
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

232

Teaching Software Engineering: Problems and Suggestions

Osama Shata

 Department of Computer Science and Engineering, Qatar University
Doha, Qatar

Abstract
Teaching Software Engineering is a challenging task. This paper
presents some problems encountered during teaching the course
of software engineering to computer science and computer
engineering students for few offerings. We present problems
encountered and which are related to its title and contents and
present suggested solutions.
Keywords: Software Engineering, Development Cycle, Object-
Oriented.

1. Introduction

This paper presents some problems encountered during
teaching the course of software engineering to computer
science and computer engineering students for few
offerings. We present problems encountered as well as
suggested solutions.

I teach Software Engineering, which is a common
compulsory course in many Computer Science and
Computer Engineering curriculums. Probably because
programming courses are part of those curriculums and
software engineering is being defined, in general, as
concerned with developing quality software. However, I
found that in many cases, and during my discussions with
colleagues on how to improve the course, the course is
being looked at as an intruder to both curriculums.
Computer scientists do not feel that it is a real computer
science course. While the word “engineering” in its title
may be contributing to this feeling, the course is also
different in its nature from real computer science courses
such as Computer Architecture, Operating Systems,
Algorithms … etc. Computer engineers also do not feel
that it is a real Computer Engineering course, probably the
word “software” is contributing to this feeling, but more
importantly, it lacks hardware components and lacks real
design experiences. This paper begins with a brief
introduction to the origin of the Software Engineering
discipline. Next the paper will discuss contents that are
usually being taught in a typical Software Engineering

course and highlights problems faced and offer
suggestions. The paper concludes with a summary.

2. Problems

The term Software Engineering (SE) was first introduced
in 1968 in a NATO conference to address software crisis
which came to surface in that period, when many large
software projects faced great difficulties such as
unexpected delay in delivery, and exceeding estimated
costs [1]. Some of the problems encountered during
teaching the SE course are related to its title while others
are related to its contents. We begin with those related to
its title.

2.1 Course Title

One of the first problems faced during teaching the course
was to explain its title and why the word “engineering” was
in its title. The IEEE Computer Society’s Software
Engineering Body of Knowledge defines Software
Engineering as the: “ application of a systematic,
disciplined, quantifiable approach to the development,
operation and maintenance of software, and the study of
these approaches; that is the application of engineering to
software” [2]. This means that “engineering” is the
application of a “systematic, disciplined, quantifiable
approach”. However, according to The American
Engineer’s Council for Professional Development,
“engineering” is: “the creative application of scientific
principles to design or develop structures, machines,
apparatus, or manufacturing processes, or works utilizing
them singly or in combination; or to construct or operate
the same with full cognizance of their design; or to forecast
their behavior under specific operating conditions; all as
respects an intended function, economics of operation and
safety to life and property” [3].

The relationship between the two definitions is not, and
cannot be, tight. Software development is very different

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

233

from engineering, for example: software is intangible
meanwhile engineering applications are tangible, the
existence of many programming languages with many
features makes it possible to have many solutions to the
same problem, and the reusability and reproduction of a
solution to a problem in many other problems makes it
hard to assess the effort involved. Other resources [4]
point out that software development should follow an
engineering paradigm. This means that there is a
standalone “engineering paradigm” which has well defined
steps. However, top ranked results returned from searching
the Internet with various search engines for that term
returned resources having “software engineering
paradigm”. That was really confusing to students. The
software development process must follow the engineering
paradigm which itself does not have a clear definition. A
good solution for this problem is to accept Alistair’s claim
that [5]: “The phrase ‘software engineering’ was
deliberately chosen as being provocative, in implying the
need for software manufacture to be based on the types of
theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering”.
Specially that the term “software engineering” first
appeared in the 1968 NATO Conference on Software
Engineering, and which was aimed to stimulate software
professionals and researchers to respond to software crisis
at that time [1].

A second justification for using the word “engineering” in
the title is to relate it to “Systems Engineering”. According
to The International Council on Systems Engineering
(INCOSE), Systems Engineering is: “An interdisciplinary
approach and means to enable the realization of successful
systems” [6]. An expanded definition for systems
engineering is given by the National Aeronautics and
Space Administration (NASA) [7]: "System Engineering is
a robust approach to the design, creation, and operation of
systems. In simple terms, the approach consists of
identification and quantification of system goals, creation
of alternative system design concepts, performance of
design trades, selection and implementation of the best
design, verification that the design is properly built and
integrated, and post-implementation assessment of how
well the system meets (or met) the goals" . So depending
on the previous definitions one may justify that the term
“engineering” in software engineering was either borrowed
from system engineering to mean “an interdisciplinary
approach and means to enable the realization of successful
software systems”, or to denote that if an engineering
system has a software component, and most probably it
would, then Software Engineering “is a robust approach to
the design, creation, and operation of software systems. In
simple terms, the approach consists of identification and
quantification of software system goals, creation of

alternative software system design concepts, performance
of design trades, selection and implementation of the best
design, verification that the design is properly built and
integrated, and post-implementation assessment of how
well the system meets (or met) the goals”. In all cases, in
our opinion, this does not make Software Engineering an
engineering discipline.

The some may agree or disagree with the above trials to
explain the title of the course. However, we believe that
there has been much room for trials because the 1968
NATO Software Engineering Conference did not give an
explanation. according to Alistair [3]: “despite having the
term as a focal point for the conference, the participants
showed little understanding of either the term “Software
Engineering” or engineering in general, and provide little
guidance as to just what readers are supposed to infer from
the term “Software Engineering.” Alan Perlis’ keynote
speech contains the following: this is the first conference
ever held on Software Engineering and it behooves us to
take this conference quite seriously since it will likely set
the tone of future work in this field in much the same way
that Algol did. We should take quite seriously both the
scientific and engineering components of software, but our
concentration must be on the latter. Unfortunately, that is
all he offers on the intention of the term.”
Questioning whether software engineering is an
engineering discipline at all is not new [7, 8, and 9].
 Also, the teaching of Software Engineering as a subject is
in continuous debate [10, 11]. It is not the goal of this
paper to add to the doubts about the Software Engineering
as a discipline or its education, but rather to find solutions
to problems encountered during teaching the course. We
find that Alistair’s justification that the term
was deliberately chosen as being provocative is an
acceptable solution to the confusing title of the course

a- Introduction to software engineering

.

2.1 Course Contents

Other problems encountered in the course were related to
the course contents. Browsing syllabi of many software
engineering courses, including ours, would lead to the
conclusion that most of them have the following contents
in common:

b- The software development process and software
life cycle

c- Requirements specifications
d- Analysis and design (structured, object oriented

approaches and UML)
e- Implementations, testing, maintenance and

reliability
f- CASE tools
g- Other topics (e.g. project managements)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

234

Problems related to (a) above would mainly involve the
title and this has been dealt with earlier.

The software development process and software life cycle
usually introduces students to the waterfall model, iterative
models (e.g. spiral model), agile model, extreme model
and rational united process. The waterfall model is well
defined and the differences between this model and other
models are clear. However, the differences between the
other models are not that clear and could be confusing. For
example, it is difficult to explain and highlight rigid
differences between the spiral and agile models. Both are
incremental and iterative. Both work in order of risk. The
difference may be in the scope. While the spiral focuses on
big design from the beginning and is recommended for
large projects, the agile focuses on one increment at a time
and may work for small projects. That difference is not
really sharp to require two names for almost the same
model. It was going to be easier if agile was considered a
special case of the spiral model. Also, it is not clear what is
meant with big and small projects, this is proportional. If
the course delves into the discussion of the Extreme
Programming (XP) model / technique then more confusion
is added to the course as follows: The PC magazine says
about XP that “it is based on a formal set of rules about
how one develops functionality such as defining a test
before writing the code and never designing more than is
needed to support the code that is written” and “XP is
designed to steer the project correctly rather than
concentrating on meeting target dates, which are often
unrealistic in this business” [12]. But is not that what
software developers need? Just to design what is needed
for coding and to steer the project correctly? If so, then
why the need for other models? Even more, TechTarget
[13] claims that: “Kent Beck, author of Extreme
Programming Explained: Embrace Change, developed the
XP concept. According to Beck, code comes first in XP”.
But this contradicts what we have been teaching students
that software engineering is concerned with the careful
analysis and design so that the coding phase goes
smoothly. Now, we teach them that code comes first.
Furthermore, according to Don Wells [14], XP “has
already been proven to be very successful at many
companies of all different sizes and industries worldwide”.
Again, if XP is the perfect model for all different sizes and
industries then why trying other models? On the other
hand, the some suggest that XP is waning [15]. While most
literature suggests that XP is a special case of agile,
Extreme Programming (XP) happens to be the most well-
known of agile methodologies [16]; others suggest that
agile itself is only an implementation of the spiral model
[17]. The point here is that there is no consensus on the
relationship between the different models and there is no

clear recommendation on when to use each. We transfer
this confusion to students in our teaching. Now, how about
adding the Rational Unified Process (RUP) to the picture?
We suggest not to overwhelm students with many
techniques and models, but rather to introduce them to the
waterfall model and the spiral model and we list the agile,
pair programming, and Extreme programming as different
implementation of the spiral model and focus on the XP
since it seems to be working and we believe that students
actually have been following this technique in their
programming courses without actually realizing that it has
the name XP. Once students learn a programming language
they become enthusiastic to using it and start coding
quickly. So, they actually design little and later and code
first. Of course, we have to shape their skills in using these
techniques, but it is the closer to them.

A third source for problems encountered was the topic of
“Analysis and design (structured, object oriented (OO)
approaches and UML)”. This is due to the similarity
between some of the tools used in the structured and
object-oriented approaches. A student once asked why I
should use use-cases, sequence diagrams and class
diagrams when I can use the entity-relationship diagram I
learned in the database course and the data flow diagram
and process flow diagram which I have learned in other
courses.

- Use case diagrams

 The structured approach mainly uses the entity-
relationship diagram (E-R) and the data flow diagram
(DFD), whereas the object-oriented approach may use the
UML including:

- Class diagrams
- Sequence diagram
- Object diagram
- Package diagram
- Deployment diagrams
- State machine diagram
- Activity diagram
- Communication diagram
- Component diagrams
- Interaction overview diagrams
- Timing diagrams

Although there are differences between the structured
(functional decomposition) approach and the OO
approach, but there are also big similarities between some
of their tools (e.g. the E-R diagram and the class diagram).
This makes students ask why the E-R diagram is not part of
the UML. An entity in the E-R diagram corresponds to the
class in the class diagram. Attributes in the E-R diagram
corresponds to attributes in the class diagram.
Relationships between entities correspond to relationship
between classes. Of course the latter have methods and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

235

operations as well. But students wonder if the structured
approach is supposed to be considered a completely
different approach from the object-oriented approach
whereas major tools are almost the same (or very similar)
in both. The instructor focuses on the fact that a

[2]

class
diagram represents the behavior features of a system
through the operations. A similar argument can be said
about the similarity between the DFD and the sequence
diagram or the activity diagram. Since the UML with its
various diagrams are more comprehensive then we believe
that it should be used directly without actually considering
the E-R diagram and the DFD. A brief introduction to the
structured approach may be considered but without delving
into the tools.

4. Conclusions

We have identified and presented some problems
encountered during teaching the course of software
engineering with some brief and quick suggestions. We
believe that most of these problems encountered are due
following a traditional course syllabus that addresses both
the structured and OO approaches in detail, and also for
considering many diagrams that are part of UML. We
believe that the course must involve extensive
programming and many case studies to be interesting to
students and to clarify to students that this course does not
provide one proper solution to developing software, but
rather various approaches could be adopted and that there
is room for creativity. We are currently working on
developing a new syllabus which addresses the contents
problems raised in this paper in more details and which we
expect to make the course interesting and more applied.

References
[1] P. Naur and B. Randell, Eds. Software Engineering. Report

on a Conference held in Garmisch, Oct. 1968, sponsored by
NATO
SWEBOK executive editors, Alain Abran, James W. Moore;
editors, Pierre Bourque, Robert Dupuis. (2004). Pierre
Bourque and Robert Dupuis. Ed. Guide to the Software
Engineering Body of Knowledge - 2004 Version. IEEE
Computer Society. pp. 1–1. ISBN 0-7695-2330-7

[3] Science, Volume 94, Issue 2446, pp. 456: Engineers' Council
for Professional Development

[4] A Brief History of Software Engineering. Online resource:
http://www.comphist.org/computing_history/new_page_13.ht
m Retrieved October 17, 2010.

[5] Alistair. The end of software engineering and the start of
economic-cooperative gaming. Online
Resource: http://alistair.cockburn.us/The+end+of+software+e
ngineering+and+the+start+of+economic-cooperative+gaming
Retrieved Oct 1, 2010.

[6] Systems Engineering Handbook, version 2a. INCOSE. 2004.

[7] NASA Systems Engineering Handbook. NASA. 1995. SP-
610S.

[8] Mahoney, Michael. 2004. Finding a History for Software
Engineering, Online resource

http://www.princeton.edu/~hos/Mahoney/articles/finding/find
ing.html Retrieved September 15, 2010.

[9] M. Shaw, "Prospects for an Engineering Discipline of
Software", IEEE Software vol. 7, no. 6, Nov. 1990, p. 15.

[10] Parnas, D. L., Software Engineering Programs are not
Computer Science Programs, IEEE Software,
November/December, 1999, Vol. 16, No. 6, pp. 19-30.

[11] Demarco, T. Point-Counter Point: It Ain’t Broke, So Don’t
Fix It, IEEE Software, November/December, 1999, Vol. 16,
No. 6, pp. 67-69.

[12] PCMAG. Extreme Programming. Online resource:
http://www.pcmag.com/encyclopedia_term/0,2542,t=XP&i
=55075,00.asp Retrieved Sep18, 2010.

[13] Techtarget. Extreme Programming. Online
resource http://searchsoftwarequality.techtarget.com/sDefini
tion/0,,sid92_gci214366,00.html Retrieved sep15, 2010.

[14] Extreme Programming. : Extreme Programming: A gentle
introduction. Online resource
http://www.extremeprogramming.org/ Retrieved Sep13,
2010.

[15] Smith, Steve. Is Extreme Programming Dying? Is Agile
Growing in Popularity? Online resource
http://stevesmithblog.com/blog/is-extreme-programming-
dying-is-agile-growing-in-popularity/ Retrieved Oct 1,
2010.

[16] Hutagalung, Wilfrid. 2006. Extreme Programming. Online
resource http://www.umsl.edu/~sauterv/analysis/f06Papers
/Hutagalung/#xp Retrieved Oct 18, 2010.

[17] Stackoverflow. Online resource
http://stackoverflow.com/questions/253789/agile-vs-spiral-
model-for-sdlc Retrieved Oct 1, 2010.

Osama Shata is an Associate Professor in the department of
Computer Science and Engineering at Qatar University, Qatar. He
has an extensive industrial, academic and administrative
experience at both the postgraduate and undergraduate
levels. His research interests began with intelligent database
systems and knowledge base systems. As information technology
became an integral component of any successful education
process, his research interests focused on e-learning / distance
education, electronic course delivery, curriculum development and
integration, multimedia, HCI, curriculum design and development,
and Accreditation.

http://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge�
http://www.swebok.org/�
http://www.swebok.org/�
http://en.wikipedia.org/wiki/IEEE_Computer_Society�
http://en.wikipedia.org/wiki/IEEE_Computer_Society�
http://en.wikipedia.org/wiki/International_Standard_Book_Number�
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-2330-7�
http://adsabs.harvard.edu/abs/1941Sci....94Q.456.�
http://adsabs.harvard.edu/abs/1941Sci....94Q.456.�
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming�
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming�
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming�
http://www.princeton.edu/~hos/Mahoney/articles/finding/finding.html�
http://www.princeton.edu/~hos/Mahoney/articles/finding/finding.html�
http://www.pcmag.com/encyclopedia_term/0,2542,t=XP&i=55075,00.asp�
http://www.pcmag.com/encyclopedia_term/0,2542,t=XP&i=55075,00.asp�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci214366,00.html�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci214366,00.html�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci214366,00.html�
http://www.extremeprogramming.org/�
http://stevesmithblog.com/blog/is-extreme-programming-dying-is-agile-growing-in-popularity/�
http://stevesmithblog.com/blog/is-extreme-programming-dying-is-agile-growing-in-popularity/�
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/#xp�
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/#xp�
http://stackoverflow.com/questions/253789/agile-vs-spiral-model-for-sdlc�
http://stackoverflow.com/questions/253789/agile-vs-spiral-model-for-sdlc�

	[2] 3TSWEBOK3T 0Texecutive editors, Alain Abran, James W. Moore; editors, Pierre Bourque, Robert Dupuis. (2004). Pierre Bourque and Robert Dupuis. Ed. 0T3TGuide to the Software Engineering Body of Knowledge - 2004 Version3T0T. 0T3TIEEE Computer Socie...
	[3] 3TScience, Volume 94, Issue 2446, pp. 456: Engineers' Council for Professional Development3T
	[8] Mahoney, Michael. 2004. Finding a History for Software Engineering, Online resource
	3Thttp://www.princeton.edu/~hos/Mahoney/articles/finding/finding.html3T Retrieved September 15, 2010.
	[14] Extreme Programming. : Extreme Programming: A gentle introduction. Online resource
	3Thttp://www.extremeprogramming.org/3T Retrieved Sep13, 2010.

	[15] Smith, Steve. Is Extreme Programming Dying? Is Agile Growing in Popularity? Online resource

