems journal,
pp 31-46, 2004

”,
Boston, Kluwer Academic Publishers, 1993.

[11] V. Braitenberg, “Vehicles: Experiments in Synthetic
Psychology“, MIT Press, 1984
[12] K-Team, “User's Guide for Khepera mobile robot”,
http://www.k-team.com/download/khepera.html

Chadi Riman received his Bachelor of Engineering and
Masters of Engineering degrees both in Computer &
Communication Engineering from the American University
of Beirut (AUB), Lebanon in 1994 and 2004, respectively.
He finished his PhD degree at the University of Versailles
(UVSQ), France in January 2008. He worked from 1994 to
1998 in the software engineering domain, and was the IT
manager in AinWazein Hospital, Lebanon from 1999 to
2008. He is currently Assistant Professor at Fahad Bin
Sultan University, Tabuk, KSA. His research interests
include software systems for handicap rehabilitation and
remote engineering education.

	Cause

