
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org 171

Token Ring Algorithm To Achieve Mutual Exclusion In
Distributed System – A Centralized Approach

Sandipan Basu
Post Graduate Department of Computer Science, St. Xavier’s College, University of Calcutta

Kolkata-700016, INDIA

Abstract
This paper presents an algorithm for achieving mutual exclusion
in Distributed System. The proposed algorithm is a betterment of
the already existing Token Ring Algorithm, used to handle
mutual exclusion in Distributed system. In the already existing
algorithm, there are few problems, which, if occur during process
execution, then the distributed system will not be able to ensure
mutual exclusion among the processes and consequently
unwanted situations may arise. The proposed algorithm will
overcome all the problems in the existing algorithm, and ensures
mutual exclusion among the processes, when they want to
execute in their critical section of code.
Keywords: TIMESTAMP_OF_REQUEST_GENERATION, PID,
NEW, REQUEST_QUEUE, EXISTS, COORDINATOR,
UPDATE.

1. Introduction

In most of the distributed systems it is very common that,
resources are being shared among various processes, with
the condition that a single resource can be allocated to a
single process at a time. Therefore, mutual exclusion is a
fundamental problem in any distributed computing system.
So, the goal is to find a solution that will synchronize the
access among shared resources in order to maintain their
consistency and integrity.

In this paper, the proposed algorithm is able to handle the
problems of mutual exclusion in a distributed system. It is
also able to handle all other problems that may arise, while
a process is executing in its critical section.

2. Existing Work

Till now, several token-based algorithms have been
proposed. Some of them are –

1. Ricart - Agrawala algorithm.
2. Suzuki - Kazami algorithm.
3. Mizuno - Neilsen - Rao algorithm.
4. Neilson – Mizuno algorithm.
5. Helary – Plouzeau – Raynal algorithm.
6. Raymon’d algorithm.
7. Singhal’s algorithm.
8. Maimi – Trehel algorithm.
9. Misra- Srimani algorithm.
10. Nishio – Li – Manning algorithm.

3. Preconditions

The effectiveness of an algorithm depends on the validity
of the assumptions that are made. In distributed mutual
exclusion environment certain assumptions must be
considered to make the work successful. The following
assumptions are made for this algorithm:-

1. All nodes in the system are assigned unique

identification numbers from 1 to N.

2. There is only one requesting process executing at each
node. Mutual exclusion is implemented at the node
level.

3. Processes are competing for a single resource.

4. At any time, each process initiates at most one

outstanding request for mutual exclusion.

5. All the nodes in the system are fully connected.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 172
ISSN (Online): 1694-0814
www.IJCSI.org

6. A process can enter only one critical section when
it receives the token. If it wants to enter another
critical section, the process must send another
request to the coordinator.

7. Instead of using globally synchronized physical
clocks, Lamport’s concept of logical clock is used
in distributed system that we are considering. The
concept of logical clock is the way to associate a
timestamp (simply a number independent of any
clock time) with each system event so that events
that are related to each other by the happened-
before relation (directly or indirectly) can be
properly ordered in that sequence. To ensure that
all events that occur in a distributed system can be
totally ordered, the use of any arbitrary total
ordering of events, proposed by Lamport, is
applied in the distributed system considered in this
algorithm. For instance, if events a and b happen
respectively in processes P1 and P2, and both
events will have a timestamp of (say) 40, then
according to Lamport’s proposal the timestamp
associated with events a and b will be 40.1 and
40.2 respectively, where the process identity
number (PID) of processes P1 and P2 are 1 and 2
respectively. Using this technique, we will be able
to assign unique timestamp to each event in a
distributed system to provide a total ordering of all
events in the system.

As we are considering distributed systems, some
assumptions also need to make about the
communications network. This is very important because
nodes communicate only by exchanging messages
between them. The following aspects about the
reliability of the distributed communications network
should be considered.

1. Messages are not lost or altered and are correctly

delivered to their destination in a finite amount of
time.

2. Messages reach their destination in a finite

amount of time, but the time of arrival is variable.

3. Nodes know the physical layout of all nodes in
the system and know the path to reach each other.

4. Algorithm

In this algorithm, we consider that a set of processes are
logically organized in a ring structure. Between several

processes, one process acts as a coordinator. It is the
coordinator’s task to generate a token and circulate the
token around the ring, as needed. In this algorithm, we
consider that the token can move in any direction as per
the necessity. In the ring structure, every process
maintains the current ring configuration of the system. If
a process is removed or added into the system, then the
updating must be reflected to all the processes’ ring
configuration table. A ring configuration table is
something that contains information about process id
(PID), state of the processes and their status in the
current system.

The algorithm works as follows: -
Consider, the processes are numbered as P1, P2,
P3…Pn. For simplicity of our discussion, consider
process P1 wants to enter in its critical section. P1 will
send a request [REQUEST (PID,
TIMESTAMP_OF_REQUEST_GENERATION)] to the
coordinator to acquire the token. A REQUEST message
contains two parameters- a) PID (i.e. process id of the
requesting process), b) Time Stamp of request
generation. Here, two cases may appear:

 Case 1: -

At this particular time, if no other process is executing
in its critical section, and the coordinator retains the
token, then the coordinator will send the token to the
requesting process (P1). After acquiring the token, the
process keeps the token and enters in its critical section.
After exiting from the critical section the process
returns the token to the coordinator.

 Case 2:-

But, if some other process P i (i != 1) is executing in its
critical section, then the coordinator sends a WAIT
signal, to the requesting process (P1) and the request
from process P1 is stored in the REQUEST QUEUE,
maintained by the coordinator only. In between, if any
other processes want to enter into critical section and
send request to the coordinator, then those requests will
also be stored in the REQUEST QUEUE. When the
coordinator gets back the token, then it sends the token
to one of the waiting process in the
REQUEST_QUEUE, which has smallest
TIMESTAMP_OF_REQUEST_GENERATION.

The algorithm will overcome the drawbacks of the general
token ring algorithm, in the following manner.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 173
ISSN (Online): 1694-0814
www.IJCSI.org

Loss of Token:-

When a process (say) P1 wants to enter into its critical
section, it sends request to the coordinator. If the
coordinator retains the token, it then sends the token to the
requesting process (P1). After getting the token, the
process will send an acknowledgment to the coordinator,
and enters the critical section. During the execution of the
critical section, P1 will continually send an EXISTS signal
to the coordinator at certain time interval, so that, the
coordinator becomes acquainted that the token is alive and
it has not lost. As a reply to every EXISTS signal, the
coordinator sends back an OK signal to that particular
process (P1), so that the process that is executing in its
critical section (P1), gets to know that the coordinator is
alive also.

 Now, suppose, the coordinator is not receiving the
EXISTS signal from that process P1. Here two cases may
appear:-

Case 1:-

 The coordinator assumes that the token has lost. Then the
coordinator will regenerate a new token and sends it to that
process (P1) and again it starts executing its critical
section.

Case 2:-

 The process P1 may crash or fail while executing in it
critical section and consequently, the coordinator does not
receiving any EXISTS signal from P1. Hence, the
coordinator will identify it as a crashed process and update
the ring configuration table and send the UPDATE signal
with update information to other processes to update their
own ring configuration tables.

Again it may be the case, that the process P1 (which is
currently executing in its critical section), is not receiving
the OK signal form the coordinator. So, P1 would assume
that the coordinator is somehow crashed. At this moment,
the process P1 will become the new coordinator and
complete the critical section execution. The new
coordinator will send a message [COORDINATOR (PID)]
to every other process, that it becomes the new coordinator
and send the UPDATE signal with update information, to
update the ring configuration tables maintained by all other
processes.

The algorithm also overcomes the overhead of token
circulation in the ring. If no processes in the ring want to
enter in its critical section, then there is no meaning of
circulating the token throughout the ring. Rather, in this
approach, the coordinator will keep the token, until any
other process requests it.

• The algorithm guarantees mutual exclusion, because at

any instance of time only one process can hold the
token and can enter into the critical section.

• Since a process is permitted to enter one critical

section at a time, starvation cannot occur.

5. Performance Analysis

The performance of the algorithm will be evaluated in
terms of the total number of messages required for a node
to enter into a critical section. The number of messages
exchanged for an entry into a critical section to take effect
will be used as a complexity measure. In this algorithm the
number of messages per critical section entry varies from 3
(when the coordinator possesses the token and no other
process is executing in its critical section. REQUEST-
>GRANT->RELEASE) to 4 (when some other process is
already executing in its critical section. REQUEST-
>WAIT->GRANT->RELEASE).

For a total no. of n processes in the ring, the waiting time
from the moment a process wants to enter a critical section
until its actual entry, may vary from 0 to n-1; 0, in the case,
when a process wants to enter a critical section and
acquires the token immediately form the coordinator; (n-
1), in the case, when the process sends the request after all
other process has already requested for the token.

6. Illustration

The above algorithm can best be explained by an example.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 174
ISSN (Online): 1694-0814
www.IJCSI.org

 Figure 1: Ring Configuration

Consider a distributed system consists of 10 processes
(P0-P9). Between these processes, one process is selected
as a coordinator. Suppose when the ring is initialized,
process P0 is selected as the coordinator. As soon as P0 is
selected as the coordinator, it generates a token and
retains the token. Now, process P5 wants to enter in its
critical section. So, P5 sends a request [REQUEST (PID,
TIMESTAMP_OF_REQUEST_GENERATION)] to the
coordinator (P0).

 Table 1: Ring Configuration Table

Now, if no other process is executing in its critical section,
and the token has been kept by P0, then immediately the
token is send to process P5. After completing the execution

of its critical section, process P5 releases the token and
gives it back to the coordinator.

 In this case, the situation may appear that, while process
P5 is executing in its critical section, process P7 wants to
enter its critical section and sends a request to the
coordinator[REQUEST(PID,TIMESTAMP_OF_REQUES
T_GENERATION.)]. As process P5 possesses the token
and executing in its critical section, the coordinator sends a
WAIT signal to process P7, and stores the request in the
REQUEST_QUEUE. Now suppose, immediately after,
process P2 also wants to enter in its critical section, and
sends a request [REQUEST (PID,
TIMESTAMP_OF_REQUEST_GENERATION] to the
coordinator. As process P5 is still executing in its critical
section, so the coordinator sends a WAIT signal to process
P2, and stores the request in the REQUEST_QUEUE.
After process P5 has exited from its critical section, it
releases the token and sends it back to the coordinator.
Then the coordinator selects the process with smallest
TIMESTAMP_OF_REQUEST_GENERATION and sends
the token to the corresponding process.

 P7 P2

 Figure 2: REQUEST QUEUE

 One thing that we have to keep in mind, while a process is
executing in is critical section, during that, with a certain
time interval the process continually sends an EXISTS
signal to the coordinator, to indicate that the token is alive.
In reply of each EXISTS signal, the coordinator sends an
OK signal to that process, indicating, the coordinator is
alive also.

 In the previous case, when process P5 is executing in its
critical section and the processes P7 and P2 (or any other
processes), send request to the coordinator and wait to
acquire the token, then it could happen that the coordinator
might crash. After this incident, when process P5 sends the
EXISTS signal but and does not receive the OK signal
within a fixed timeout period, then process P5 assumes that
the coordinator has crashed, hence it becomes the new
coordinator, and process P5 announces this by sending a
message [COORDINATOR (PID)] to the rest of the alive
processes in the ring. Then all the other processes update
their ring configuration table to the current state of the
ring.

Process
ID

State Status

P0 Alive Coordinator
P1 Alive Normal
P2 Alive Normal
P3 Alive Normal
P4 Alive Normal
P5 Alive Normal
P6 Alive Normal
P7 Alive Normal
P8 Alive Normal
P9 Alive Normal

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 175
ISSN (Online): 1694-0814
www.IJCSI.org

 Table 2: Ring Configuration Table

Consequently, each process including P7 and P2 get to
know that the process P5 became the new coordinator. As
processes P7 and P2 are still not being able to enter their
critical section, they both send requests to the new
coordinator P5, to acquire the token. Now, there is a very
significant point to notice that, previously P7 was the first
one to sends its request and then P2 sends its request. But,
when, again they send their requests to the coordinator, it
may happen, that the request from process P2 reaches to
the coordinator prior process P7’s request. In this situation
one may think that, as the request form process P2 reaches
first to the coordinator (P5), so, the coordinator may send
the token to process P2 and not process P7.But, it is not
the case. As previously mentioned, when a coordinator
selects a process from its REQUEST QUEUE, (when
multiple requests are in the queue) it always makes the
selection based on the smallest ‘time stamp of request
generation’. So accordingly, process P7 will get the chance
to acquire the token.

 After a while, it may be the case, process P0 has
restarted. Then it will send a message NEW to every other
process in the ring. Hence, every other process will update
their corresponding ring configuration table. In this
situation the present coordinator gets to know that a new
entry has been done. As a result the coordinator will send a
message [COORDINATOR (PID)] and also send the
current ring configuration table to the revived process P0;
so that revived process (P0) gets to know who the current
coordinator is and also maintains the ring configuration
table.

Another situation may appear, that when no other
processes are executing in its critical section, then
somehow the coordinator has crashed. In this case, the
process that will notice it first, it will be the new
coordinator in the ring and announces it by sending the
[COORDINATOR (PID)] message to every other process

and consequently every other process updates their ring
configuration table.

7. Conclusions

In this paper, the proposed algorithm does not allow the
circulation of the token along the ring, when there is no
need (i.e. when no process wants to enter in its critical
section). Loss of a token in the ring can easily be detected,
and regeneration of token can be done easily in this
algorithm. And process crash and recovery of crashed
process can easily be managed using this algorithm. And
there is no chance of creation of duplicate tokens in the
ring.

 Hence, the proposed algorithm overcomes all the
drawbacks that may appear in the existing Token Ring
Algorithm for handling Mutual Exclusion in Distributed
System.

References
[1] Andrew S. Tanenbaum, Distributed Operating System,
Pearson Education, 2007.
[2] Pradeep K. Sinha, Distributed Operating Systems Concepts
and Design, Prentice-Hall of India private Limited, 2008.
[3] H.Attiya and J.Welch, Distributed Computing Fundamentals,
Simulation and Advanced Topics, Second Edition, A John Wiley
& Sons, Inc., Publication, 2004.
[4]Martin G. Velazquez, “A survey of Distributed Mutual
Exclusion Algorithms”, Department of Computer Science,
Colorado State University.
[5].Ajay D. Kshemkalyani and Mukesh Singhal, Distributed
Computing principles, Algorithms, and Systems, Cambridge
University Press,2008.

Sandipan Basu is final year student of M.Sc. Computer Science,
St. Xavier’s College, University of Calcutta. He completed B.Sc
(Honours) degree in Computer Science from Asutosh College,
University of Calcutta. His research interests include Distributed
Systems, Networking, Operating System and Cryptography.

Process
ID

State Status

P0 Dead Unknown
P1 Alive Normal
P2 Alive Normal
P3 Alive Normal
P4 Alive Normal
P5 Alive Coordinator
P6 Alive Normal
P7 Alive Normal
P8 Alive Normal
P9 Alive Normal

	Loss of Token:-
	When a process (say) P1 wants to enter into its critical section, it sends request to the coordinator. If the coordinator retains the token, it then sends the token to the requesting process (P1). After getting the token, the process will send an ackn...
	7. Conclusions
	References
	Sandipan Basu is final year student of M.Sc. Computer Science, St. Xavier’s College, University of Calcutta. He completed B.Sc (Honours) degree in Computer Science from Asutosh College, University of Calcutta. His research interests include Distribute...

