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Abstract 

Effort estimation is so important and determinative in 

management and development of software projects. Most of the 

approaches that have been proposed in software estimation are 

suffered from low accuracy according to limitation of dataset's 

samples. So, in this paper a hybrid method has been proposed in 

order to increase the accuracy and decrease the time complexity. 

In this way, a feature selection has been used before the main 

methods to improve the accuracy and reduce feature space 

complexity. Finally, hybrid method performances are promising 

better result than other algorithms. 
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1. Introduction 

Although many techniques have been used for software 

effort estimation, none of them given an accurate 

prediction, since there is not a sufficient data. prediction of 

accurate effort estimation is a serious challenge in many 

algorithms. So, project managers are looking for a proper 

method to increase their prediction accuracy and reduce 

their costs. As well reducing time can be one of the main 

reasons for directing project managers to more precise 

estimation[1]. As it mentioned before many algorithms 

have been proposed in this way, which we can categorize 

them into two main approaches. These approaches have 

been categorized based on functional analysis and statistical 

analysis. Constructive Cost Model (COCOMO) method is a 

procedural software cost estimation model firstly developed 

by Barry W. Boehm in 1970s[2]. This method used a 

predefined formula to compute software effort estimation 

and is good for quick, estimates of software costs, but its 

accuracy is limited due to its lack of attributes. Referenced 

to basic COCOMO, in 2000, COCOMO 𝛪𝛪  have been 

developed[3]. This method claimed to be more accurate for 

estimating software development projects according to take 

more attributes into account which named cost driver. 

Product attributes, Hardware attributes, Personnel attributes 

are stated as samples of cost driver attributes. Despite all the 

above mentioned, COCOMO families are not generalized 

and limited to specific datasets. So, it cannot be useful for 

any kind of dataset. In the other hand, many approaches 

have been introduced for statistical analysis of software 

effort estimation which can be used and trained for any kind 

of datasets. So, this paper, concentrated on common 

statistical methods for estimates of software costs, and try 

to improve the precision. XGBoost, is one of the statistical 

methods[4], which has been proposed by Tianqi Chen as a 

research project. This method is very flexible and 

comprehensive tool that can work through regression, 

classification, ranking of problems as well as user-

generated performance[5]. Random forest is the other 

statistical approach which have been firstly created by Tin 

Kam Ho in 1995 and developed by Leo Breiman in 2001 [6] 

and Adele Cutler in 2012[7], It is used as an ensemble 

learning method for regression and classification, and 

constructed with multiple decision trees. Deep learning is 

another statistical method, which have been noted a lot 

recently. In this method an architecture of deep neural 

network has been defined and weight and bias of layers 

have been trained based on train data, in order to predict the 

software effort[8]. K nearest neighbors (KNN) is also used 

as a regressor to estimate software effort; this method is a 

simple algorithm that work based on a similarity measure of 

data[9]. Another non-parametric algorithm named K-means 

which can be used with different distance criterion and used 

as a regressor to predict software effort[10][11]. In 
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continue, a brief review of some basic concepts is given in 

section2. In section3 our hybrid method has been proposed. 

In the next section experimental results are discussed and 

finally conclusion is given in the last section.  

 

2. Basic concepts 

In this part, we first introduce a feature selection method 

named information entropy and review some common 

statistical methods in the field of software cost estimation. 

 

2.1.  Feature selection method 

Feature selection is a process of selecting a subset of 

features that are more relevant in order to utilized in model 

construction. These techniques are usually used in order to 

reduce the feature space, simplification and enhancement. 

In this part, a feature selection introduced to enhance the 

results as well as feature space reduction. 

 

2.1.1. Information entropy 

Information entropy shows the average rate of information 

is produced by a stochastic data. According to entropy 

definition, if a data has lower probability value, it may have 

more information and have better discriminatory power and 

if it has higher probability it may carry out less 

information[12][13].  So, information entropy can be used 

as a feature selection in order to select more informative and 

discriminative features and can be calculated as 

equation(1): 

 

𝐸 = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖

𝐼

                                                                  (1) 

 
2.2.   Statistical methods  

 

2.2.1. XGBoost 

The xgboost method was presented by Tiangi Chen and 

Carlos Guestrin in 2016. XGBoost is an applied tree system 

that proposed in order to gain better results in many 

regression and classification machine learning challenges; 

the two important factors in xgboost can be mentioned are: 

Scalable learning system and Usage of statistical models. a 

highly scalable tree boosting system have been designed 

and a weighted quantile sketch has been used as a split 

finding algorithm for efficient calculation, in approximate 

tree learning and a novel sparsity-aware algorithm use for 

parallel tree learning. Finally, these techniques have been 

combined to make a system that scales to larger data with 

the least number of clusters[4]. 

  

2.2.2.  Random forest  

Random forest was first introduced by Tin Kam Ho in 

1995[14], and extended by Leo Breiman. The random forest 

is an ensemble method and starts with a technique called a 

decision tree. Ensembles are used to improve performance. 

The main idea of ensemble methods is to construct strong 

learner via a group of weak learners. The random forest 

combining trees with the notion of an ensemble. So, the 

trees are known as weak learners and the random forest is 

known as a strong learner[15]. a random forest has been 

shown in figure1.  

 

 
Fig 1: shows a random forest 

 

2.2.3. Multilayer Perceptron 

A multilayer perceptron (MLP) is a class of feedforward 

artificial neural network. MLP use a supervised learning 

technique called backpropagation for training the network. 

In this part, An MLP (Artificial Neural Network - ANN) 

with a four hidden layer, ReLU activations functions to 

eliminate vanishing during the network training and a 

sigmoid activation function of output layer represented and 

viewed as a logistic regression classifier[12][16]. a 

multilayer perceptron with one hidden layer has been shown 

in figure2. 
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Fig 2: shows multilayer perceptron with one hidden layer 

 

2.2.4. Kmeans and hamming distance 

k-means clustering aims to discriminate data into k clusters 

in which each data belongs to the cluster with the nearest 

mean. In this part, a kmeans clustering first used in order to 

cluster train data into k cluster and labels of test data have 

been defined, according to cluster centers[17][18]. Finally, 

the hamming distance of test data with all data in the same 

cluster have been calculated in order to predict software 

effort estimation. a Kmeans regressor has been shown in 

figure3. 

 

 

Fig 3: shows the kmeans regressor with hamming distance 

3. proposed method 

In this paper a hybrid method has been proposed which have 

been constructed from two terms; a feature selection and a 

statistical regressors. Regarding to this, information 

entropy, have been used in order to select efficient 

features[16]. In the next step, three common statistical 

regressor named, XGBoost, random forest, multilayer 

perceptron and a kmeans with hamming distance regressor 

have been applied on data with selected features. This 

combination will be used, not only for reducing the feature 

space but also for development of software effort estimation 

accuracy. Our proposed method steps can be seen in figure 

4. 

 

 
Fig 4: shows proposed method steps. 

 

4. Experimental results 

In this paper, a famous dataset named NASA with 17 

features used to evaluate our proposed method. Features of 

NASA dataset have been introduced in table 1. 

 

Table 1: shows features of NASA dataset. 

 Feature description 

1 ACAP   analyst’s capability 

2 PCAP programmer’s capability 

3 AEXP application experience 

4 MODP   Modern programing practices 

5 TOOL use of software tools 

6 VEXP   virtual machine experience 

7 LEXP   language experience 

8 SCED   schedule constraint 

9 STOR main memory constraint 

10 DATA   data base size 

11 TIME   time constraint for CPU 

12 TURN   Turnaround time 

13 VIRT   machine volatility 

14 CPLX   process complexity 

15 RELY   Required software reliability 

16 LOC line of code 

17 ACTUAL EFFORT actual effort 
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The standard numeric values of the effort multipliers are 

mention in table 2. 

 

Table 2: shows numeric values of the effort multipliers. 
Features Very 

low 

Low nominal high Very 

high 

Extra 

high 

Productivity 

range 

  CAP 1.46    1.19    1.00    0.86    0.71     2.06 

PCAP 1.42  1.17    1.00    0.86    0.70   1.67 

AEXP    1.29    1.13    1.00    0.91    0.82     1.57 

MODP    1.24   1.10  1.00  0.91  0.82   1.34 

TOOL    1.24  1.10  1.00  0.91  0.83   1.49 

VEXP    1.21  1.10  1.00  0.90      1.34 

 LEXP    1.14  1.07  1.00  0.95      1.20 

SCED    1.23  1.08  1.00  1.04  1.10      

STOR                    1.00    1.06    1.21    1.56 -1.21 

DATA         0.94  1.00  1.08  1.16  -1.23 

TIME            1.00    1.11    1.30    1.66 -1.3 

TURN            0.87    1.00    1.07    1.15     -1.32 

VIRT            0.87    1.00    1.15    1.30     -1.49 

CPLX    0.70  0.85  1.00  1.15  1.30  1.65 -1.86 

RELY    0.75 0.88  1.00   1.15   .40  -1.87 

 

The dataset is split into two subsets; a training set and a test 

set. The training set is used for learning; whereas the test set 

is used for evaluating the accuracy. In this paper, 80% of 

data are utilized as training and 20% are used as test data. 

In the first term, a feature selection named information 

entropy has been used in order to select efficient features. 

Information entropy is utilized to distinguish fewer 

effective features. As it mentioned before, the features with 

high entropy has less information and we can omit features 

with less information. Figure 5 and table 3 shows the 

entropy of 17 features. 

 

 
Fig 5: shows information entropy of 17 features. 

 

 

 

Table 3: shows information entropy of 17 features. 

Feature Information Entropy 

RELY 4.21512527 

DATA 4.21693215 

CPLX 4.21696076 

TIME 4.21436961 

STOR 4.21600725 

VIRT 4.21683985 

TURN 4.21581462 

ACAP 4.21416743 

AEXP 4.21734166 

PCAP 4.21357886 

VEXP 4.21765916 

LEXP 4.21874782 

MODP 4.21491033 

TOOL 4.21538129 

SCED 4.21885059 

LOC 3.47037274 

 

As it is obvious, two features of LEXP, SCED have the most 

values of entropy and so the less information. Considering 

the result of information entropy, we omit two features 

named LEXP, SCED. In the next step, four regressors 

named Xgboost, random forest, multilayer and kmeans with 

hamming distance have been applied on data with the 

selected features. finally, the hybrid methods have been 

utilized on test data to evaluate the results. In order to have 

more reliable results, the results have been extracted from 

the average of five iteration with different test data and all 

data used at least one time as a test data. The result of these 

method without feature selection and the results after 

feature selection have been compared with mean magnitude 

of the relative error (MMRE), which is the percentage of the 

absolute values of the relative errors, averaged over the T 

items in the test data and calculated as mentioned in 

equation (2)-(4): 
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𝑅𝐸. 𝑖 =
(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙. 𝑖)

𝑎𝑐𝑡𝑢𝑎𝑙. 𝑖
                                      (2) 

𝑀𝑅𝐸. 𝑖 = 𝑎𝑏𝑠(𝑅𝐸. 𝑖)                                                              (3) 

𝑀𝑀𝑅𝐸. 𝑖 =
100

𝑇 ∗ (𝑀𝑅𝐸. 1 + 𝑀𝑅𝐸. 2 + ⋯ . 𝑀𝑅𝐸. 𝑇)
       (4) 

 

Result of MMRE of four methods have been indicated in 

table 4. For better comparison the results have been 

presented in bar chart in figure 6. 

 

Table 4: shows the result of MMRE on RF, MLP and kmeans without 

feature selection in the second column and the result of these three 

algorithms after feature selection in third column. 

algorithms All features Selected features 

XGBoost 79.22 71.66 

Random Forest 54.8 52.83 

MLP 98.21 78.41 

Kmeans 75.13 71.98 

 

 
Fig 6: shows the result of regressors with all features and with selected 

features. 

 

as it has been shown in table 4 and figure 6, the MMRE of 

all the algorithms have decrease and multilayer perceptron 

has the most improvement and random forest has the best 

and the less MMRE after using the information entropy as 

a feature selection. 

 

5. Conclusion 

In this paper, a hybrid method proposed with a feature 

selection algorithm, and two features named, LEXP, SCED 

have been removed according to the result of information 

entropy. Finally, the four regressor named Xgboost, random 

forest, multilayer perceptron and Kmeans with hamming 

distance is applied on data with selected features. regarding 

to this the feature space and the MMRE of the methods have 

been decrease.  
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