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Abstract 
This paper presents an algorithm for achieving mutual exclusion 
in Distributed System. The proposed algorithm is a betterment of 
the already existing Token Ring Algorithm, used to handle 
mutual exclusion in Distributed system. In the already existing 
algorithm, there are few problems, which, if occur during process 
execution, then the distributed system will not be able to ensure 
mutual exclusion among the processes and consequently 
unwanted situations may arise. The proposed algorithm will 
overcome all the problems in the existing algorithm, and ensures 
mutual exclusion among the processes, when they want to 
execute in their critical section of code. 
Keywords: TIMESTAMP_OF_REQUEST_GENERATION, PID, 
NEW, REQUEST_QUEUE, EXISTS, COORDINATOR, 
UPDATE. 

1.  Introduction 

In most of the distributed systems it is very common that, 
resources are being shared among various processes, with 
the condition that a single resource can be allocated to a 
single process at a time. Therefore, mutual exclusion is a 
fundamental problem in any distributed computing system. 
So, the goal is to find a solution that will synchronize the 
access among shared resources in order to maintain their 
consistency and integrity. 

  
In this paper, the proposed algorithm is able to handle the 
problems of mutual exclusion in a distributed system. It is 
also able to handle all other problems that may arise, while 
a process is executing in its critical section. 

 
 
2.  Existing Work 
  
Till now, several token-based algorithms have been 
proposed. Some of them are – 

 
1. Ricart - Agrawala                     algorithm. 
2. Suzuki - Kazami                      algorithm. 
3. Mizuno - Neilsen - Rao            algorithm. 
4. Neilson – Mizuno                    algorithm. 
5. Helary – Plouzeau – Raynal     algorithm. 
6. Raymon’d                                algorithm. 
7. Singhal’s                                 algorithm. 
8. Maimi – Trehel                       algorithm.                                    
9. Misra- Srimani                        algorithm. 
10. Nishio – Li – Manning            algorithm.        
     

 
 
3. Preconditions 
 
The effectiveness of an algorithm depends on the validity 
of the assumptions that are made. In distributed mutual      
exclusion environment certain assumptions must be 
considered to make the work successful. The following 
assumptions are made for this algorithm:- 
 
1. All nodes in the system are assigned unique 

identification numbers from 1 to N. 
 

2. There is only one requesting process executing at each 
node. Mutual exclusion is implemented at the node 
level. 

 
3. Processes are competing for a single resource. 

 
4. At any time, each process initiates at most one 

outstanding request for mutual exclusion. 
 

5. All the nodes in the system are fully connected. 
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6. A process can enter only one critical section when 
it receives the token. If it wants to enter another 
critical section, the process must send another 
request to the coordinator. 
 

7. Instead of using globally synchronized physical 
clocks, Lamport’s concept of logical clock is used 
in distributed system that we are considering. The 
concept of logical clock is the way to associate a 
timestamp (simply a number independent of any 
clock time) with each system event so that events 
that are related to each other by the happened-
before relation (directly or indirectly) can be 
properly ordered in that sequence. To ensure that 
all events that occur in a distributed system can be 
totally ordered, the use of any arbitrary total 
ordering of events, proposed by Lamport, is 
applied in the distributed system considered in this 
algorithm.  For instance, if events a and b happen 
respectively in processes P1 and P2, and both 
events will have a timestamp of (say) 40, then 
according to Lamport’s proposal the timestamp 
associated with events a and b will be 40.1 and 
40.2 respectively, where the process identity 
number (PID) of processes P1 and P2 are 1 and 2 
respectively. Using this technique, we will be able 
to assign unique timestamp to each event in a 
distributed system to provide a total ordering of all 
events in the system. 

 
 

As we are considering distributed systems, some 
assumptions also need to make about the 
communications network. This is very important because 
nodes communicate only by exchanging messages 
between them. The following aspects about the 
reliability of the distributed communications network 
should be considered. 

 
1. Messages are not lost or altered and are correctly 

delivered to their destination in a finite amount of 
time. 

 
2. Messages reach their destination in a finite 

amount of time, but the time of arrival is variable. 
 

3. Nodes know the physical layout of all nodes in 
the system and know the path to reach each other. 
 

 
4. Algorithm           

 
In this algorithm, we consider that a set of processes are 
logically organized in a ring structure. Between several 

processes, one process acts as a coordinator. It is the 
coordinator’s task to generate a token and circulate the 
token around the ring, as needed. In this algorithm, we 
consider that the token can move in any direction as per 
the necessity. In the ring structure, every process 
maintains the current ring configuration of the system. If 
a process is removed or added into the system, then the 
updating must be reflected to all the processes’ ring 
configuration table. A ring configuration table is 
something that contains information about process id 
(PID), state of the processes and their status in the 
current system. 
 
The algorithm works as follows: - 
Consider, the processes are numbered as P1, P2, 
P3…Pn. For simplicity of our discussion, consider 
process P1 wants to enter in its critical section. P1 will 
send a request [REQUEST (PID, 
TIMESTAMP_OF_REQUEST_GENERATION)] to the 
coordinator to acquire the token. A REQUEST message 
contains two parameters- a) PID (i.e. process id of the 
requesting process), b) Time Stamp of request 
generation. Here, two cases may appear: 

 
     Case 1: - 
 

At this particular time, if no other process is executing 
in its critical section, and the coordinator retains the 
token, then the coordinator will send the token to the 
requesting process (P1). After acquiring the token, the 
process keeps the token and enters in its critical section. 
After exiting from the critical section the process 
returns the token to the coordinator.  
 

     Case 2:- 
 

But, if some other process P i (i != 1) is executing in its 
critical section, then the coordinator sends a WAIT 
signal, to the requesting process (P1) and the request 
from process P1 is stored in the REQUEST QUEUE, 
maintained by the coordinator only. In between, if any 
other processes want to enter into critical section and 
send request to the coordinator, then those requests will 
also be stored in the REQUEST QUEUE. When the 
coordinator gets back the token, then it sends the token 
to one of the waiting process in the 
REQUEST_QUEUE, which has smallest 
TIMESTAMP_OF_REQUEST_GENERATION. 
 

The algorithm will overcome the drawbacks of the general 
token ring algorithm, in the following manner. 
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Loss of Token:-  

When a process (say) P1 wants to enter into its critical 
section, it sends request to the coordinator. If the 
coordinator retains the token, it then sends the token to the 
requesting process (P1). After getting the token, the 
process will send an acknowledgment to the coordinator, 
and enters the critical section. During the execution of the 
critical section, P1 will continually send an EXISTS signal 
to the coordinator at certain time interval, so that, the 
coordinator becomes acquainted that the token is alive and 
it has not lost. As a reply to every EXISTS signal, the 
coordinator sends back an OK signal to that particular 
process (P1), so that the process that is executing in its 
critical section (P1), gets to know that the coordinator is 
alive also.                
           

 Now, suppose, the coordinator is not receiving the 
EXISTS signal from that process P1. Here two cases may 
appear:- 
 
Case 1:- 
 
 The coordinator assumes that the token has lost. Then the 
coordinator will regenerate a new token and sends it to that 
process (P1) and again it starts executing its critical 
section.  
 
Case 2:- 
 
 The process P1 may crash or fail while executing in it 
critical section and consequently, the coordinator does not 
receiving any EXISTS signal from P1. Hence, the 
coordinator will identify it as a crashed process and update 
the ring configuration table and send the UPDATE signal 
with update information to other processes to update their 
own ring configuration tables. 
  
 
Again it may be the case, that the process P1 (which is 
currently executing in its critical section), is not receiving 
the OK signal form the coordinator. So, P1 would assume 
that the coordinator is somehow crashed. At this moment, 
the process P1 will become the new coordinator and 
complete the critical section execution. The new 
coordinator will send a message [COORDINATOR (PID)] 
to every other process, that it becomes the new coordinator 
and send the UPDATE signal with update information, to 
update the ring configuration tables maintained by all other 
processes. 
 
 

The algorithm also overcomes the overhead of token 
circulation in the ring. If no processes in the ring want to 
enter in its critical section, then there is no meaning of 
circulating the token throughout the ring. Rather, in this 
approach, the coordinator will keep the token, until any 
other process requests it. 
 
• The algorithm guarantees mutual exclusion, because at 

any instance of time only one process can hold the 
token and can enter into the critical section. 

 
• Since a process is permitted to enter one critical 

section at a time, starvation cannot occur. 
 
 
5.  Performance Analysis 
 
The performance of the algorithm will be evaluated in 
terms of the total number of messages required for a node 
to enter into a critical section. The number of messages 
exchanged for an entry into a critical section to take effect 
will be used as a complexity measure. In this algorithm the 
number of messages per critical section entry varies from 3 
(when the coordinator possesses the token and no other 
process is executing in its critical section. REQUEST-
>GRANT->RELEASE) to 4 (when some other process is 
already executing in its critical section. REQUEST-
>WAIT->GRANT->RELEASE).  
 
For a total no. of n processes in the ring, the waiting time 
from the moment a process wants to enter a critical section 
until its actual entry, may vary from 0 to n-1; 0, in the case, 
when a process wants to enter a critical section and 
acquires the token immediately form the coordinator; (n-
1), in the case, when the process sends the request after all 
other process has already requested for the token.   
 
 
 
 
 
 
 
  
6.   Illustration 
 
The above algorithm can best be explained by an example. 
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                                 Figure 1: Ring Configuration 

 
 
 
Consider a distributed system consists of 10 processes 
(P0-P9). Between these processes, one process is selected 
as a coordinator. Suppose when the ring is initialized, 
process P0 is selected as the coordinator. As soon as P0 is 
selected as the coordinator, it generates a token and 
retains the token. Now, process P5 wants to enter in its 
critical section. So, P5 sends a request [REQUEST (PID, 
TIMESTAMP_OF_REQUEST_GENERATION)] to the 
coordinator (P0). 

 
                             Table 1: Ring Configuration Table 

  

 

 

 

 

 

 

Now, if no other process is executing in its critical section, 
and the token has been kept by P0, then immediately the 
token is send to process P5. After completing the execution 

of its critical section, process P5 releases the token and 
gives it back to the coordinator. 

   In this case, the situation may appear that, while process 
P5 is executing in its critical section, process P7 wants to 
enter its critical section and sends a request to the 
coordinator[REQUEST(PID,TIMESTAMP_OF_REQUES
T_GENERATION.)]. As process P5 possesses the token 
and executing in its critical section, the coordinator sends a 
WAIT signal to process P7, and stores the request in the 
REQUEST_QUEUE. Now suppose, immediately after, 
process P2 also wants to enter in its critical section, and 
sends a request [REQUEST (PID, 
TIMESTAMP_OF_REQUEST_GENERATION] to the 
coordinator. As process P5 is still executing in its critical 
section, so the coordinator sends a WAIT signal to process 
P2, and stores the request in the REQUEST_QUEUE. 
After process P5 has exited from its critical section, it 
releases the token and sends it back to the coordinator. 
Then the coordinator selects the process with smallest 
TIMESTAMP_OF_REQUEST_GENERATION and sends 
the token to the corresponding process. 
 
 
  
 P7 P2  
 
             Figure 2: REQUEST QUEUE 

 
 One thing that we have to keep in mind, while a process is 
executing in is critical section, during that, with a certain 
time interval the process continually sends an EXISTS 
signal to the coordinator, to indicate that the token is alive. 
In reply of each EXISTS signal, the coordinator sends an 
OK signal to that process, indicating, the coordinator is 
alive also. 
  
  In the previous case, when process P5 is executing in its 
critical section and the processes P7 and P2 (or any other 
processes), send request to the coordinator and wait to 
acquire the token, then it could happen that the coordinator 
might crash. After this incident, when process P5 sends the 
EXISTS signal but and does not receive the OK signal 
within a fixed timeout period, then process P5 assumes that 
the coordinator has crashed, hence it becomes the new 
coordinator, and process P5 announces this by sending a 
message [COORDINATOR (PID)] to the rest of the alive 
processes in the ring. Then all the other processes update 
their ring configuration table to the current state of the 
ring.  
 
 
 
 

Process 
ID 

State Status 

P0 Alive Coordinator 
P1 Alive Normal 
P2 Alive Normal 
P3 Alive Normal 
P4 Alive Normal 
P5 Alive Normal 
P6 Alive Normal 
P7 Alive Normal 
P8 Alive Normal 
P9 Alive Normal 
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                              Table 2: Ring Configuration Table 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Consequently, each process including P7 and P2 get to 
know that the process P5 became the new coordinator. As 
processes P7 and P2 are still not being able to enter their 
critical section, they both send requests to the new 
coordinator P5, to acquire the token. Now, there is a very 
significant point to notice that, previously P7 was the first 
one to sends its request and then P2 sends its request. But, 
when, again they send their requests to the coordinator, it 
may happen, that the request from process P2 reaches to 
the coordinator prior process P7’s request. In this situation 
one may think that, as the request form process P2 reaches 
first to the coordinator (P5), so, the coordinator may send 
the token to process P2 and not process P7.But, it is not 
the case. As previously mentioned, when a coordinator 
selects a process from its REQUEST QUEUE, (when 
multiple requests are in the queue) it always makes the 
selection based on the smallest ‘time stamp of request 
generation’. So accordingly, process P7 will get the chance 
to acquire the token. 
 
      After a while, it may be the case, process P0 has 
restarted. Then it will send a message NEW to every other 
process in the ring. Hence, every other process will update 
their corresponding ring configuration table. In this 
situation the present coordinator gets to know that a new 
entry has been done. As a result the coordinator will send a 
message [COORDINATOR (PID)] and also send the 
current ring configuration table to the revived process P0; 
so that revived process (P0) gets to know who the current 
coordinator is and also maintains the ring configuration 
table. 
 
Another situation may appear, that when no other 
processes are executing in its critical section, then 
somehow the coordinator has crashed. In this case, the 
process that will notice it first, it will be the new 
coordinator in the ring and announces it by sending the 
[COORDINATOR (PID)] message to every other process 

and consequently every other process updates their ring 
configuration table. 
 

7. Conclusions 
 
In this paper, the proposed algorithm does not allow the 
circulation of the token along the ring, when there is no 
need (i.e. when no process wants to enter in its critical 
section). Loss of a token in the ring can easily be detected, 
and regeneration of token can be done easily in this 
algorithm. And process crash and recovery of crashed 
process can easily be managed using this algorithm. And 
there is no chance of creation of duplicate tokens in the 
ring.  
                                                                 
 Hence, the proposed algorithm overcomes all the 
drawbacks that may appear in the existing Token Ring 
Algorithm for handling Mutual Exclusion in Distributed 
System. 
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Process 
ID 

State Status 

P0 Dead Unknown 
P1 Alive Normal 
P2 Alive Normal 
P3 Alive Normal 
P4 Alive Normal 
P5 Alive Coordinator 
P6 Alive Normal 
P7 Alive Normal 
P8 Alive Normal 
P9 Alive Normal 
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