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Abstract 
Since its initiation by Connie Smith, the process of Software 
Performance Engineering (SPE) is becoming a growing concern. 
The idea is to bring performance evaluation into the software 
design process. This suitable methodology allows software 
designers to determine the performance of software during design. 
Several approaches have been proposed to provide such 
techniques. Some of them propose to derive from a UML 
(Unified Modeling Language) model a performance model such 
as Stochastic Petri Net (SPN) or Stochastic process Algebra 
(SPA) models. Our work belongs to the same category. We 
propose to derive from a UML model a Stochastic Automata 
Network (SAN) in order to obtain performance predictions. Our 
approach is more flexible due to the SAN modularity and its high 
resemblance to UML’ state-chart diagram. 
Keywords: Performance software engineering, UML, Stochastic 
Automata Network, Markovian analysis. 

1. Introduction 

Quantitative analysis of software systems is being 
recognized as an important issue in the software 
development process. However, it is widely accepted that 
performance analysis techniques have suffered a lack of 
acceptance in the wider software design community. The 
most convincing reason is the reluctance of designers to 
learn the specialized formalism required by Markovian 
numerical solution techniques.  
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To encourage designers to incorporate performance 
analysis, a wave of explicit efforts got a serious attention in 
the last two decades [1, 2, 3, 4, 11, 12, 13, 16].  Since the 
initiation of the software performance engineering (SPE) 
methodology by Connie Smith [16], three large groups of 
researches in the area have been noticed. The first group 
aims at constructing performance based frameworks that 
are able to be used by designers. This is the case of 
formalisms such Hit [2].  However, these formalisms had 
not received a good attention from designers because of 

the wide evolution of other powerful and dominant 
specification and design techniques such as LOTOS, SDL, 
and more specifically UML. Thus, a second group of 
works [1, 9, 12] in SPE proposes to extend existing 
specification formalisms by introducing performance 
information such as time and probability distributions to 
these formalisms.  In [1], a prototypic version of a program 
package is described, which takes a TSDL (Timed SDL) 
model as input and creates an internal representation of an 
equivalent Finite State Machine, so that validation and 
performance evaluation of TSDL models can be done 
automatically. In [12], Authors gave raise to stochastic 
LOTOS which modifies the semantics of LOTOS to allow 
performance information to be represented and 
performance results to be computed. Designers have to be 
careful with the new notations which mostly imply the 
formal power of the specification to be lost. 
Extending the notation in order to support performance 
information in the Unified Modeling Language (UML), is 
a recent attempt to merge the most widely used object 
oriented design notations. It has been adopted by the 
industry body, the object Management Group (OMG), as a 
draft standard [9]. A significant effort is underway to 
complete and refine this draft. Again, an additional effort 
is required from designers to deal with the proposed 
framework. 
 
Recent efforts such in [3, 13] also show the eligible need to 
incorporate performance analysis in the UML specification 
process. However, these works treat specific applications 
and they do not give a general demarche that can be useful 
with other applications. 
 
A significant approach does appear in SPE which consists 
of generating from specification formalisms, more 
specifically UML, a performance model. Up to date works 
in this area have explored the possibilities for simulation of 
UML models [7], generation of queuing network models 
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from UML deployment diagrams and collaboration 
diagrams. Moreover, mappings from UML to stochastic 
Petri net models (SPNs), more specifically Trivedi’s SPNP 
[8] tool’s variant of SPNs, and to stochastic process 
algebra models, particularly Hillston’s PEPA [11], have 
been also developed. All of these show the potential of 
using UML’s logical and behavioral notations to define the 
structure of performance models. Furthermore, the power 
of this approach results from the ability of the performance 
formalisms to represent models with large state space.    
 
The purpose of this paper is to initiate a new methodology 
in the SPE area and it is similar to the approaches above in 
the sense that we propose to generate a performance model 
from UML specifications. Starting from a UML model, we 
suggest engendering a Stochastic Automata Network (SAN) 
model [10] which may be used to predicate performance 
for large systems. The SAN formalism is usually quite 
attractive when modeling a system with several parallel 
cooperative activities. An important advantage of the SAN 
formalism is that efficient numerical algorithms have been 
developed to compute stationary and transient measures [5, 
15]. These algorithms take advantage of structured and 
modular definitions which allow the treatment of 
considerably large models. Another important advantage of 
the SAN formalism is the recent possibility of modeling 
and analyzing systems with (phase type) PH distributions 
[14] allowing to model deterministic activities. In addition, 
SAN permits to represent a system in modular way. A 
SAN model is a state-transition graph having a strong 
likeness with the UML state-chart diagram. 
For these reasons, we believe that SAN is more than 
adequate to generate a performance model from a UML 
specification model. 
 
This work opens the door to propose a more general 
demarche of generating a SAN model from a UML model. 
Here, we illustrate our approach in an informal way based 
on an example. The rest of the paper is structured as 
follows: Section 2 presents an informal definition of the 
SAN formalism. Section 3 considers how to exploit UML 
for performance analysis. This includes the case study of a 
chess game in order to show the direct use of UML. 
Section 4 explores how the UML model maps into SAN 
based on our case study. Some typical results obtained by 
solving the model are also presented.  Section 5 concludes 
our paper and describes our ongoing works. 

2. Stochastic Automata Network 

Stochastic Automata Networks, SANs, were first proposed 
by Plateau in 1985 [10!]. The SAN formalism enables a 
complete system to be represented as a collection of 

interacting subsystems. Each subsystem is represented by 
an automaton which is simply a directed and labeled graph 
whose states are referred to as local states, being local to 
that subsystem, and whose edges, relating local states to 
one another, are labeled with probabilistic and event 
information. The different subsystems apply this label 
information to enable them to interact with each other and 
to coordinate their behavior. 
 
The states of a SAN are defined by the Cartesian product 
of the local states of the automata and are called the global 
states of the SAN. Thus, a global state may be described 
by a vector whose ith component denotes the local state 
occupied by the ith automaton. The global state of a SAN 
is altered by the occurrence (referred to as the firing) of an 
event. Each event has a unique identifier and a firing rate. 
At any moment, multiple events may be enabled to fire (we 
shall also use the word fireable to describe events that are 
enabled): the one which actually fires is determined in a 
Markovian fashion, i.e., from the relative firing rates of 
those which are enabled. The firing of an event changes a 
given global source state into a global destination state. An 
event may be one of two different types. A local event 
causes a change in one automaton only, so that the global 
source and destination states differ in one component 
(local state) only. A synchronizing event, on the other hand, 
can cause more than one automaton to simultaneously 
change its state with the result that the global source and 
destination states may differ in multiple components. 
Indeed, each synchronizing event is associated with 
multiple automata and the occurrence of a synchronizing 
event forces all automata associated with the event to 
simultaneously change state in accordance with the dictates 
of this synchronizing event on each implicated automata. 
Naturally, a synchronizing event must be enabled in all of 
the automata on which it is defined before it can fire. 
 
Transitions from one local state to another within a given 
automaton are not necessarily in one-to-one 
correspondence with events: several different events may 
occasion the same local transition. Furthermore, the firing 
of a single event may give rise to several possible 
destinations on leaving a local source state. In this case, 
routing probabilities must be associated with the different 
possible destinations. Routing probabilities may be omitted 
only if the firing of an event gives rise to a transition 
having a single destination. Also, automata may interact 
with one another by means of functional rates: the firing 
rate of any event may be expressed, not only as a constant 
value (a positive real number), but also as a function of the 
state of other automata. Functional rates are defined within 
a single automaton, even though their parameters involve 
the states of other automata. 
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As an example of the previous discussion, Figure 1 
presents a SAN model with two automata, A(1) and A(2), the 
first with 3 local states, 0(1), 1(1) and 2(1) and the second 
with two local states, 0(2) and 1(2). The model contains four 
local events, e1; e2; e3 and e5 and one synchronizing event, 
e4. When automaton A(1) is in local state 0(1), and A(2) is in 
local state 0(2), (global state [0, 0]), two events are eligible 

to fire, namely e1 and e5. The event e1 fires at rate τ1. 
This is taken to mean that the random variable which 
describes the time t from the moment that automaton A(1) 
moves into state 0(1) until the event e1 fires, taking it into 

state 1(1), is exponentially distributed with a mean by 1/ τ1 
. Similar remarks hold for the firing rate of the other 
events. The firing of e1 when the system is in global state 
[0, 0] moves it to global state [1, 0] in which e5 is still 
eligible to fire, along now with event e2. The event e1 
cannot fire from this new state. The synchronizing event e4 
is enabled in global state [2, 1] and when it fires it changes 
automaton A(2) from state 1(2) to state 0(2) while 
simultaneously changing automaton A(1) from state 2(1) to 
either state 0(1), with probability π1, or to state 1(1) with 
probability 1-π1. Observe that two events are associated 
with the same edge in automaton A(1), namely e3 and e4. If 
event e3 fires, then the first automaton will change from 
state 2(1) to state 0(1); if event e4 fires the first automaton to 
change from state 2(1) to either state 0(1) or state 1(1) as 
previously described. There is one functional rate, f5, the 
rate at which event e5 fires, defined as 
 

 
 
Thus event e5, which changes the state of automaton A(2) 
from 0(2) to 1(2), fires at rate λ1 if the first automaton is in 
state 0(1) or at rate λ2 if the first automaton is in state 2(1). 

The event e5 is prohibited from firing if the first automaton 
is in state 1(1).  
 

 
 
Functional transitions are written more compactly, e.g., in 
which conditions such as st(A(1) == 2(1)) (which means \the 
state of A(1) is 2(1)) have the value 1 if the condition is true 
and are equal to 0 otherwise. This is the notation used to 
describe functions in the PEPS software tool [4]. In this 
setting, the interpretation of a function may be viewed as 
the evaluation of an expression in the C programming 
language. The use of functional expressions in SANs is not 
limited to the rates at which events occur; indeed, 
probabilities also may be expressed as functions. Figure 2 
shows the equivalent Markov chain transition rate diagram 
for this example. 
 

 

Fig 2: Transition rate diagram of corresponding Markov chain. 

Furthermore, a new methodology has been recently 
incorporated into SANs: the use of phase-type distributions 
[14] The exponential distribution has been the only 
distribution used to model the passage of time in the 
evolution of the different San components. In [14], it is 
shown how phase-type distributions may be incorporated 
into SANs thereby providing the wherewithal by which 
arbitrary distributions can be used, which in turn leads to 
an improved ability for more accurately modeling 
numerous real phenomena.  
 
The real interest in developing stochastic automata 
networks lies, in addition to their specification, to the fact 
that the transition matrix of the underlying Markov chain 
of a SAN can be represented compactly by storing the 
elementary matrices corresponding to subsystems and 
never the transition matrix itself. The numerical analysis of 
the system is then done by using the elementary matrices, 
which extremely decreases the analysis cost [5]. 

Fig 1: Example of a SAN model 
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3. A UML model for the chess game 

The Unified Modeling Language (UML) [9] is a 
graphically based notation, which is being developed by 
the Object Management Group as a standard means of 
describing software oriented designs. It contains several 
different types of diagram, which allow different aspects 
and properties of a system design to be expressed. 
Diagrams must be supplemented by textual and other 
descriptions to produce complete models. For example, a 
use case is really the description of what lies inside the 
ovals of a use case diagram, rather than just the diagram 
itself. For a full account of UML see [6]. 
 
Here, we develop UML model which shows how a chess 
game might look if based on object oriented design. We do 
not develop in detail all the possible UML diagrams, 
concentrating on those that are essential to the objective of 
describing the structure and behavior of the system. In 
particular, we only introduce the class diagram (section 
3.1), collaboration diagram (section 3.2) and more 
specifically the state-chart diagram (section 3.3). 
We do not spend time in presenting the use case model, 
which is important in real software design projects, since it 
captures the requirements for the system. We take those 
very much as given. 
 

3.1 The class diagram 

UML is an object oriented design formalism. Thus the core 
of the language is the class diagram. A class model defines 
the essential types of object available to build a system; 
each class is described by a rectangle with a name. This 
can be refined by adding compartments below the name 
which list the attributes and operations contained in each 
instance of (object derived from) this class [11]. 
Classes are linked by lines known as associations which 
indicate that one of the classes knows about the other. The 
direction of this knowledge is known as the navigability of 
the association. In an implementation an association 
typically corresponds to one class having a reference 
variable of the type of the other class. Sometimes 
navigability has to be two ways, but it more often one way. 
This can be shown by adding arrow head to the end(s) of 
the association. 
 
For the purpose of this paper, we assume that classes and 
objects exist as fundamental units of description within a 
design. In particular, classes encapsulate behavior, which 
can be described as state machine description. 

 
The class model of our chess game is reduced to its 
essentials. We assume there are two kind of players X and 

Y, the board and an umpire. A player spends time thinking 
before playing (achieving a movement on the board). Its 
movement may be valid or not. The umpire decides about 
the validity of the player movement. 
Figure 3 shows classes for the chess game. We underline 
the existence of two classes (XPlayer and YPlayer) which 
inherit from the class Player.  The inheritance relation is a 
form of generalization where one class is a super class; the 
other is a specification (sub class). The need to distinguish 
the two subclasses is related to the difference in behavior 
of the two players in term of state-transition. This is 
illustrated later in the state-chart diagram. 
 

 
 

3.2 The collaboration diagram 

Collaborations are collections of objects, linked to show 
the relevant associations between their classes. Here 
“time” is not represented explicitly. Instead the emphasis is 
on showing which objects communicate with which others. 
Communications are represented by messages. Sometimes, 
these messages are numbered to show the order in which 
they should happen [8].  
 
Figure 4 represents the collaboration diagram of our chess 
game. It acts of a communication between four objects: 
two players, x and y, aboard b and an umpire u. Also, we 
may for example imagine the existence of more than one 
player of type x and/or y that are playing on the same 
board. That implies the creation of new class instances 
which will be added to the collaboration diagram. 
 

Fig 3: Chess game – The class diagram 
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Collaboration (or communication) diagrams show a lot of 
the same information as sequence diagrams which are not 
represented here, but because of how the information is 
presented, some of it is easier to find in one diagram than 
the other. Communication diagrams show which elements 
each one interacts with better, but sequence diagrams show 
the order in which the interactions take place more clearly. 

3.2 The state-chart diagram 

UML defines state diagrams which allow a class to be 
defined in terms of states it can be in and the events 
(messages) which cause it to move between states. 
Many software systems are event-driven, which means that 
they continuously wait for the occurrence of some external 
or internal event such as a mouse click, a button press, a 
time tick, or an arrival of a data packet. After recognizing 
the event, such systems react by performing the 
appropriate computation that may include manipulating the 
hardware or generating “soft” events that trigger other 
internal software components. (That’s why event-driven 
systems are alternatively called reactive systems.) Once the 
event handling is complete, the system goes back to 
waiting for the next event. 
State-charts describe how instances of classes behave 
internally. In a complete design they provide a full 
description of how the system works. We insert the state-
chart for each object into its box in the collaboration. At 
any point in the lifetime of this system, each object must be 
in one, and only one, of its internal states. Each time a 
message (event) is passed, it may cause a state change in 
the receiving object and this may cause a further message 
to be passed between that object and another with which it 
has an association. 
The overall state of a system will be the combination of all 
the current internal state of its objects, plus the current 
values of any relevant attributes. Intuitively, readers may 
sense a strong similarity to the stochastic automata 
networks behavior. An automaton is a set of states, 
transitions and events. The global state of a SAN is a 
combination of the local states of its automata. The 
powerful point of mapping the state-chart diagram into a 

SAN model is that the mapping process will not produce 
fundamental changes in the graph structure, only some 
information needed to represent relevant attributes and the 
time spent in a state is required. That may help designers to 
better understand the SAN performance model which is an 
emphasized advantage of our approach. 

 
Figure 5 presents the state-chart diagram of our game 
model. For each object in the collaboration diagram, a 
chart is associated. 
 
Each chart describes the internal behavior of the concerned 
object. Briefly, a chart is composed of states, transitions, 
triggers and actions. States are shown as lozenges; the 
initial state as a black filled circle. Transitions are the 
arrows between states, labeled with a trigger. Triggers 
represent the reason for an object to leave one state and 
follow the corresponding transition to another state; here, 
triggers are incoming messages or elapsing of time shown 
by the word after followed by the duration. Actions are 
resulting from a trigger  carried out before entering the 
new state. They occurrence may follow a probability 
and/or they may involve sending messages to other objects, 
and these messages are prefixed by a caret. For example, in 
the automata corresponding to player X the label 
after(t1)/^b.Move(x) means that the action Move(x) of the 
Board b should occur when the trigger after(t1) is fired.  

 
A player (X or Y) alternates between two states:  the state 
where it is thinking about a move and the state where it is 
waiting its turn. Note that the initial state of X is thinking 
and that of Y is waiting (Player X starts the game). The 
two players cannot be simultaneously in the same state. 
When a player achieve a move, this move can be correct or 
not. The probability of a valid movement achieved by 
player X (respectively Y) is p (respectively q). The umpire 
alternates between two states: a state where it is checking a 
player’s move and the state where it is idle. Parameters t1 
and t2 are respectively the time needed by players X and Y 
to think about a move. The parameter T represents the time 
need by the umpire in order to validate a player’s move. 
 

4. Generating the SAN model 

In this section, we present how a SAN model is directly 
generated for the UML chess game model presented in the 
previous section. The generation process is principally 
based on the state-chart diagram. 
 

Fig 4: Chess game – the collaboration diagram 

http://en.wikipedia.org/wiki/Event-driven�
http://en.wikipedia.org/wiki/UML_state_machine#Events#Events�
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Even though the model of the chess game is not necessarily 
very significant from the performance point of view, but it 
is an excellent case study to show the simplicity of the 
generation process and consequently the significance of 
our methodology by using a SAN to generate a 
performance model from the UML specifications. 
Moreover, here, we focus only on the informal generation 
of the SAN model. The formal generation procedure is in 
the line of our future research activities. 

 
The SAN model generated from the UML chess game 
model of section 3 is presented in figure 6. 
 
As it can be noticed, the SAN model is robustly similar to 
the UML state-chart diagram of section 3.3. Each 
automaton of the state-chart diagram is mapped into a SAN 
automaton. But, in the general case, it is not necessarily 
that the number of the SAN automata is equal to that of the 
UML state-chart diagram. Sometimes, we need additional 
SAN automata in order to describe relevant attributes of 
the UML model. That is not the case of our chess game 
model. Moreover, each SAN automaton has a quasi-similar 
behavior to the state-chart, in term of states/transitions. 
SAN automaton X, Y, B and U correspond to UML’s 
Player X, Player Y, Board and Umpire respectively (refer 
to figure 5). For all state-chart automata, the initial state 

(black filled circle) is omitted in the SAN automata, as 
there is no time spent in this state. The same time criterion 
is applied to states xtoMove and ytoMove of the Board 
state-chart automata. Again, there is no time spent in these 
states (we will call such states discrete states). Their use in 
the state-chart is needed only to model the consequence of 
a valid move achieved by a player that implies the second 
player to go to the thinking state. 
 
States 0 and 1 of automata X and Y represent respectively 
Thinking and Waiting states of players X and Y. States 0 
and 1 of automata B represent respectively states Idle and 
Checking of the Board. States of automaton U 
(representing the Umpire) are obtained after the 
elimination of discrete states.  
 
The generation of events is realized following a robust 
procedure: for each trigger corresponds an event. If the 
trigger does not fire an action in another automaton, the 
event is then a local event. Elsewhere, if the trigger fires an 
action in another automaton, the event is then a 
synchronizing event. If the fired action is a trigger for 
another action in another automaton, the same 
synchronizing event is used to synchronize all the affected 
automata. For example, looking to the state-chart of figure 
5, the trigger after(t1) of Player X fires the action Move(x) 

Outcome(0)[prob (1-p)] 

Outcome(1)[prob p] 

Outcome(0)[prob (1-q)] 

Outcome(1)[prob q] 
^y.Move() 

^x.Move() 

Move(y)/^u.Validate(y) 

Move(x)/^u.Validate(x) 
xMoving 

yMoving 

Checkx 

Checky 

xtoMove ytoMove 

Board 

Idle Checking 
 

 After(T)/^b.Outcome(v) 

Validate(p) 

Umpir 

Thinking Waiting 
after(t1)/^b.Move(x) 

Move() 

Player X 

Waiting Thinking 
after(t2)/^b.Move(y) 

Move() 

Player Y 

Fig 4: Chess game – the state-chart diagram 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 
 

 

19 

 

of the Board which, in turn, fires the action Validate(p) of 
the Umpire. In the SAN model, this phenomena is 
represented by the synchronizing event “a” whose rate is 
equal to 1/t1. The SAN event “b” is generated in the same 
way as event “a”.  
 
On the other hand, the trigger after(T) of the state-chart 
Umpire fires the action outcome(v) of the Board. This 
action may have different parameters’ value in the Board 
state-chart (v = 0 or 1). Thus, in principle, two events are 
needed to represent the firing of the trigger after(T). 
However, as the occurrence of outcome(0) and outcome 
(1) is related to probabilities, a new event decomposition is 
achieved in order to carry out the probabilities. Thus, the 
generated SAN events are now u1q, u2q, u1p, u2p that 
respectively correspond to outcome(1)[prob q], 
outcome(0)[prob (1-q)], outcome(1)[prob p] and 
outcome(0)[prob (1-p)]. The rate of the each SAN events 
is equal to 1/T times the corresponding probability. In 
addition, as the occurrence of the action outcome leads the 
state-chart Board to enter a discrete state, the action taken 
after leaving these discrete states (x.move() and y.move()) 
is taken into consideration in the SAN model as a 
consequence of the occurrence of outcome. This is due to 
the fact that the discrete states are not represented in the 
SAN model. That is why, for example, synchronizing event 
u1q appears also in the automata X (corresponding to the 
action x.move() fired in the state-chart Board). 
 

Thus, the SAN model is generated following a procedure 
that can be easily implemented. On more detail remains to 
specify in the SAN model concerns values of time 
parameters, i.e. t1, t2 and T. In addition, the type of the 
time distribution should also be indicated. SANs are 
basically Continuous Time Markovian (CTM) formalism. 
In CTM models, the exponential distribution is usually 
used taking advantage from its memory-less property 
which respects Markov theory. However, other time 
distributions may be also used in the SAN model [14] 
based on Phase-Type distributions that can approximate 
any time distribution even deterministic. 
 
As a typical result, we present one performance prediction 
resulting from the SAN model with exponential 
distribution. The analyzed performance metric is the 
average playing time of each players (X and Y) when the 
parameters values are: p = q = 0.5; t1 = 2; t2 = 3 and T =1. 
The reflection time of player X is less than that of Y 
(t1<t2), the obtained result indicated that the total thinking 
time of player Y (over the whole time of the game) is 10% 
more than the thinking time of player X.  
The goal from this simple result is just to show the 
adequateness of our methodology from mapping the UML 
model to a SAN model. Of course, more sophisticated 
performance analysis may be applied to more significant 
and large applications. In summary, our methodology 
performs extremely well. 

 
 

 

 
 

Event Rate 
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1/t1 
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1/t2 
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Fig 5: Generated SAN model 
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5. Conclusion

In this paper we have shown how a stochastic automata 
network may be directly generated from UML 
specifications. The key step is by using the state-chart 
diagram of UML which has a strong similarity to a SAN. 
Both, SAN and UML state-chart, are a set of automata. 
SAN’s transitions are labeled by local events or/and by 
synchronizing events. UML’s transitions are labeled by 
triggers that may fire actions in other automata. Mapping a 
state-chart automaton into SAN automaton is realized after 
eliminating UML discrete states. Mapping triggers and 
actions into events is achieved by following the path of 
actions carried out after the firing of a trigger. An informal 
description of the SAN generation procedure was 
presented based on a simple case study which goal is to 
show the simplicity and robustness of our demarche.   
 
The methodology which we propose in this paper lays the 
groundwork for the development of a formal heuristic that 
permits to generate a SAN model from any UML state-
chart model. In addition, the generation process is 
completely transparent to applications’ designers. This 
opens the way for an efficient technique in the software 
performance engineering area by taking advantage of the 
power of SAN in analyzing large applications, SAN 
modularity, and its similarity to the UML state-chart 
diagram that may allow designers to easily interact with 
their performance model. 
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