
A Model for Code Restructuring, A Tool for Improving Systems

Quality in Compliance with Object Oriented Coding Practice

Moses Kibet Yegon Ngetich1, Dr Calvins Otieno2 and Dr Michael Kimwele3

1 School of Computing & Information Technology, Jomo Kenyatta University of Agriculture & Technology, Kenya

2 School of Computing & Information Technology, Jomo Kenyatta University of Agriculture & Technology, Kenya

3 School of Computing & Information Technology, Jomo Kenyatta University of Agriculture & Technology, Kenya

Abstract

A major goal of software restructuring is to preserve or increase

the value of a piece of software. Restructuring a system may

make it possible to add more features to the existing system or

make the software more reusable in other systems. This research

presents a code restructuring model and its associated

architecture for improving the quality of object-oriented legacy

system and existing ones to a new target system structure. This

research reviewed existing literature on code restructuring

models and their limitations, this helped in the identification of

research gap. Data was collected and observable behaviour of

the sample model recorded. Data collected was validated, edited

and coded then analysed using observable behaviours. The

literature on existing restructuring models, techniques and

algorithm, frameworks and tools were reviewed and used to

determine the nature of the model. Findings revealed that the

existing models did not effectively take care of proper

restructuring. Finally, the proposed model was developed and

validated, it revealed that the model would assist greatly in

achieving effective restructuring and therefore the research

recommended a restructuring model described in this report.

Keywords: Restructuring, software maintenance, code

restructuring, object-oriented legacy, observable behavior.

1. Introduction

Many existing software systems can benefit from code

restructuring models to reduce maintenance cost and improve

reusability. Yet, intuition-based, ad hoc restructuring can be

difficult and expensive, and can even make software structure

worse. Code restructuring is one of the software reengineering

activities. It is where the source code is analyzed and violations

of structured programming practices are noted and repaired, the

revised code also needs to be reviewed and tested.A wide variety

of models have been proposed and used to deal with restructuring

and restructuring. These include the various techniques and

methods for code restructuring processes that have been applied

in the development of code restructuring models that can be

applied to specific code or to group legacy software. Although

various code restructuring models and frameworks that have

been proposed before can be used to perform restructuring of

various software paradigm, most of these models are limited to a

specific restructuring methods and techniques, language

paradigm or specific part of the software code and did not meet

the intended restructuring objectives. Most authors of these

developments also leave an open window for future research of

their work

2. Research Objectives

The main objective of this study was to develop a code

restructuring model to improve the quality of systems in

compliance with object-oriented systems. Other specific

objectives are;

1 To review related work with regard to existing code

restructuring models in Object Oriented Programming

2 To identify weaknesses and challenges of existing code

restructuring models in Object Oriented Programming

3 To propose a model for code restructuring based on

Object Oriented Programming.

4 To automate the model for code restructuring in

compliance with Object Oriented Programming best

practice

5 To validate the proposed code restructuring model

3. Research Questions

The study was guided by the following research questions;

RQ1 What are the existing code restructuring Models in Object

Oriented Programming?

RQ2 What are the weaknesses and challenges of existing code

restructuring models in Object Oriented Programming?

RQ3 How can we automate the model for code restructuring in

Object Oriented Programming

RQ4 How does the proposed code restructuring model perform

in comparison to existing code restructuring models?

4. Research Methodology

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 3, May 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3252971 32

2019 International Journal of Computer Science Issues

4.1 Research Design

The study used experimental design which involved a series of

model experiments during the research work. The study

employed a quantitative research approach using primary data

collected during the experiments and observations.

4.2 Target Population

The target population should fit a certain specification which the

researcher is studying. For the purpose of this study, the target

population will be the object oriented systems and the users.

Users are programmers who are involved in the day to day

coding of the systems, and are therefore able to provide answers

to the research questions.

4.3 Sampling Design and Sample Size

The study will use 10 object oriented systems for the purpose of

this study. This is because the greater the sample size, the smaller

the sampling error and the more representative the sample

becomes (Mugenda & Mugenda, 2003) a sample of 30% is

representative.

4.4 Data Collection Method

This research study used primary data. Primary data was

collected by use of experiments and observable behavior of the

sample systems. The experiments will be conducted using

sampled systems in a controlled environment so that the

researcher will have ample time to record all results and note

down any observable behavior of the system under study at their

own convenient time.

Both primary and secondary data will be used. The secondary

data about code restructuring models will be collected from

external sources, such as websites and books

4.5 Data Analysis and Presentation

The collected data was thoroughly examined and checked for

completeness and comprehensibility. Data collected was

validated, edited and coded then analyzed using Poison

Distribution Model. This distribution is used quite frequently in

reliability analysis. It can be considered an extension of the

binomial distribution when n is infinite. It can be used to

approximate the binomial distribution when n > 20 and p < 0.05.

If events are Poisson distributed, they occur at a constant average

rate and the number of events occurring in any time interval are

independent of the number of events occurring in any other time

interval. For example, the number of failures in a given time

would be given by:

Where x is the number of failures and a is the expected number

of failures. For the purpose of reliability analysis, this becomes:

Where:

λ = failure rate

t = length of time being considered

x = number of failures

The reliability function, R(t), or the probability of zero failures in

time t is given by:

or the exponential distribution.

In the case of redundant equipment, the R(t) might be desired in

terms of the probability of r or fewer failures in time t. For that

case

5. Framework Development

Proposed Framework Architecture and Control Flow. The

classes of the input Java project are parsed through the AST

Parser. The detection process is done in two phases: During the

initial phase, ROOC tool parses each class to gather statistical

data by visiting each AST node and creates an array list of the

method and variable names for each class. ROOC tool also

creates a list of all the class names used during the detection for

“Data Class” smell. During the second phase, the ROOC tool

uses the gathered statistical data and the AST to identify the code

smells requested by the user. The detected code smells are then

presented to the user. ROOC tool also provides the option of

applying restructuring technique(s) step by step. The user can

choose to accept or discard the restructuring suggestions.

5.1 Restructuring Object-Oriented Code Tool
The proposed tool parses the source code and categorizes those

into low, moderate or highly restructured using the metrics

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 3, May 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3252971 33

2019 International Journal of Computer Science Issues

Figure 1. Architecture of ROOC Tool

Defined in Table 2 of Section 4.1. The system consists of four

components:

1. Parser

2. Analyzer

Figure 2. Illustrates its components

5.2 Proposed Framework Coding
The architectural design of the proposed framework as depicted

in Figure 1 consists a number of components with simple

interface and with a pipe and filter architectural style. Each

component (filter) processes its input data in the form of a file

(pipe) and stores the results in another file for the next

component.

i) Pre-Process Components

ii) Analysis Components

iii) Post-Process Components

6. Framework Implementation

6.1 Implementation Platform
ROOC tool is implemented in Java and uses the Abstract Syntax

Tree (AST) parser.

▪ Abstract syntax tree is the tree structure representation of

the source code in any programming language.

▪ Each node of the syntax tree represents a part of the abstract

syntactic structure of the source code.

▪ The IDE used for the development is Eclipse SDK 3.4.0.

▪ For refactoring, ROOC tool uses the built in refactoring API

of Eclipse, which is a part of Language Toolkit (LTK). The

input of the ROOC tool is a Java project folder.

6.4 Proposed Model Validation and Test Results
ROOC tool was tested against 10 projects sourced from the

internet. The selected java codes seem to have been developed by

experienced Java developers, so the complexities of these codes

are considerable.

Each project has an average of 13 classes. These test codes have

a good level of complexity. During the design phase, ROOC tool

interface was provided to different users from the technical as

well as non-technical background to access the user-friendliness

of GUI.

File

Parsor
Syntax

Tree

Class

Method()

Class

Identification

Syntax

Method

Identification

Syntax

Searche

r

Y

es

N

o

Parsin

g

Object Oriented

Code

AST Parser
AST Tree

Statistical

Analysis

User

Specified

Criteria

Bad Smell

Detection

Smell

Visualizatio

n

Restructuring

Suggestion

Unchanged Code Restructured

Code

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 3, May 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3252971 34

2019 International Journal of Computer Science Issues

Figure 3. ROOC tool Main Interface menu

The feedbacks were used to improvise the GUI. To test the

usability, performance and the code optimization feature of

ROOC tool, three different tests were conducted.

1. Identify smells present in each project.

2. Time taken to understand code logic before and after

restructuring.

3. Time taken to add functionality in the code before and after

restructuring.

6.5 Identify Smells Present in Each Project
During this test, the ROOC tool was run across each of the

project and the output was recorded (whether the project contains

the specific smell or not). Later we crosschecked to verify

correctness of the smell identified by the tool. Even other classes

of the projects were skimmed through to identify other cases

which the tool might have missed. The smells identified by

ROOC tool in individual projects are represented in the tabular

format in Table 3. The table cell marked “Yes” represents the

detected code smell in the project enlisted in column 1.

7. Proposed framework User Validation and

Tests

Time Taken to Understand Code Logic before and After

Refactoring. For this test, four Java developers were chosen

ranging from two to three years of experience. The experience of

the users ensured that they had sufficient background knowledge

of Java to understand the logic. Three projects (named Project 1,

Project 2, and Project 3) from the 10 of the above projects were

selected having different difficulty level. The details of each of

the three projects are shown in Table 4.

8. Conclusions and Recommendations

The notion of a “finished product” is rare because existing

software constantly evolve. In practice, new features,

modifications and adaptations are permanently requested. A

consequence is that no initial design, however good, can

accommodate all the possible future changes in a real-world

project. The agile methodology takes this fact as granted and

proposes tools that aim in coping with change rather than

defending against it. One category of these tools is restructuring,

or changing an existing design. Restructuring has led to

restructuring tools, which helps in adapting the existing code

automatically in order to be kept synchronized with a change of

the design. Restructuring tools, like any software, also evolve

over the years. Hence they need to be restructured themselves.

This paper discussed an evolution of restructuring tools, namely

the evolution toward more complex transformations and

consequently presented a generic code restructuring tool for

object oriented systems. The need for an evolution was

motivated by a complex restructuring: forming a template

method. Exploring this restructuring model showed that the

existing models and techniques were not suitable to solve some

of the restructuring problem. New models and algorithms had to

be introduced, such as the code differentiation process. Hence it

was necessary to restructure existing algorithms toward more

complex ones. Other processes on the other hand had to be

restructured toward simpler versions that are more suitable to the

restructuring process, such as the data and control flow analyses

used for method extraction. In Chapter 1, we motivated the need

for restructuring and explained the broader context in which it is

used. Restructuring is not a new process, and the state of the art

regarding automated implementations was presented in the

literature review. Extensions of existing approaches as well as

new approaches have been presented, discussing the restructuring

model development, testing and validation in chapter four. Here

we proposed an interoperable code restructuring implementations

on object oriented codes and demonstrated how to automatically

solve minor problems rather than systematically reporting them

as errors to the user. Analyses, models and transformations have

been used to implement our case study. However they also have

other applications in many other areas. Conversely, other areas,

such as web programming, still seek for additional research. We

Long Class

Restructuring

Long Method

Restructuring

Long Parameter

List Restructuring

Switch Case

Restructuring

Poorly Named

Methhod

Highly Coupled

Classes

ROOC TOOL – Main

Menu

Data Class

Restructuring

SELECT
TOOL
FOR

RESTRUC
TURING

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 3, May 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3252971 35

2019 International Journal of Computer Science Issues

continue by summarizing our contributions, making a critical

analysis of our work, and highlighting future work.

8.1 Recommendations

We have explored a more generic restructuring as a case study:

forming a restructuring model. This model is further decomposed

into other, smaller restructuring activities discussed in chapter

Four, section 4.3. There are of course many other restructuring

techniques and methods to explore that have not yet been

implemented, and this could be a future research direction. In

particular, our case study has shown that existing techniques are

not sufficient to implement the interoperable code restructuring

implementations on object-oriented codes, and required

extensions. It is however too early to say whether and to what

extent the new introduced approaches can or cannot be reused for

other, even more complex restructuring. Finally, we took a

pragmatic approach to the problem, which allowed the project to

get a working solution. On the other hand, a more formal

approach would be necessary to discuss our algorithm in terms of

its properties (preconditions and post conditions) and correctness.

Formal approaches may eventually find out that parts of our

algorithms are wrong or suboptimal, or may just need

adjustments and extensions to cope with future programming

languages. Following the Agile development philosophy, this

would not be a problem: as with any real-world application, in

such a case this thesis and the underlying research would just

need to be researched on further.

8.2 Acknowledgement

I have learned a lot and really enjoyed while working on this

thesis. I would like to sincerely thank all those who helped me

with their valuable support during the entire process of this

proposal. I am deeply indebted to the entire Jomo Kenyatta

University of Agriculture & Technology fraternity for their

valuable guidance, stimulating suggestions, patience and for

encouraging me to go ahead with my thesis. I would like to

express my gratitude to my family for the love, affection and

support. Special thanks for my kind friends for making this work

possible.

9. References

[1] Gligoric, M., Behrang, F., Li, Y., Overbey, J., Hafiz, M., Marinov,

D.: Systematic Testing of Restructuring Engines on Real Software

Projects. In: Castagna, G. (ed.): Proceedings of the 27th European
Conference on Object-Oriented Programming (ECOOP'13). LNCS,

Vol. 7920. Springer-Verlag, Berlin Heidelberg, 629-653. (July

2013)

[2] Massoni T., Gheyi R., Borba P. (2008) Formal Model-Driven

Program Restructuring. In: Fiadeiro J.L., Inverardi P. (eds)
Fundamental Approaches to Software Engineering. FASE 2008.

Lecture Notes in Computer Science, vol 4961. Springer, Berlin,

Heidelberg

[3] HAMIOUD, Sohaib. "UneApprochedirigée par les Modèles pour
les Architectures Logicielles." (2016).

[4] Arendt, Thorsten, Enrico Biermann, Stefan Jurack, Christian

Krause, and Gabriele Taentzer. "Henshin: advanced concepts and

tools for in-place EMF model transformations." Model Driven
Engineering Languages and Systems (2010): 121-135.

[5] Schaefer, M. and De Moor, O., 2010, October. Specifying and

implementing restructurings. In ACM Sigplan Notices (Vol. 45, No.

10, pp. 286-301). ACM.

[6] Moha, N., Mahé, V., Barais, O. and Jézéquel, J.M., 2009, October.

Generic model restructurings. In International Conference on Model
Driven Engineering Languages and Systems (pp. 628-643).

Springer Berlin Heidelberg.

[7] Shonle, M., Griswold, W.G. and Lerner, S., 2007, September.

Beyond restructuring: a framework for modular maintenance of
crosscutting design idioms. In Proceedings of the the 6th joint

meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software
engineering (pp. 175-184). ACM.

[8] S. Tichelaar, FAMIX Java language plug-in 1.0, Technical, Report,

University of Berne, September 1999.

[9] Raul Marticorena, “Analysis and Definition of a Language

Independent Restructuring Catalog”, 17th Conference on

Advanced Information SystemsEngineering (CAiSE 05). Portugal.,
page 8, jun 2005.

[10] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer.

“Enabling and using the UML for model driven restructuring”. 4th

International Workshop onObject-Oriented Reengineering
(WOOR), (Germany), July 21st, 2003.

[11] Technical Report 2003-07 of the University of Antwerp (Belgium),

Department of Mathematics & Computer Science, 2003.

[12] Tom Mens, Tom Tourwe,“A Survey of Software Restructuring”,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

30, NO. 2, FEBRUARY 2004

[13] 31Days of Restructuring, “Useful restructuring techniques you have

to know” October 2009Sean Chambers, Simone ChiarettaAnshu et

al., International Journal of Advanced Research in Computer

Science and Software Engineering 2 (12), December - 2012, pp.

256-260

Moses Kibet Yegon Ngetich is a Post graduate Student,
Department of Computing, Jomo Kenyatta University of
Agriculture and Technology (JKUAT)

Dr. Calvins Kimwele is a Lecturer in the Department of
Computing, Jomo Kenyatta University of Agriculture and
technology, JKUAT – Kitale Campus

Dr. Michael W. Kimwele is a Lecturer in the Department of
Computing, Jomo Kenyatta University of Agriculture and
technology (JKUAT). At present, he is the Associate Chairman,
Department of Information Technology, JKUAT-Nairobi Campus

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 3, May 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3252971 36

2019 International Journal of Computer Science Issues

