
Improve software effort estimation using information

entropy

Mohammad Javad Madari 1, Mehrnaz Niazi2*

Dept. Electrical and Computer Engineering, Pishtazan Institute of Higher Education

Shiraz, Iran

Abstract

Effort estimation is so important and determinative in

management and development of software projects. Most of the

approaches that have been proposed in software estimation are

suffered from low accuracy according to limitation of dataset's

samples. So, in this paper a hybrid method has been proposed in

order to increase the accuracy and decrease the time complexity.

In this way, a feature selection has been used before the main

methods to improve the accuracy and reduce feature space

complexity. Finally, hybrid method performances are promising

better result than other algorithms.

Keywords: Software Effort Estimation, Feature Selection,

Statistical Algorithms, Functional Algorithms

1. Introduction

Although many techniques have been used for software

effort estimation, none of them given an accurate

prediction, since there is not a sufficient data. prediction of

accurate effort estimation is a serious challenge in many

algorithms. So, project managers are looking for a proper

method to increase their prediction accuracy and reduce

their costs. As well reducing time can be one of the main

reasons for directing project managers to more precise

estimation[1]. As it mentioned before many algorithms

have been proposed in this way, which we can categorize

them into two main approaches. These approaches have

been categorized based on functional analysis and statistical

analysis. Constructive Cost Model (COCOMO) method is a

procedural software cost estimation model firstly developed

by Barry W. Boehm in 1970s[2]. This method used a

predefined formula to compute software effort estimation

and is good for quick, estimates of software costs, but its

accuracy is limited due to its lack of attributes. Referenced

to basic COCOMO, in 2000, COCOMO 𝛪𝛪 have been

developed[3]. This method claimed to be more accurate for

estimating software development projects according to take

more attributes into account which named cost driver.

Product attributes, Hardware attributes, Personnel attributes

are stated as samples of cost driver attributes. Despite all the

above mentioned, COCOMO families are not generalized

and limited to specific datasets. So, it cannot be useful for

any kind of dataset. In the other hand, many approaches

have been introduced for statistical analysis of software

effort estimation which can be used and trained for any kind

of datasets. So, this paper, concentrated on common

statistical methods for estimates of software costs, and try

to improve the precision. XGBoost, is one of the statistical

methods[4], which has been proposed by Tianqi Chen as a

research project. This method is very flexible and

comprehensive tool that can work through regression,

classification, ranking of problems as well as user-

generated performance[5]. Random forest is the other

statistical approach which have been firstly created by Tin

Kam Ho in 1995 and developed by Leo Breiman in 2001 [6]

and Adele Cutler in 2012[7], It is used as an ensemble

learning method for regression and classification, and

constructed with multiple decision trees. Deep learning is

another statistical method, which have been noted a lot

recently. In this method an architecture of deep neural

network has been defined and weight and bias of layers

have been trained based on train data, in order to predict the

software effort[8]. K nearest neighbors (KNN) is also used

as a regressor to estimate software effort; this method is a

simple algorithm that work based on a similarity measure of

data[9]. Another non-parametric algorithm named K-means

which can be used with different distance criterion and used

as a regressor to predict software effort[10][11]. In

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 17

2019 International Journal of Computer Science Issues

continue, a brief review of some basic concepts is given in

section2. In section3 our hybrid method has been proposed.

In the next section experimental results are discussed and

finally conclusion is given in the last section.

2. Basic concepts

In this part, we first introduce a feature selection method

named information entropy and review some common

statistical methods in the field of software cost estimation.

2.1. Feature selection method

Feature selection is a process of selecting a subset of

features that are more relevant in order to utilized in model

construction. These techniques are usually used in order to

reduce the feature space, simplification and enhancement.

In this part, a feature selection introduced to enhance the

results as well as feature space reduction.

2.1.1. Information entropy

Information entropy shows the average rate of information

is produced by a stochastic data. According to entropy

definition, if a data has lower probability value, it may have

more information and have better discriminatory power and

if it has higher probability it may carry out less

information[12][13]. So, information entropy can be used

as a feature selection in order to select more informative and

discriminative features and can be calculated as

equation(1):

𝐸 = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖

𝐼

 (1)

2.2. Statistical methods

2.2.1. XGBoost

The xgboost method was presented by Tiangi Chen and

Carlos Guestrin in 2016. XGBoost is an applied tree system

that proposed in order to gain better results in many

regression and classification machine learning challenges;

the two important factors in xgboost can be mentioned are:

Scalable learning system and Usage of statistical models. a

highly scalable tree boosting system have been designed

and a weighted quantile sketch has been used as a split

finding algorithm for efficient calculation, in approximate

tree learning and a novel sparsity-aware algorithm use for

parallel tree learning. Finally, these techniques have been

combined to make a system that scales to larger data with

the least number of clusters[4].

2.2.2. Random forest

Random forest was first introduced by Tin Kam Ho in

1995[14], and extended by Leo Breiman. The random forest

is an ensemble method and starts with a technique called a

decision tree. Ensembles are used to improve performance.

The main idea of ensemble methods is to construct strong

learner via a group of weak learners. The random forest

combining trees with the notion of an ensemble. So, the

trees are known as weak learners and the random forest is

known as a strong learner[15]. a random forest has been

shown in figure1.

Fig 1: shows a random forest

2.2.3. Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward

artificial neural network. MLP use a supervised learning

technique called backpropagation for training the network.

In this part, An MLP (Artificial Neural Network - ANN)

with a four hidden layer, ReLU activations functions to

eliminate vanishing during the network training and a

sigmoid activation function of output layer represented and

viewed as a logistic regression classifier[12][16]. a

multilayer perceptron with one hidden layer has been shown

in figure2.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 18

2019 International Journal of Computer Science Issues

Fig 2: shows multilayer perceptron with one hidden layer

2.2.4. Kmeans and hamming distance

k-means clustering aims to discriminate data into k clusters

in which each data belongs to the cluster with the nearest

mean. In this part, a kmeans clustering first used in order to

cluster train data into k cluster and labels of test data have

been defined, according to cluster centers[17][18]. Finally,

the hamming distance of test data with all data in the same

cluster have been calculated in order to predict software

effort estimation. a Kmeans regressor has been shown in

figure3.

Fig 3: shows the kmeans regressor with hamming distance

3. proposed method

In this paper a hybrid method has been proposed which have

been constructed from two terms; a feature selection and a

statistical regressors. Regarding to this, information

entropy, have been used in order to select efficient

features[16]. In the next step, three common statistical

regressor named, XGBoost, random forest, multilayer

perceptron and a kmeans with hamming distance regressor

have been applied on data with selected features. This

combination will be used, not only for reducing the feature

space but also for development of software effort estimation

accuracy. Our proposed method steps can be seen in figure

4.

Fig 4: shows proposed method steps.

4. Experimental results

In this paper, a famous dataset named NASA with 17

features used to evaluate our proposed method. Features of

NASA dataset have been introduced in table 1.

Table 1: shows features of NASA dataset.

 Feature description

1 ACAP analyst’s capability

2 PCAP programmer’s capability

3 AEXP application experience

4 MODP Modern programing practices

5 TOOL use of software tools

6 VEXP virtual machine experience

7 LEXP language experience

8 SCED schedule constraint

9 STOR main memory constraint

10 DATA data base size

11 TIME time constraint for CPU

12 TURN Turnaround time

13 VIRT machine volatility

14 CPLX process complexity

15 RELY Required software reliability

16 LOC line of code

17 ACTUAL EFFORT actual effort

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 19

2019 International Journal of Computer Science Issues

The standard numeric values of the effort multipliers are

mention in table 2.

Table 2: shows numeric values of the effort multipliers.
Features Very

low

Low nominal high Very

high

Extra

high

Productivity

range

 CAP 1.46 1.19 1.00 0.86 0.71 2.06

PCAP 1.42 1.17 1.00 0.86 0.70 1.67

AEXP 1.29 1.13 1.00 0.91 0.82 1.57

MODP 1.24 1.10 1.00 0.91 0.82 1.34

TOOL 1.24 1.10 1.00 0.91 0.83 1.49

VEXP 1.21 1.10 1.00 0.90 1.34

 LEXP 1.14 1.07 1.00 0.95 1.20

SCED 1.23 1.08 1.00 1.04 1.10

STOR 1.00 1.06 1.21 1.56 -1.21

DATA 0.94 1.00 1.08 1.16 -1.23

TIME 1.00 1.11 1.30 1.66 -1.3

TURN 0.87 1.00 1.07 1.15 -1.32

VIRT 0.87 1.00 1.15 1.30 -1.49

CPLX 0.70 0.85 1.00 1.15 1.30 1.65 -1.86

RELY 0.75 0.88 1.00 1.15 .40 -1.87

The dataset is split into two subsets; a training set and a test

set. The training set is used for learning; whereas the test set

is used for evaluating the accuracy. In this paper, 80% of

data are utilized as training and 20% are used as test data.

In the first term, a feature selection named information

entropy has been used in order to select efficient features.

Information entropy is utilized to distinguish fewer

effective features. As it mentioned before, the features with

high entropy has less information and we can omit features

with less information. Figure 5 and table 3 shows the

entropy of 17 features.

Fig 5: shows information entropy of 17 features.

Table 3: shows information entropy of 17 features.

Feature Information Entropy

RELY 4.21512527

DATA 4.21693215

CPLX 4.21696076

TIME 4.21436961

STOR 4.21600725

VIRT 4.21683985

TURN 4.21581462

ACAP 4.21416743

AEXP 4.21734166

PCAP 4.21357886

VEXP 4.21765916

LEXP 4.21874782

MODP 4.21491033

TOOL 4.21538129

SCED 4.21885059

LOC 3.47037274

As it is obvious, two features of LEXP, SCED have the most

values of entropy and so the less information. Considering

the result of information entropy, we omit two features

named LEXP, SCED. In the next step, four regressors

named Xgboost, random forest, multilayer and kmeans with

hamming distance have been applied on data with the

selected features. finally, the hybrid methods have been

utilized on test data to evaluate the results. In order to have

more reliable results, the results have been extracted from

the average of five iteration with different test data and all

data used at least one time as a test data. The result of these

method without feature selection and the results after

feature selection have been compared with mean magnitude

of the relative error (MMRE), which is the percentage of the

absolute values of the relative errors, averaged over the T

items in the test data and calculated as mentioned in

equation (2)-(4):

4.21512527

4.21693215

4.21696076

4.21436961

4.21600725

4.21683985

4.21581462

4.21416743

4.21734166

4.21357886

4.21765916

4.21874782

4.21491033

4.21538129

4.21885059

3.47037274

0 1 2 3 4 5

RELY

DATA

CPLX

TIME

STOR

VIRT

TURN

ACAP

AEXP

PCAP

VEXP

LEXP

MODP

TOOL

SCED

LOC

Information Entropy

Fe
at

u
re

s

Information Entropy Bar Chart

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 20

2019 International Journal of Computer Science Issues

𝑅𝐸. 𝑖 =
(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙. 𝑖)

𝑎𝑐𝑡𝑢𝑎𝑙. 𝑖
 (2)

𝑀𝑅𝐸. 𝑖 = 𝑎𝑏𝑠(𝑅𝐸. 𝑖) (3)

𝑀𝑀𝑅𝐸. 𝑖 =
100

𝑇 ∗ (𝑀𝑅𝐸. 1 + 𝑀𝑅𝐸. 2 + ⋯ . 𝑀𝑅𝐸. 𝑇)
 (4)

Result of MMRE of four methods have been indicated in

table 4. For better comparison the results have been

presented in bar chart in figure 6.

Table 4: shows the result of MMRE on RF, MLP and kmeans without

feature selection in the second column and the result of these three

algorithms after feature selection in third column.

algorithms All features Selected features

XGBoost 79.22 71.66

Random Forest 54.8 52.83

MLP 98.21 78.41

Kmeans 75.13 71.98

Fig 6: shows the result of regressors with all features and with selected

features.

as it has been shown in table 4 and figure 6, the MMRE of

all the algorithms have decrease and multilayer perceptron

has the most improvement and random forest has the best

and the less MMRE after using the information entropy as

a feature selection.

5. Conclusion

In this paper, a hybrid method proposed with a feature

selection algorithm, and two features named, LEXP, SCED

have been removed according to the result of information

entropy. Finally, the four regressor named Xgboost, random

forest, multilayer perceptron and Kmeans with hamming

distance is applied on data with selected features. regarding

to this the feature space and the MMRE of the methods have

been decrease.

References

[1] A. Idri, A. Zakrani, and A. Zahi, “Design

of Radial Basis Function Neural Networks

for Software Effort Estimation,” IJCSI Int.

J. Comput. Sci. Issues, vol. 7, no. 4, pp. 11–

17, 2010.

[2] S. Chulani and B. Boehm, “Software

engineering economics,” in Software

Management, Seventh Edition, Prentice-

Hall, 2007, pp. 203–225.

[3] and B. S. Barry Boehm, Chris Abts, A.

Winsor Brown, Sunita Chulani, Bradford

K. Clark, Ellis Horowitz, Ray Madachy,

Donald J. Reifer, “Software Cost

Estimation with Cocomo {II},” Englewood

Cliffs, NJ:Prentice-Hall, p. 502, 2000.

[4] C. G. Tianqi Chen, “XGBoost: A Scalable

Tree Boosting System,” in Proceeding

KDD ’16 Proceedings of the 22nd ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining,

2016, no. 8, pp. 785–794.

[5] S. M. Satapathy, B. P. Acharya, and S. K.

Rath, “Class point approach for software

effort estimation using stochastic gradient

boosting technique,” ACM SIGSOFT

Softw. Eng. Notes, vol. 39, no. 3, pp. 1–6,

Jun. 2014.

[6] L. Breiman, “Random Forests,” Mach.

Learn., vol. 45, no. 1, pp. 5–32, 2001.

[7] A. Cutler and D. R. Cutler, Ensemble

machine learning, no. January. Springer,

Boston, MA, 2012.

[8] A. Marblestone, G. Wayne, and K.

Kording, “Towards an integration of deep

learning and neuroscience,” Front.

Comput. Neurosci., vol. 10, p. 94, Sep.

2016.

0

50

100

XGBoost Random
Forest

KERAS Kmeans

M
M

R
E

MMRE BAR CHART

with all features with selected features

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 21

2019 International Journal of Computer Science Issues

[9] Y. Song, J. Liang, J. Lu, and X. Zhao, “An

efficient instance selection algorithm for k

nearest neighbor regression,”

Neurocomputing, vol. 251, pp. 26–34,

Aug. 2017.

[10] G. Hamerly and C. Elkan, “Alternatives to

the k-means algorithm that find better

clusterings,” in Proceedings of the eleventh

international conference on Information

and knowledge management - CIKM ’02,

2002, p. 600.

[11] D. S. Brian S. Everitt, Sabine Landau,

Morven Leese, Cluster analysis. Wiley,

2011.

[12] R. de A. Araújo, A. L. I. Oliveira, and S.

Meira, “A class of hybrid multilayer

perceptrons for software development

effort estimation problems,” Expert Syst.

Appl., vol. 90, pp. 1–12, Dec. 2017.

[13] C. Largeron et al., “Entropy based feature

selection for text categorization To cite this

version : HAL Id : hal-00617969 Entropy

based feature selection for text

categorization,” in ACM Symposium on

Applied Computing, 2011, pp. 924–928.

[14] Tin Kam Ho, “Random decision forests,”

in Proceedings of 3rd International

Conference on Document Analysis and

Recognition, 1995, vol. 1, pp. 278–282.

[15] J. Moeyersoms, E. Junqué De Fortuny, K.

Dejaeger, B. Baesens, and D. Martens,

“Comprehensible software fault and effort

prediction: A data mining approach,” J.

Syst. Softw., vol. 100, pp. 80–90, Feb.

2015.

[16] P. Rijwani and S. Jain, “Enhanced

Software Effort Estimation Using Multi

Layered Feed Forward Artificial Neural

Network Technique,” in Procedia

Computer Science, 2016, vol. 89, pp. 307–

312.

[17] A. K. Jain, “Data clustering: 50 years

beyond K-means,” Pattern Recognit. Lett.,

vol. 31, no. 8, pp. 651–666, Jun. 2010.

[18] G. Hamerly and C. Elkan, “Alternatives to

the k-means algorithm that find better

clusterings,” in Proceedings of the eleventh

international conference on Information

and knowledge management - CIKM ’02,

2002, p. 600.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234115 22

2019 International Journal of Computer Science Issues

