
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

22

Tetris Agent Optimization Using Harmony Search Algorithm

Victor II M. Romero1, Leonel L. Tomes2 and John Paul T. Yusiong3

 1,2,3

Abstract

Harmony Search (HS) algorithm, a relatively recent meta-
heuristic optimization algorithm based on the music
improvisation process of musicians, is applied to one of today’s
most appealing problems in the field of Computer Science, Tetris.
Harmony Search algorithm was used as the underlying
optimization algorithm to facilitate the learning process of an
intelligent agent whose objective is to play the game of Tetris in
the most optimal way possible, that is, to clear as many rows as
possible. The application of Harmony Search algorithm to Tetris
is a good illustration of the involvement of optimization process
to decision-making problems. Experiment results show that
Harmony Search algorithm found the best possible solution for
the problem at hand given a random sequence of Tetrominos.
Keywords: Harmony Search algorithm, Tetris, Intelligent Agent,
Artificial Intelligence

1. Introduction

Problems and challenges have always been part of human
life and of the human civilization itself. They define the
difference between what is currently in existence and of
what could be, after a goal has been achieved. In
Computer Science, researchers are concerned with the
search for solutions to computational problems and these
problems may be categorized into two main classes: P-
problems and NP-problems.

P-problems, otherwise known as Polynomial-time
problems are problems whose solutions may easily be
identified, that is, the procedure for finding the solution is
already known. On the other hand, NP-problems are
problems whose solutions have no proven optimal way of
acquisition. NP-problems are also called “I know it when I
see it problems” because of the fact that the validity of
their solution may only be verified when tried and
evaluated [4,5]. A good example of such problem is the
creation of an intelligent agent for Tetris [5].

Division of Natural Sciences and Mathematics,
University of the Philippines Visayas Tacloban College

Tacloban City, Leyte, 6500, Philippines

Tetris is a puzzle computer game originally created by
Alexey Pajitnov [6]. An intelligent agent for Tetris is a
program whose goal is to be able to play the game in the
most optimal way possible. In such a case, we only know

the quality of the agent by assessing its performance when
it has already played the game. To deal with such
problems, where too little detail is known on the nature of
a problem’s solution, computer scientists use a different
approach in the form of meta-heuristic algorithms.

Meta-heuristic algorithms are a primary sub-field of a
larger class of algorithms and techniques called stochastic
optimization [4]. They are called stochastic optimization
because they employ some degree of randomness in
searching for a solution. In other words, they are solving
problems through a series of intelligent guesses. The
primary ideas for achieving the series of intelligent
guesses of existing meta-heuristic algorithms are driven by
natural occurrences like biological processes and animal
behaviors.

The popularity of Tetris has intrigued mathematicians and
computer scientists to study its non-trivial nature and
reveal its NP-Complete characteristics [5] triggering the
motivation for the creation of an intelligent agent. A Tetris
intelligent agent is an Artificial Intelligence (AI) program
which plays or simulates the game with the goal of
clearing as many rows as possible. In fact, in the past years
scientists have successfully created intelligent agents using
Evolutionary Algorithms [1,2] and Ant Colony
Optimization [3].

Harmony Search (HS) algorithm is a meta-heuristic
algorithm developed in 2001 by Geem et al [7]. It is
modeled after the musical improvisation process, wherein
a band of musicians continuously tries to create better
harmony. This algorithm and its variants [8-9] have been
applied to a wide array of real-life optimization problems
such as structural design, ecological conservation,
industrial operation and musical composition [7], [10-13].
The HS algorithm is a powerful optimization tool because
of its ability to discover the high performance regions of
the solution space in a reasonable amount of time. In
addition, other characteristics enable the HS algorithm to
increase its flexibility and produce better solutions, and
these are [14]:

1. HS imposes fewer mathematical requirements.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

23

2. HS uses stochastic random searches thus any
derivative information is unnecessary.

3. HS creates a new solution vector after
considering all of the existing solution vectors.

Since the Harmony Search algorithm has demonstrated its
strength on various fields of discipline and has been
successfully applied to many problem domains, this study
explores the feasibility of using the Harmony Search
algorithm in decision-making optimization problems, that
is, to use the HS algorithm as the underlying optimization
algorithm in facilitating the learning process of the Tetris
intelligent agent.

The paper is organized as follows. A brief description
about Tetris is presented in Section 2. Section 3 introduces
the Harmony Search algorithm followed by a discussion
on the proposed HS-based Tetris intelligent agent in
Section 4. The experimental results are shown in Section 5
while Section 6 contains the conclusion.

2. The Tetris Game

Tetris is a game originally invented and programmed by
Alexey Pajitnov in June 6, 1984 while working in
Dorodnicyn Computing Center of the Academy of Science
of the USSR in Moscow [6]. It is one of the most popular
and most successful games to hit the market. In fact, Tetris’
success as a computer game led to the creation of many
other variants, sporting slightly different game play. The
Tetris game and its variants are basically composed of two
main components, the game pieces called Tetrominos and
the game board.

The standard Tetris game board has a dimension of 10 x
20 and there are seven Tetrominos or game pieces, as
shown in Figure 1and these are O, J, L, I, S, T and Z. The
game pieces differ significantly by the maximum number
of rows that they are able to clear simultaneously. In fact, a
simple analysis of the game pieces reveals that all are
capable of clearing one and two rows. But only pieces “I”,
“J” and “L” are capable of clearing three rows and
ultimately, only the “I” Tetromino is capable of clearing
four rows (called “Tetris”)[1].

Fig. 1 Tetris Game Pieces-Tetrominos

In Tetris, Tetrominos fall from the top of the game board
one at a time and aside from the current Tetromino being

manipulated, an advance view of the next piece is
provided to the player. This is to enable the player to
manipulate and position the current Tetromino in the game
board such that one or more gapless row(s) of block is
created. When such a scenario happens, the gapless row is
cleared and all existing blocks above that row descend n
units, where n is the number of rows cleared which is
between 1 and 4. In addition, manipulation of a Tetromino
can only be performed in two ways, either by doing a 90
degree rotation or a sideways movement while the
Tetromino has not yet reached the bottom of the game
board, at which case it fixes itself into position [1].

However, unlike most games, Tetris does not have a win
condition, so the game continues until the stack of blocks
in the game board disallows the entry of succeeding
Tetrominos. This means that the only goal in the game is
to be able to clear as many rows as possible for better and
longer game play. As a result, staying in the game solely
depends upon the number of rows cleared.

3. The Harmony Search (HS) Algorithm

Computer scientists have found a significant relationship
between music and the process of looking for an optimal
solution. This interesting connection led to the creation of
the Harmony Search algorithm. It is a new kind of meta-
heuristic algorithm mimicking a musicians’ approach to
finding harmony while playing music. When musicians try
to create music, they may use one or a combination of the
three possible methods for musical improvisation which
are as follows: (1) playing the original piece, (2) playing in
a way similar to the original piece, and (3) creating a piece
through random notes.

In 2001, Geem et al [7] saw the similarities between the
music improvisation processes and finding an optimal
solution to hard problems and formalized the three
methods as parts of the new optimization algorithm, the
Harmony Search algorithm (HS); (1) harmony memory
consideration (2) pitch adjustment and (3) randomization.
These three methods are the main parameters of the
algorithm and play a vital role in the optimization process
[7], [10-13].

For musicians, one of the ways of producing good music is
considering existing compositions and playing them as
they are. In the Harmony Search algorithm, this is also the
case, the use of harmony memory is vital as it ensures that
potential solutions are considered as elements of the new
solution vector. The second way of coming up with good
music is by playing something similar relative to an
existing composition, in HS this is called the pitch
adjustment mechanism and may be referred to as the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

24

exploitation mechanism in the Harmony Search algorithm;
it is responsible for generating slightly varying solution
from existing solutions. It is comparable to the mutation
mechanism in genetic algorithms. Randomization, the last
of the methods ensures that the search for solution is not
isolated to the local optima. It makes the solution set more
diverse by not limiting the search for solution in a
confined area and is referred to as the exploration
mechanism of the Harmony Search algorithm [7], [10-13].

So, in the Harmony Search algorithm, each musical
instrument is represented as a decision variable. The value
of each decision variable is set in a similar manner that a
musician plays his instrument, contributing to the overall
quality of the music created, thus the name Harmony
Search. The pseudo-code of the Harmony Search
algorithm as presented, shows that the optimization
process is done on a per decision variable basis for each
harmony (solution) in the harmony memory.

Furthermore, based on the pseudo-code and as shown in
Figure 2, the optimization process of the Harmony Search
algorithm may be described in three main steps:

1. Initialization: Program parameters are defined
and the harmony memory is initialized by filling
it up with random solutions; each harmony is
evaluated using an evaluation or objective
function.

2. Harmony improvisation: A new solution is
created. The three methods of the Harmony
Search algorithm are used to decide on the value
that will be assigned to each decision variable in
the solution.

a. Creation of a new solution: A new
solution is created either (1) randomly
with a probability of 1 - raccept or
alternatively (2) by copying an existing
solution in the harmony memory, with a
probability equal to raccept

b. Adjustment: With a probability of r
.

pa

c. Using the objective function, the new
harmony is evaluated.

,
the elements of the new harmony are
then modified.

3. Selection: When a terminating condition is met,
the best harmony (solution) in the harmony
memory is selected.

Also, there are several parameters that have to be defined
before the start of the optimization process.

(1) Maximum number of cycles or iterations – is
the basis for terminating the optimization process.

(2) Harmony memory size – refers to the number of
harmonies that will be stored in the harmony
memory.

(3) Number of decision variables – each harmony is
composed of several decision variables.

(4) Harmony Memory Consideration rate (raccept

(5) Pitch Adjustment rate (r

)
– determines the rate at which decision variables
in the harmony are considered as elements of the
new harmony that will be created.

pa

Begin
 Define objective function f(x), x = (x

) - defines the
probability for adjusting the values of decision
variables copied from an existing harmony in the
harmony memory by adding a certain value.

1, x2… xd) T

 Define harmony memory accepting rate (raccept)
 Define pitch adjusting rate (rpa) and other parameters
 Generate Harmony Memory (HM) with random harmonies
 While (t < max number of iterations)
 While (i <= number of variables)
 If(rand < raccept)
 Choose a value from HM for the variable i
 If(rand < rpa

Fig. 2 The Harmony Search Optimization Process

4. HS-based Tetris Intelligent Agent

When a human first plays a Tetris game, he/she may play
the game with no more than the goal of clearing as many
rows as possible. However, as the game progresses or as
he/she continues to play the game repeatedly, it becomes
obvious that like every decision-making process in life, in
choosing the best move for a game piece in Tetris, there
are several factors to put into consideration for the
maximization of the number of rows cleared.

)
 Adjust the value by adding certain amount
 End if
 Else
 Choose a Random Value
 End if
 End while
 Accept the new harmony (solution) if better
 End while
 Find current best solution
End

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

25

Through the efforts of previous researches [1-3], [5], these
factors were transformed into forms that can be
implemented in computers and are called feature functions.
Also, similar to the decision-making process in life, we
assign weights to each of these factors to symbolize its
significance or bearing to the final decision. Ultimately,
the best move for a current piece is chosen using a linear
(summation) combination of these feature functions with
their corresponding weights, called the state-evaluation
function, as shown in Eq. (1).

 (1)

where s is the state (board configuration), wi represents
each of the weights of the ith feature function fi(s) and fi(s)
is a function that maps a state (a board configuration) to a
real value. The goal of the optimization process is to be
able to find an optimal set of weights that will result in the
most number of cleared rows.

The 19 feature functions identified and used in this
research are as follows: (1) pile height, (2) holes, (3)
connected holes, (4) removed rows, (5) altitude difference,
(6) maximum well depth, (7) sum of all wells, (8) landing
height, (9) blocks, (10) weighted blocks, (11) row
transitions, (12) column transitions, (13) highest hole, (14)
block above highest hole, (15) potential rows, (16)
smoothness, (17) eroded pieces, (18) row holes, and (19)
hole depth.

Thus, the solutions generated by the program will come in
the form of a vector of 19 weights, that is, w1 to w19

(1) the solution optimizer, and

.
Feature functions 1-12 are from [2], 13-16 are taken from
[3] and 17-19 are from [1]. A description of the feature
functions is presented in Section 4.1.

As illustrated in Figure 3, the proposed HS-based Tetris
intelligent agent called Harmonetris, is divided into two
main parts;

(2) the Tetris game simulator.

The solution optimizer comprises the Harmony Search
algorithm part of the program while the Tetris game
simulator is composed of our Tetris agent as well as the
Tetris game itself.

The solution optimizer generates harmonies or solutions in
the form of a set of weights; normally, to . Each of
this set of weights is passed to the Tetris game simulator,
which plays one complete game of Tetris using the
weights provided and a randomly generated sequence of
Tetrominos. After playing the game, the game simulator
returns the number of rows cleared by the agent based on
the current assigned weights to the solution optimizer. The

number of cleared rows serves as the objective function,
where more cleared rows means a better agent
performance. When a terminating condition has been met,
the solution optimizer then outputs the best solution
created so far.

The Tetris game simulator uses the state-evaluation
function in Eq. (1) to evaluate on a per Tetromino move
basis for each feature function while the objective function
rates an entire Tetris game in the form of maximum
number of rows (lines) cleared which is the basis for the
solution optimizer to determine the objective function
value of each harmony.

The main idea behind this set up is to use the Harmony
Search algorithm as the solution optimizer’s underlying
optimization algorithm.

Fig. 3 The Harmonetris Overall Program Flow

4.1 The Feature Functions

A description of each of the feature functions, fi

1. Pile Height: The row of the top most Tetromino
in the board. Each of the filled cells reached
directly from the top are compared and the row
value of the topmost filled cell is the pile height.
In Figure 4 the pile height is 13.

, used in
this research is presented in this section.

2. Holes: The number of all gaps with at least one

occupied cell above them. In Figure 5(a), the
holes in the board are marked with “1”. The
number of holes in the board is 10.

3. Connected Holes: Similar to Holes, however,
counts vertically connected gaps as one. Figure 5
shows the difference between Holes and
Connected Holes. Connected Holes has a value of
7 with each connected hole in the board marked
with “1”.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

26

Fig. 4 The Feature Function: Pile Height

Fig. 5 Difference between Holes and Connected Holes

4. Removed Rows: The number of rows cleared by
the last step. This is the number of rows that was
cleared in order to arrive at the new board
configuration.

5. Altitude Difference: The difference between the
lowest gap directly reachable from the top and the
highest occupied cell. Figure 6 has an altitude
difference of 8.

6. Maximum Well Depth: The depth of the deepest
well on the board. This is 4 in Figure 7.

Fig. 6 The Feature Function: Altitude Difference

7. Sum of all Wells: The sum of all wells on the

game board. The board in Figure 7 has a value of
6.

Fig. 7 The Feature Function: Sum of Wells

8. Landing Height: The height at which the last

Tetromino has been placed. Figure 8 shows that
the landing height of piece ‘I’ is 9.

9. Blocks: The number of cells that has been

occupied in the board.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

27

Fig. 8 The Feature Function: Landing Height

10. Weighted blocks: Same as Blocks, however

counting from the bottom to the top, blocks
located at row n count n-times as much as the
blocks in row 1. Figure 9 illustrates the weight of
each of the blocks.

Fig. 9 The Feature Function: Weighted Blocks

11. Row Transitions: The sum of all occupied or

unoccupied transitions. Each arrow in Figure 10
counts as one row transition.

12. Column Transitions: Same as Row Transitions,
however, it only counts vertical transitions.
Figure 11 provides a clear illustration of the
column transitions in the board.

Fig. 10 The Feature Function: Row Transitions

13. Highest Holes: The height of the topmost hole on

the game board. This is 8 in Figure 5(a).

14. Blocks Above Highest Hole: The number of
blocks on top of the Highest Hole. In Figure 5(a)
the highest hole in the board is at 8, so the
number of blocks above it is 2.

Fig. 11 The Feature Function: Column Transitions

15. Potential Rows: The number of rows located

above the Highest Hole and in use by more than 8
cells. This is 0 in Figure 5(a).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

28

16. Smoothness: The sum of all absolute differences
of adjacent column height, as well as the
difference of the first and last column. Using the
board in Figure 11, Table 1 illustrates how the
value of smoothness is computed.

Table 1: Sample Computation: Smoothness
Columns Column Heights Value

1, 2 |9-5| 4
2, 3 |5-9| 4
3, 4 |9-13| 4
4, 5 |13-13| 0
5, 6 |13-10| 3
6, 7 |10-9| 1
7, 8 |9-7| 2
8, 9 |7-9| 2

9, 10 |9-12| 3
10, 1 |12-9| 4

Smoothness 27

17. Eroded Pieces: The number of rows cleared in

the last move multiplied with the number of cells
of the last piece that were eliminated in the last
move.

18. Row Holes: The number of rows with at least one
hole. Figure 12 shows how the value for row
holes is computed. In the said figure, the value is
7.

Fig. 12 The Feature Function: Row Holes

19. Hole Depth: The number of filled cells on top of

each hole. Table 2 shows how to compute for the
hole depth based on Figure 13.

Fig. 13 The Feature Function: Hole Depth

Table 2: Sample Computation: Hole Depth

Hole Filled Cells
a 5
b 5
c 5
d 5
e 8
f 3+2=5
g 2
h 3
i 3
j 5

4.2 The Tetris Game Simulator

Every generated harmony of the solution optimizer in the
form of a vector of weights is fed to the Tetris Game
Simulator. The simulator performs a simulation of the
game using the feature functions as basis for determining
the best move, and then it returns the maximum number of
cleared rows, which is the objective function value of the
harmony.

The Tetris Game Simulator has two main components: (1)
Tetris Game and (2) Tetris Agent. The Tetris Game
defines the logical characteristics of the game and the rules
on how it must be played. The Tetris Agent plays the
Tetris Game until a termination condition is satisfied and
then returns the required result. The agent always selects
the move that will yield the best outcome, which in turn
maximizes the result. The simulation will only terminate if
the current state of the game satisfies a termination
condition. There are two ways to end the simulation. One

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

29

is by limiting the number of pieces spawned and the other
is waiting for the game to be over.

4.3 The Tetris Agent

In a Tetris Game, one piece is being played at a time. The
player has to select from among the 10 possible
translations (positions), that is, where to place the current
piece. Also, the player may change the orientation (can be
up to 4 possible orientations) of the game piece depending
on how beneficial this move may be. Once the player has
made the choice, it then moves the piece to the desired
position and orientation. Afterwards, another piece will be
spawned and the player has to repeat the same process.
This will continue until the next piece can no longer be
spawned, which means that the top row of the Tetris board
is already occupied, or the maximum number of spawned
pieces has been reached. In a Standard Tetris Game, only
the current piece is known. Some other versions provide a
preview of the next piece.

Fig. 14 The Tetris Agent Two-Piece Decision-making Process

In the case of knowing in advance the next piece, known
as a two-piece strategy, the player may consider it in
deciding for the next move. In this case, the player has to
enumerate all the possible combinations of translations and
orientations of the next piece for each of the derived game
state of the current piece’s possible moves. Then after that,
the board is evaluated based on the preferences of the
player. In this case, the state evaluation function is used.
To ensure that the game will not end early, the player must
select the move that has the highest state value. In this
scenario, the player is performing a greedy strategy, in

which the player always selects the move with the highest
reward (state value). Figure 14 provides a graphical view
of the decision-making process.

5. Experiment Results and Discussion

The goal of the experiments is to determine the efficiency
of the Harmony Search algorithm as the underlying
optimization algorithm for the Tetris intelligent agent and
to test the ability of the intelligent agent, Harmonetris, in
finding the best possible solution with respect to the
spawned game pieces. Each setup was subjected to 30
runs to make sure that the results are statistically
acceptable. In this experimental setup, the following
parameters are defined:
• Memory Improvisation (Number of Cycles) = 100
• Harmony Memory Size (Musical Pieces) = 5
• Harmony Consideration / Acceptance Rate = 0.95
• Pitch Adjustment Rate = 0.99

The results of our first experimental setup determined the
performance of Harmony Search algorithm as the
underlying optimization algorithm. After executing 120
runs in all, it has been observed that the maximum number
of rows that the Tetris agent can clear is determined by Eq.
(2).

 (2)

According to C. Fahey [6], the theoretical best case for a
Tetris game is to be able to clear one row using 2.5
numbers of spawned pieces. Such special case is illustrated
in Figure 15 wherein a sequence of five “O” Tetrominos is
able to clear two rows, thus the computed ratio of
5(spawned pieces) / 2(cleared rows) = 2.5.

Fig. 15 The Optimal Tetris Case

This theory is taken from the fact that the Tetris board is
10 cells wide and a Tetromino has 4 cells each. This case
however, is only applicable in instances wherein the
number of spawned pieces is not random, which violates
one of the basic specifications of Tetris.

Figure 16 to Figure 19 show the maximum number of
cleared rows with respect to number of cycles over 30 runs
with 100, 300, 500 and 1,000 spawned pieces,
respectively.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

30

Fig. 16 Maximum number of cleared rows for 100 spawned pieces

The figures show the results of the experiments averaged
over 30 runs. It is the average of the maximum number of
cleared rows obtained by the best harmonies on all runs for
a given cycle.

It can be observed from Figure 16 that the number of
cleared rows approaches but does not reach 40. Thus, the
maximum number of cleared rows in 30 runs for the 100
spawned pieces is 39.

Fig. 17 Maximum number of cleared rows for 300 spawned pieces

Figures 17 to 19 also confirm the validity of Eq. (2), that
is, the maximum number of rows that the Tetris agent can
clear is determined by the said equation. Table 3
summarizes the experiment results obtained for the
different setups.

Fig. 18 Maximum number of cleared rows for 500 spawned pieces

Fig.19 Maximum number of cleared rows for 1,000 spawned pieces

Table 3: Spawned Pieces and Maximum number of Cleared Rows

Total Number
of Spawned
Pieces (SP)

Maximum number
of Cleared Rows

(CR)

Eq. (2)
(SP/2.5) - 1

SP to CR
Ratio

100 39 39 2.56410

300 119 119 2.52100

500 199 199 2.51256

1,000 399 399 2.50626

Another experiment was conducted to determine the best
configuration for the feature functions, thus the
terminating condition was set to “Game Over” only, with
no restriction on the number of cycles and spawned pieces.

After allowing the program to run for two weeks straight,
the Tetris agent was able to obtain the following
harmonies, xi, on its 304th cycle of harmony improvisation.
Table 4 shows the results obtained by the 5 harmonies on
the 304th cycle.

Table 4: The Performance of the Five Harmonies on the 304th

Harmony

 cycle
Maximum
number of

Cleared
Rows (CR)

Total
Number of
Spawned

Pieces (SP)

SP to CR Ratio

X 291,087 1 727,751 2.500115085867
X 300,277 2 750,723 2.50010157288
X 337,254 3 843,168 2.500097849098
X 348,047 4 870,151 2.50009625136
X 416,928 5 1,042,354 2.50008154885

As shown in Table 4, it can be observed that as solutions
improve resulting to more cleared rows, the ratio of
spawned pieces (SP) to cleared rows (CR) approaches the
value of our theoretical best game play of 2.5.

Furthermore, analysis on the harmonies (weight
configurations) reveals that the Tetris agent, in its attempt
to come up with a better solution, gave emphasis on
reducing the weight values of the number of holes, wells,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

31

column transitions and row transitions, and at the same
time increasing the weight value of potential rows.

6. Conclusions

In this paper, the researchers showed the efficiency of the
Harmony Search algorithm as the underlying optimization
algorithm for the Tetris intelligent agent and tested the
ability of the intelligent agent in finding the best possible
solution with respect to the random sequence of spawned
game pieces. Experiment results reveal that the Harmony
Search algorithm is an efficient optimization algorithm and
the Harmonetris, the Tetris agent, is able to generate the
best possible solution.

The best harmony (weight configuration) found in a span
of two weeks was able to clear 416,928 rows in 1,042,354
spawned pieces yielding the Spawned Pieces to Cleared
Rows ratio (SP/CR ratio) of 2.50008154885256. Thus, it
can be observed that as the number of cleared rows
increases, the SP/CR ratio approaches the optimum value
of 2.5.

References

[1] A. Boumaza, “On the Evolution of Artificial Tetris Players”,
In Proceedings of the 5th International Conference on
Computational Intelligence and Games, 2009, pp. 381-393.

[2] N. Böhm, G. Kòkai and S. Mandl, “An Evolutionary
Approach to Tetris”, MIC 2005: The Sixth Metaheuristic
International Conference, 2005.

[3] X. Chen, H. Wang, W. Wang, Y. Shi and Y. Gao, “Apply Ant
Colony Optimization for Tetris”, In Proceeding of the 2009
Genetic and Evolutionary Computation Conference, 2009.

[4] P. Collet and J.P. Rennard, Stochastic Optimization
Algorithms, Handbook of Research on Nature Inspired
Computing for Economics and Management, Hershey: IGR,
2007.

[5] E.D. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris
is Hard Even to Approximate”, In Proceedings of the 9th

[6] C.P. Fahey, Tetris,

Annual International Conference on Computing and
Combinatorics, Lecture Notes In Computer Science, 2003, pp.
351-363.

http://www.colinfahey.com/tetris/tetris
en.html.

[7] Z.W. Geem, J.H. Jim and G.V. Loganathan, “A new heuristic
optimization algorithm: Harmony Search”, Simulation, 2001,
76(2), pp. 60-68.

[8] X-Z. Gao, X. Wang and S.J. Ovaska, “Uni-modal and Multi-
modal Optimization Using Modified Harmony Search
Methods”, International Journal of Innovative Computing,
Information and Control, Volume 5, Number 10(A), 2009, pp.
2985-2996.

[9] Z. Kong, L. Gao, L. Wang, Y. Ge and S. Li, “On an Adaptive
Harmony Search Algorithm”, International Journal of
Innovative Computing, Information and Control, Volume 5,
Number 9, 2009, pp. 2551-2560.

[10] Z.W. Geem, “State-of-the-Art in the Structure of Harmony
Search Algorithm”, Studies in Computational Intelligence,
vol. 270, 2010 pp. 1-10.

[11] Z.W. Geem, M. Fesanghary, J-Y. Choi, M.P. Saka, J.C.
Williams, M.T. Ayvaz, L. Li, S. Ryu and A. Vasebi, Recent
Advances in Harmony Search (Studies in Computational
Intelligence), 1st edition, 2010.

[12] K.S. Lee and Z.W. Geem, “A New Meta-Heuristic
Algorithm for Continuous Engineering Optimization:
Harmony Search Theory and Practice”, Computer Methods
in Applied Mechanics and Engineering, 194(36-38), 2005, pp.
3902-3933.

[13] S-B. Rhee, K-H. Kim and C-H. Kim, “Harmony Search
Algorithm for Emission Considering Economic Load
Dispatch Problems in Power Systems”, International Journal
of Innovative Computing, Information and Control-Express
Letters, vol. 3, Issue 4(B), 2009, pp. 1269-1274.

[14] X-S. Yang, “Harmony Search as a Metaheuristic Algorithm”,
Music-Inspired harmony Search Algorithm-Theory and
Applications, vol. 191, 2009, pp. 1-14.

http://www.colinfahey.com/tetris/tetris%20en.html�
http://www.colinfahey.com/tetris/tetris%20en.html�
http://www.colinfahey.com/tetris/tetris%20en.html�

	Total Number of Spawned Pieces (SP)
	Maximum number of Cleared Rows (CR)
	Eq. (2)
	(SP/2.5) - 1
	SP to CR Ratio

