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Abstract 

As a generalization of double base chains, multibase 
number system is very suitable for efficient computation of 
scalar multiplication of a point of elliptic curve because of 
shorter representation length and hamming weight. In this 
paper combined with the given formulas for computing the 
7- Fold of an elliptic curve point P an efficient scalar 
multiplication algorithm of elliptic curve  is proposed 
using 2,3 and 7 as basis of the multi based number system . 
The algorithms cost less compared with Shamirs trick and 
interleaving with NAFs method. 
Keywords: Scalar multiplication, Elliptic curve, Double base 
number system, Multibase number system, Double chain, 
Septupling. 
 
1. Introduction 
 
Public key cryptography has been widely studied and used 
since Rivest, Shamir and Adleman invented the 
cryptography or cryptosystem RSA [1] in 1975. The 
system heavily depends on integer factorization problem 
[IFB] using large key bits of the order 1024 bits or 2048 
bits . Later on Diffie- Hellman [2] developed the public 
key exchange algorithm using the discrete logarithmic 
problem [DLP]. Elgammel also used DLP in encryption 
and digital signature authentication [DSA] scheme. 
However, these conventional public key cryptographic 
systems, such as RSA and DSA are impractical in WSNs 
due to low processing power of sensor nodes. Koblitz [3] 
and Miller [4] independently used elliptic curves for 
cryptography using Elliptic curve Discrete Logarithmic 
Problem [ECDLP] and provided elliptic curve 
cryptographic [ECC]. 
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In recent years ECC has received increased acceptance and 
has been included in standards room bodies such as ANSI, 

IEEE, ISO and NIST. Compared to traditional 
cryptographic systems like RSA, ECC offers smaller key 
sizes and more efficient arithmetic, which results in faster 
computation,  lower power consumption as well as 
memory and band width savings. Thus ECC is especially 
useful for mobile constrained devices like WSN, which 
enables wireless mobile devices to perform secure 
communication efficiently and establishes secure end to 
end connections. 
 
In ECC, points on elliptic curves over finite fields are used 
to generate finite abelian groups to implement public key 
cryptographic primitives. Cryptosystems in ECC are based 
on the group of points on an elliptic curve over a finite 
field. They rely on the difficulty of finding the value of a 
scalar, given a point and the scalar multiple of that point. 
This corresponds to solving the discrete logarithm 
problem. However, it is more difficult to solve the Elliptic 
curve DLP than its original counterparts. Thus elliptic 
curve cryptosystems provide equivalent security as the 
existing public key cryptosystems, but with much smaller 
key lengths. In addition another benefit is that each user 
may select a different curve E even though the underlying 
field K remains the same for all users. Thus the hardware 
which depends on the field remains the same and the curve 
E can be changed periodically for extra security. 
Traditionally ECCs has been developed over finite fields 
which have either prime order or binary fields of order m2 . 
The fundamental operation for generating a finite abelian 
group over an elliptic curve is the addition of two points on 
it. If point P on EC is added to itself (k-1) times then we 
obtain a new point kP on elliptic curve and kP is termed as 
the scalar multiplication of point P by scalar k.  Among the 
many arithmetic operations like addition, inversion, scalar 
multiplication involved in ECC, the scalar multiplication is 
the most important, energy and time consuming operation. 
A key factor for its fast implementation in ECC is to 
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compute the scalar multiplication efficiently, when k is a 
large integer. Various fast algorithms have been proposed 
for this purpose. Traditionally the integer k is represented 
in binary form and the double and add method is applied to 
calculate kP. 
In this paper we first compute the 7-fold of an elliptic 
curve point P, i.e. 7P. The formulas of doublings (2P), 
tripling(3P), triple and add(3P)+P, quadrupling(4P) , 
quadruple and add(4P)+P and quintupling(5P) are 
available in literature. Double base number representation 
of an integer in bases { 2,3} , { 2,5}  and { 3,5}  and their 
generalizations to triple base representation base { 2,3,5}  
was recently reported in [5].  
               In this paper, an efficient scalar multiplication 
algorithms of a point P on an elliptic curve is proposed 
using triple base representation of the scalar using 2,3 and 
7 as basis of the multibase number system. We obtain a 
sparser representation of the scalar, and the present 
algorithm costs less compared to the existing algorithms. 
We restrict our work on non super-singular elliptic curves 
defined over the field mF2  , however   this can be suitably 
modified for any other type of elliptic curve. 
 
The rest of the paper is organized as following: In the next 
section we report the related work. In Section-3 we 
evaluate sep-tupling ),(7 77 yxP = of a point 

),( yxP = and calculate its cost in terms of 
multiplications, squaring and inversions. The costs of 
addition and subtraction are ignored which are negligible 
in comparison to other costs. The triple base representation 
of an integer is  in section 4. Multi base number 
representation (MBNR) and multi base chain 
representation and their implementation in scalar 
multiplication are discussed in section 5 and 6 
respectively. Concluding remarks are given in the end. 
 
3. Related Work 
 
The classical approach of representing the integer k in 
binary form and then performing the scalar multiplication 
by a standard double and add method has efficient triple 
(3P) and double(2P) of point P, a ternary (binary approach 
for fast scalar multiplication is presented in [6]. For 
general curves a DBNS representation of the scalars using 
2 and 3 as bases has been proved quite efficiently [7]. For 
last couple of years double base number system [DBNS] 
has been proposed to be used in this context by several 
authors [8, 9, 10, 11]. In search of sub linear scalar 
multiplication algorithms, authors of [8] have been used 
complex bases, 3 and τ  for Koblitz curves. As a new 
approach for fast scalar multiplication, point halving was 
proposed independently by Knudsen [12] and Schroeppel 

[13]. They suggested that point doubling in the double and 
add method can be replaced by a faster point halving 
operation. A detailed analysis of the speed advantage of 
employing point halving instead of point doubling is 
available in [9]. Further point halving can be combined 
with frobenius endomorphism so as to speed up the 
corresponding operation in Koblitz curve by 25 percent 
[14, 15]. In yet another development the double base 
number representation of integer was generalized to 
multibase number representation with 2, 3 and 5 as basis 
elements and is included in [16,17]. The efficient scalar 
multiplication using multibase number representation 
included in [16] which also includes quintuple formula. 
Multibase multiplication using MBNR is included in [17], 
Scalar multiplication combining MBNR with point halving 
is discussed in [18]. 
         Our contribution in this paper is computing 7 fold 
(7P) of an elliptic curve point P for a curve over binary 
field and using the same in scalar multiplication. The 
scalar multiplication uses the representation of the scalar as 
sum/ difference of product of powers 2, 3 and 7. 
 
4. Septupling 
 
  In this section we consider Sep-tupling (7P) of a point P 
on an elliptic curve. We begin with a discussion of an 
elliptic curve. 
4.1: Elliptic Curve 
      An elliptic curve over a finite field GF (Galois field) K 
is defined by an equation 
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2
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 where Kaaaaaa ∈6543,21 ,,,, are the parameters of the 

curve and ∆≠∆ ,0 being the discriminate of the curve E. 
In the case of binary field mFK 2= , the non- super 
singular curves are used for cryptography, whose 
Weierstrass equation can be simplified to the form. 
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Further double of P i.e.  2P is also a point ),( 44 yx  on 
curve E, where 
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The usual scalar multiplication kP  of P by scalar k is 
obtained using the above described two operations add and 
double. For example 25P is calculated as 

PPPP ++= ))2(2(2(225     
                             or 

             ))2(2()))2(2(2(2 PPPP +++    

                   
These group operations in affine coordinates required field 
inversion besides multiplication and squaring. We denote 
by i ‘s and m the cost of one inversion , one squaring and 
one multiplication respectively. The cost of additions of 
two points  QP +  and of double of a point P, 2P are 
equal and equals to i+2m. However we shall neglect the 
cost of field additions in case of elliptic curves over binary 
fields.   It may be noted that cost of squaring in case of 
binary fields is almost free. The cost of a repeated 
doubling PDBLPw w2=−   is   mw )24( −+ as 
reported in [8]. The costs of : (i)double and  
add, ,2),( QPQPDA ±→  

 repeated tripling, PPwTPR w3)( →  and iii) triple and 
add QPQPTA ±→ 3),(  are given in [8] as i) i+am, ii) 
i+7m and (iii) 2i+am, respectively. 
 
4.2 Point Septupling   
Let P be (x,y) be a point on an elliptic curve  given by 
equation () over a binary field. We shall calculate the 7-
fold of P given by, ),(7 77 yxP = , that is we shall obtain 

expression for 7x and 7y  in terms of  x  and y . 
For non-super singular curves over a binary field, the 
division polynomials are given by  
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The higher degree division  polynomials are obtained using  
the following recurrence relations:  
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For any point ),( yxP  on E, its n-fold )3( Pn is given 
by 
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So the value of ( 7x , 7y ) for the 7-fold over binary field. 
Thus one can be computed from the above equation as 
follows: 
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The cost of evaluating various polynomials defined above: 
           Polynomials                                 Operations  
 

      A = axx ++ 34                             2[s]+ 1[m] 

      B = )( 3226 xAxaxx −=+              1[m] 
     C = 3

3
3

45 Ψ−Ψ=Ψ x                    1[s] +2[m]  

                 33 ABx −=                                                                             

    D  =
x

ABCAx 22 −                      4[m] +1[i] 

+1[s] 
  E  = 332 xBAA −+                         1[m] + 1[s] 

 F = 
x

xBCDBA 22 −                           3[m] + 1[s]  

   2E
FD

                                            1[m] + 1[s] + 

1[i]  

   3

2

xE
CF

                                  1[s] + 4[m] +1[i] 

  
  
Thus the total cost of the hepta tupling is 3[i] + 7[s] + 
18[m]. Neglecting the cost of squaring (in case of EC over 
binary fields ) the total cost turns out to be  3[i] + 
18[m].We can also compute 7P  as 2(2P)+3P or 2(3P)+P. 
Using the generic method the costs of TPL(P) and DBL(P) 
are respectively i+7m and i+2m. Further the costs of 
DA(P, Q) are 2i+9m. Hence the total cost 
7P=2(3P)+P=4i+18m. If we consider 7P as 2(2P)+3P 
then the total cost is 5i+20m. Hence cost calculated by us 
is the least. 
              The following table represents the costs of 
different operations used for the efficient scalar 
multiplication using the binary field method. 
 
                Table 2 : table of costs for different operations 

 S.No. Operations Binary field costs 
1 QP +  MSI 211 ++  
2 2P 1I + 1S + 2M 
3 2P+Q 1I+2S + 9M 
4 3P 1I+4S + 7M 
5 3P+Q 2I+3S + 9M 

6 4P 1I+5S+8M 
7 5P 1I+5S+13M 
8 7P 3I+7S+18M 

  
    

 5.Multibase Number Representation (MBNR) 
   First we review double base number system (DBNS) 
 5.1 DBNS 
Improving the classical   methods of double and add for 
scalar multiplication a new method (DBNS), using bases 
besides 2, were introduced [2, 3, 5]. In this system one can 

represent k as the sum of terms of the form s
cibi

i 32 , 

where s ),1,1{−∈i  such representation always exists and 
in fact this number system is quite redundant. One of the 
most interesting properties of the representation is that 
among all the possible representation for a given integer, 
some of them are really sparse, that is to say that the 
number of non-zero terms is quite low. 
To compute DBNS representation of an integer, one 
usually uses a greedy algorithm. It consists of the 
following: find the closest integer of the form cjbi32  to k, 
subtract it from k and repeat the process with    

cibikk 32' −=   till it is equal to zero. Performing a point 
scalar multiplication using this number system is relatively 
easy. Letting k be equal to cibi

i
n
i s 321=∑   one just needs 

to compute [
cibi

is 32 ] P for i=1 to n and then add all the 
points. 
Example:

++++= 374859610 32323232895712
                                 .32323232 01041526 +++  
Even if the number of additions is quite low, in practice 
such a method requires too many doublings and triplings. 
For this reason the general DBNS representation has been 
considered to be not suitable for scalar multiplication. 
To overcome this problem the concept of double base 
chains was introduced in [3]. In this system, an integer k is 
still represented as cibi

i
n
i s 321=∑  , but with the restriction 

that  allowing a Horner like evaluation of kP using only 
doublings and triplings, however, with significantly 
increase in the number of point additions. 
 
5.2 Multibase Number Representations (MBNR) 
        Let }....,,{ ,21 lbbbB = be set of small integers .A 
representations of integer k as a sum of powers of elements 
of B of the form }1,1{,....1

11 −∈∑= = j
cjl
l

cj
j

m
j sbbsk  is 

called a multibase representations of k using the base B. 
The integer m is the length of the representation of k using 
the base B. The integer m is the length of the 
representation or Double base number system (DBNS) or 
double base number representation discussed in previous 
section. 
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(DBNR) is a special case with with   2=B . In this paper 
we are particularly   interested in multibase representation 
with B= {2, 3, 7}. The multi base representations with B= 
{2, 3, 5} have been discussed by many authors [4, 
6].Authors in [17] combined with MBNR with point 
halving. 
 
The double base number system is highly redundant. 
Further these representation are very short in length, a 
160bit integer can be represented using around 23 terms 
using the base B={2,3}. The results on length of DBNS 
representation are included in [2]. The multi base 
representation   is even shorter and more redundant than 
the DBNS. The same 160 bit integer can be represented 
using around 15 terms using a triple base B= {2, 3, 5}. 
Example: 

++++= 041044154274 532532532532895712  
                                

010020 532532 +  
The multi base representation of a number using a triple 
base B= {2, 3,7} is even shorter and sparse as compared to 
its representation using the triple base {2,3,5}. 
 
Example: 

015115137159 732732732732895712 +++=
. 
In this article, unless otherwise stated, by a multi base 
representation of k, we mean a representation of the form. 
                          dicibi

ii sk 732∑=    

Where }1,1{−∈is and the terms of the form dicibi 732  
will be termed as 3-integers. A general multibase 
representation although very short is not suitable for a 
scalar multiplication algorithm. So we include a special 
representation with restricted exponents. 
Definition: A multi base representation 

dicibi
ii sk 732∑=  using the base B= {2, 3, 7} is called a 

step multibase representation (SMBR) if the exponents 
{ ib },{ ic } and { id } form three separate monotonic 
decreasing sequence. 
    We consider an example illustrating this definition for 
the same number. 
   Example: 

003203224345 732732732732895712 −−+=  

An integer k has several SMBR, the simplest one being the 
binary representation. If k is represented in SMBR, then 
we can write it using Horner’s rule and an addition chain, 
like double base chain in [1], for scalar multiplication can 
easily be developed. In case of our base system {2,3,7}, 
we require 1b doublings, 1c tripling and 1d sep tuplings. 
An integer can be converted to a multi base 
representationwith base {2,3,7} using the Greedy 
Algorithm as: 
                         
                GREEDY AlGORITHM: 
                           while 0>k  
                  let z be the largest integer dcb 732  
                               Output(b,c,d) 
                               replace k by k-z 
                               0←− zk  
                                    else 
                                   end. 
  
In this process the pre-computed points are extensively 
used to accelerate the scalar multiplication in applications 
where extra memory is available. So we have used a new 
method multi base chain representation in which one does 
not require any pre-computations but in this method the  
expansion of the scalar reduces the cost of the scalar 
multiplication making it faster. 
         The important contribution in [7] was the new 
ternary-binary method to perform the efficient scalar 
multiplication. Ciet et al.[7] have proposed a ternary-
binary method for fast ECC scalar multiplication. It makes  
use of efficient doubling (2P), tripling (3P), quadrupling 
(4P). In this paper a new septenary /ternary /binary 
approach for fast ECC scalar multiplication is proposed, 
which makes the use of septupling (7P) for the efficient 
scalar multiplication. 
In this base system only 1b doublings, 1c tripling and 

1d sep- tuplings are needed for the scalar multiplication; in 
the next section we give implementation of this method 
and develop Septupling, 7P, for point P. 
 
 6.Scalar Multiplication Implementation and 
Algorithm. 
 
We have already suggested that an integer k can be 
represented in multi base number system as the sum or 
difference of the mixed powers of 2, 3 and 7, as given in 
the following equation 
   dicibi

ii sk 732∑= with }1,1{−∈is and      
0,, ≥iii dcb  
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The sequence of the binary and ternary exponents 
decreases monotonically, i.e.  

0...321 ≥≥≥≥ mbbbb  , 0...321 ≥≥≥≥ mcccc  

and 0...321 ≥≥≥≥ mdddd , and thus a multi base 
chain is formed. 
For implementing the scalar multiplication we use a 
recursive formula for the fast computation of scalar 
multiplication using following equation for recursive 
calculations. 
  11 =K , ii

wvu
i sKK += −1732 with ,2≥i  

}1,1{−∈is  , 
where u is the difference of two consecutive binary 
exponents, v is the difference of two consecutive ternary 
exponents and w is the difference of two consecutive 
septenary exponents.  
To implement it we have used the following algorithm. 
An integer k, can be converted to a multi base 
representation  
   dicibi

ii sk 732∑=     with   }1,1{−∈is  and    
0,, ≥iii dcb  using greedy algorithm as already explained 

in Section.5 . Now we describe the algorithm: 
ALGORITHM:  

Input ∑=
=

m

i
dcb

i
iiisk

1
732: An integer , 

}1,1{−∈is   

And such that 0...321 ≥≥≥≥ mbbbb  , 

0...321 ≥≥≥≥ mcccc  and 

0...321 ≥≥≥≥ mdddd , and a point )( 2mFEP∈ .  

Output )( 2mFEkP∈ : the point   

           PsZ 1←  

              for 1,...,1 −= mi  do  

          

1

1

1

+

+

+

−←
−←
−←

ii

ii

ii

ddw
ccv
bbu

 

            if  0=u then  
                     ZZ w7←  
            if 0≠v  then  
     PsZZ i

v
1

1 )3(3 +
− +←              // TA used here 

                         else  
     PsZZ i 1++←                          
                        else  

    

PsZZ
ZZ

ZZ
ZZ

i

u

v

w

1

1

2
2
3
7

+

−

+←
←

←

←

 // DA is used here 

                         Return Z                      
 
 As an example for illustration of this algorithm we 
consider computing 895712P. We first develop the multi 
base chain as given below. 
                   

003203224345 732732732732895712 −−+=  
and compute  127P, 2285P, 111964P and finally 895712P 
successively. 
 
Table2:Method of calculating 895712P in different 
iterations for sep-tupling  
 

i K s u v w 

1 1 1 0 0 0 

2 126 12711 =+K  1 1 2 1 

3 18 228512 =−K  -1 1 2 0 

4 
49

11196413 =−K  -1 0 0 2 

5 8 8957124 =K  0 3 0 0 

 
This algorithm has used a multibase representation of the 
scalar with  2, 3 and 7 as the base numbers and it uses 
group operation like ADD, DBL, w-DBL, DA, TA for 
efficient computation. The new multi base chain method 
and proposed septenary/ternary/binary method is much 
faster than any other methods mentioned above for scalar 
multiplication for the binary fields without requiring any 
pre computations.  
 
7. Conclusion 
 
In this paper we have presented fast and secure scalar 
multiplication algorithms.    In our work we have proposed 
a new algorithm for MBNR  representation of an integer 
and combining with the scalar multiplication. We have 
shown that the length of the MBNR is shorter than the 
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DBNR and is also more redundant, since the number of 
representation grows faster as the number of base element 
is higher. For the MBNR representation we have used 2, 3 
and 7 as the bases which makes the representation sparser 
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