
Behavior-Driven Development as an Error-Reduction Practice

for Mobile Application Testing

Zulfiqar Ali1

 1Institute of Software Technology, Graz University of Technology,

Graz, 8010, Austria

Abstract
With the rapid development of mobile technology, there is a

significant increase of mobile’s impact in our daily life. This

brings new business requirements and demands in mobile

application testing, introduces new issues, and challenges in their

automation. We introduce the Behaviour-Driven Development

methodology for developing the Catrobat project. With

Behaviour-Driven Development base tool (Cucumber), we

develop executable feature files to express business requirements,

which can be read and understood by the whole team. The

purpose of this study is to present the critical issues and

challenges of Catrobat. In particular, we test the broadcast

mechanism for right-to-left languages from different angles and

track regression errors as well as specify and diagnose

localization issues. The results show that the proposed approach

is able to expose the application deficiencies in the Catrobat

script mechanism, ensures that the app meets bi-directional

requirements, and guarantees that the app is more reliable and

better documented.

Keywords: Behavior-driven development, testing, Cucumber,

Localization, Visual programing language, Catrobat.

1. Introduction

Currently, the software development process should ensure

system availability, functionality, and cost reduction. It is

also expected to contribute to business goals. According to

the World Quality Report 2018, the importance of ensuring

end-user satisfaction is a key objective of the quality

assurance and testing strategy. This survey also reveals that

the digital transformation creates higher demands on

quality assurance and testing approaches, and that a large

proportion of enterprises have some serious challenges.

While doing this survey, when the mobile testers were

asked the possible challenges and testing their applications,

they responded differently. 52% of the respondents pointed

that they did not have enough time to test an issue,

followed by 43% who said that we do not have the right

tools to test. 28%, among them, believed that they do not

have in-house testing environment while 34% said that we

do not have the right testing practice [1].

Mobile applications are mostly prone to errors because of

the developer’s unfamiliarity with mobile platforms.

However, the increasing complexity of mobile applications

can arise many challenges in the testing process in order to

make sure the app will operate and meet the end user’s

expectations. Smartphones are becoming common; this

exposes the necessity for effective techniques for testing

their applications. Mobile application testing plays a vital

role in making mobile applications more reliable and bug-

free [2, 3].

In this advance era, the speed of delivering mobile

applications to IT companies is a key challenge. However,

in the past, a project ran over several years and the phases

of a project would have been measured in months.

Contrarily, currently, the projects have to be delivered over

a minimum number of months and the project development

phases are set for weeks or even days. Therefore, in this

rapidity of changes, documenting the functionality is

becoming a challenge and under these circumstances,

testing the mobile applications takes place on two points:

first the right development of the product, and second the

development of the right product [4].

Mobile apps developed to address more and more critical

areas, which is not only complex to develop, but also

difficult to test and validate. The difficulty, diversity, and

functional richness of smartphone apps are increasing and

the demand for mobile apps is offering even more

complex, rich, and usable functionalities, which are going

to grow more and more in the coming future. Unluckily,

the quality of smartphone apps is often poor just because

of the very fast growth and development processes in

which testing activity is ignored [5]. Moreover, the

Android market fragment is large, as well as the several

sets of scenarios in which a mobile application can be used

and makes the testing of a new application more costly,

time-consuming and a complex task [3].

In addition, the localization of mobile applications is still

infrequent because of the shortage of research. There are

many applications in the market and, at the same time,

companies are not willing to pay attention and not enough

consideration for the future expansion of the products. The

fixing of internationalization bugs cost around 30 times

more than handling these bugs up-front [6]. The quality of

localizing app for right-to-left (RTL) languages is often

still inadequate and cannot be compared with the standards

and quality of other localized products. Even software

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 1

2019 International Journal of Computer Science Issues

companies like Microsoft and IBM still find it challenging

to achieve a sufficient quality level. The RTL languages

use non-Latin based alphabets. The glyph type of character

in the Arabic language depends on the position of the

character within a word because the letters are connected

to each other [7].

Currently, the software community has focused on

technical practices for high quality and to build the product

right. Therefore, it is equally important to build the right

product. However, it needs a different technique like

specification (Behavior Based Testing and Black Box

Testing). The specification-based tool is very helpful,

which supports the development process and solves many

problems outright. The precise specification helps to

reduce extra work initiated by ambiguities and provide

many advantages for the overall progress automatically.

However, mobile applications quality is a must and

therefore their testing is essential. Meanwhile, the adoption

of agile software development has been growing. The

percentage of teams using agile base practices in their

organizations is 52% [2, 8]. Agile practice is suitable for

the mobile application development process. Many studies

have shown that agile practices are the best choice that

assures different phases of software development life cycle

and solve the mobile app development issues more

efficiently [8].

Test-Driven Development (TDD) is a short development-

cycle approach that depends on the agile practices for

writing automated tests before writing functional code [9].

Like TDD, Acceptance-Test Driven Development (ATDD)

also involves creating tests before coding, and these tests

represent the expected behavior of the software. Behavior-

Driven Development (BDD) is a combination and

enhancement of practices stemming from TDD and ATDD.

BDD focuses on the behavioral aspect while the TDD

focuses on the implementation aspect. Additionally, BDD

is usually done in a very English-like language to help the

domain experts to understand the implementation rather

than exposing the code level tests. BDD encourages

bridging the gap between the problem and the solution

domain, providing a better understanding between both the

development team and business stakeholders [10].

Meantime, a free open-source, the Catrobat 1 visual

programing language (CVPL) provides an easy

opportunity for the young children to build their own

animations and games without any programming

awareness and encourage them to generate and share their

own mobile apps. The teenagers can simply learn how to

program without having to think about the drawbacks like

compile-time errors or complicated workflows. Motivated

and inspired by Scratch2, the Catrobat project also defines

1https://www.catrobat.org/
2http://scratch.mit.edu/

visual blocks, which can be snapped together in order to

form a single program. Like Scratch programming, the

Catrobat base programs can be generated and implemented

entirely by using mobile devices [11, 12].

In this paper, the practices of BDD methodology are

employed to solve the recurrent testing issues and improve

the quality of the Catrobat project. We describe how the

proposed executable specifications can test the issues of

Catrobat elements (i.e. bricks). Furthermore, we

summarize the challenging aspects of the RTL languages,

which are facing by the Catrobat developers. With the help

of Cucumber, we automate concrete examples and build

executable specifications to evaluate the broadcast

mechanism, specifically for RTL languages.

2. Agile-based Methodologies

This section provides an overview of agile-based

methodologies practices. The agile practice focuses and

requires less planning, and divides the task into small

increments. In this practice, the customer satisfaction is of

higher priority with an effort of faster development

teamwork with mutual understanding of stakeholders.

2.1 Test-Driven Development

TDD (see Fig 1) is an agile based technique that

incrementally develops software apps. On the other hand, a

number of ongoing studies on the capability of TDD

identify the software app bugs earlier in the software

development practice. In this practice, the software

developer writes unit tests from end-user requirements

before writing the code itself. Afterwards, the software

developer implements the program code needed to pass the

tests. During the developing process, when a fault is

detected, it is punctually fixed accordingly. As soon as the

tests are passed, the software developer implements the

refactoring by rereading that what already has been

completed to improve the code and design. In TDD

lifecycle, while the tests are passed, the code for new

functionalities can easily be accepted for the old applied

ones, which is called regression errors. Similarly, to

recognize the possible regression errors/faults in the

developing process, the software developer when

implemented functionalities, implements regression tests

before proceeding to implement new functionalities in the

software [13, 14].

2.2 Acceptance-Test Driven Development

ATDD is also an agile based practice, which is deeply

interconnected to BDD practice, and both are derived from

test-driven development, acceptance tests and unit test

from user stories. The ATDD process drives on the

specification level in the same way like TDD in code level

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 2

2019 International Journal of Computer Science Issues

https://www.catrobat.org/
http://scratch.mit.edu/

with unit tests. The acceptance testing performs as

specifications for the required behavior and functionality

of a software development process. So, when the desires

and requirements are expressed by natural language base

example, rather than by complex formulas, code or

ambiguous descriptions, the required acceptance tests case

are expressed with actual examples are easier to read,

understand, validate, and write. However, in ATDD an

end-user requirement is converted into a set of executable

scenario tests for practical implementation, which is

legalized against the TDD practice for writing automated

unit tests for low-level program creations based on simple

user stories [15]. Therefore, in ATDD, the software team

creates one or more acceptance tests for the required

specification before their implementation. ATDD practice

changes the purpose of testing by creating concrete

examples of business base rules for clarifying and

documenting requirements [10].

2.3 Behavior-Driven Development

The BDD is a software development practice based on an

agile methodology as well as the advanced form of TDD

and ATDD originally developed by Dan North [16]. It

provides a common ubiquitous (pure natural language)

language to facilitate the communication between the

development team and the business stakeholders for better

understanding [17]. The key objective of this practice is to

build the executable specification of a system. In addition,

it always trusts on ATDD and its scenarios are clearly

written in plain language, which is easily understandable

by the whole team. All the scenarios are easier to maintain

and reflect the end-user perspective as well as improves the

documentation of the system [16].

Fig 1, shows the principles and practices of the two

methodologies. Practically, BDD suggests an outside-in

approach, which is starting with an acceptance test to begin

writing scenarios and work through the model. This

approach helps us to effectively implement our feature

earlier, and make the right design based on it. When we

start with a new feature file, before we write it, we make

sure to analyze and understand the problem. At this point,

we need to know how the user interface allows a user to do

a job and do not worry about the implementation of

scenario steps.

The BDD uses the red-green-refactor cycle with Cucumber

tool to make sure that the step-definition steps are assigned

and the actions respond correctly. Next, to run the

scenario, initially it should fail. Therefore, we need to

write a step-definition for the first failing or pending steps.

Once the first scenario step passes, the tester should move

onto the next one and follow the same steps, and then the

entire scenarios have to be implemented accordingly.

Thus, the scenario passes along with all the underlying

specifications. If something goes wrong, the tester

refactors further.

Fig. 1 TDD and BDD Process.

3. The Automation Test Tools

Cucumber is an open source tool used for BDD test

automation. It is specifically built for textual specification

and its implementation. Cucumber executes specification,

which is written in natural language called features.

Feature and scenario are written by the business analyst,

developer, and tester [18]. The experts use Cucumber to

generate and run user acceptance tests in three steps. First,

the product stakeholders i.e., business analysts, developers,

and testers work together to write Cucumber feature files.

A feature file usually contains a list of scenarios and every

scenario consists of steps as shown below (See Fig 2):

● Given steps: declare the system as in a known state.

● When steps: show the users actions.

● Then steps: verify the system outputs after the user

actions.

● And steps: connect multiple Given, When, and Then

steps to make the reading of written steps is more

fluent.

In the second step, the testers write test codes for every

step in the test scenarios using the Cucumber mapping

mechanism, called step-definitions. Finally, in the third

step, testers run the scenarios and get test reports using

Cucumber tool in a continuous integration environment.

[19]. Usually, all the stakeholders manually write BDD test

scenarios that describe system behaviors of a system under

test. Testers write an implementation for the BDD

scenarios by hand and execute the Cucumber tests.

Cucumber provides transparency about what test scenarios

are covered and how the test scenarios are mapped. Then

testers write Cucumber mappings for the generated

scenarios [19, 20].

Cucumber test results are more sophisticated than a simple

test case. A scenario that has been executed can end up in

any of the following states. These states are designed to

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 3

2019 International Journal of Computer Science Issues

indicate the progress as you make your tests. Undefined,

Pending, Failed or Passed [18]. For test implementation,

we picked Espresso and Robotium as a testing framework,

but cucumber is not dependent on any specific testing

framework. This means you can work both of them and

with other libraries (See Table 1).

Fig. 2 Cucumber concept & work flow in Catroid.

Espresso: The Espresso testing framework was launched

by Google. It provides testing support library for the

Android platform. It supports APIs to write User Interface

(UI) testing. The purpose of this framework is to simulate

user interactions within a target application as well as it

can be executed in an emulator or a real mobile device.

The Espresso framework is implemented on Android

Instrumentation framework. It is a small API and is fairly a

simple automation tool. It synchronizes with UI thread

and hence this makes it more reliable and fast.

Furthermore, the framework does not require any type of

sleeping methods [21].

Robotium: The Android-based Robotium is an open

source framework. It is developed to facilitate and enable

automated testing for software development. It also

supports the building of acceptance test scenarios for test

cases using GUI components in both emulators and mobile

device [22]. There are plenty of easy to use methods that

extend the Junit that can be used for Android testing. The

black-box test cases that are executed are effective and

robust. The community has good support and there are

intermediate releases for this automation tool. The

functions, system, and acceptance test scenarios can be

written with the availability of the source code [21].

Table 1: BDD based tool

Platform Cucumber Robotium Espresso

Android Yes Yes Yes

License Open source Open source Open source

Gherkin:- Gherkin is a business readable and domain

specific language that Cucumber understands. It is a

programming language, specific for the test cases for

Cucumber [18]. It does not have a very complex and

detailed syntax. The syntax is available in 60 languages,

including right-to-left languages in which few keywords

are required to use Gherkin as a language. When we run

the Gherkin scripts in cucumber, it generates a report

based on the keywords. After that, the related information

is sent to the mobile test generator for execution [20, 4].

Gherkin files use the .feature file extension and is saved as

plain text, and their stories usually have a little, narrative,

and a number of scenarios [20]. A story written in Gherkin

has a very well defined, but easily readable structure,

called Feature. In the Background section, feature file

allows to specify steps, which is common to every scenario

in the Feature file instead of having to repeat the same

steps. Each feature contains several scenarios, and every

single scenario is a single concrete example and every

scenario consists of one or more steps (see Fig 3) [16].

Fig. 3 BDD base Given-When-Then Pattern.

Step-definition is the part where the natural language is

converted into the actual working code based on the

mapping of the constructs of the natural language. A

specific regular expression is used to determine the code,

which is to be executed on reading the sentence [20]. With

the help of Java code, you can write step-definitions for the

rest of the lines. The step definitions are written with Java

annotations for methods and those methods implement

tests. When step definitions are created, testers use

annotations to specify the feature files to execute in a test.

Then Cucumber will look for the step-definitions, execute

the test scenarios, and generate test reports [19]. Glue (See

Fig 2) is the path to step-definitions format and for report

outputs. Features is the path to the Cucumber feature files

through which we write “.feature” files under our test

project's assets folder. Additionally, we also write our step-

definitions Java files under the package name specified in

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 4

2019 International Journal of Computer Science Issues

https://developer.android.com/training/testing/espresso/index.html

glue. Cucumber test can be implemented and broken down

into three easy steps i.e., first one is to write feature

scenarios, the second one is to write its step-definitions,

and the third one is to write the actual test implementation.

4. Visual Programming Language: Catrobat

Catrobat project concept is derived and inspired from the

Scratch programming system, which is specific for desktop

computers. The Catrobat is a free and open source project,

particularly for smartphones. With the help of Catrobat

programming language, school children can intuitively

create their own apps, games and animations in a very

simple way on mobile phones and tablets. Similarly, the

notion of bricks used are an atomic element to represent

specific statement of the Catrobat programming language.

There are control flow bricks for structured programming,

but also more specialized bricks, which directly adjust a

graphical object on the screen. Although it is implemented

in a different programming language and with a different

architecture, Catrobat also maintains the principal visual

language concepts and program composition from Scratch.

A program contains one or more objects and possibly a set

of global variables. An object can possess local variables

and typically also has two sets of specialized attributes,

namely looks (images) and sounds (audio files), for the

audiovisual animations. Most importantly, an object

contains a list of scripts. The script is the code portion of a

Catrobat program and contains the list of bricks, which in

turn incorporates the logic of the entire program. Scripts

essentially behave like subroutines because they are

triggered by different external or internal events [11, 12].

The Catrobat programming language program always

writes with a visual Lego style program. Therefore, the

Catrobat base version, which is developed specifically for

Android devices is named Catroid and is available on

Google Play Store under the name ‘Pocket Code’ (Pocket

Code: https://catrob.at/pc). The product is a learning

application for smartphones, which is developed in Austria

at Graz University of Technology.

Elements:- Catrobat (VPL) has many kinds of group

categories (See Fig 4) and every category has particular

associated bricks, which are clarified as follow. Event is

the important category for every single project to start a

program. The elements of Control category is accountable

for control flow bricks i.e., conditional and loop. Motion

is the category in which the elements are adjusted with the

position of an object on the screen either directly or by

using a pre-defined animation. Sound category includes

elements, which control the recording of audio files related

with an object or change the system’s volume level. In

Looks category, the bricks change the appearance of the

visual representation of any object. Hence, different looks

can be selected from the object internal list, or the overall

visibility, size, transparency. The bricks of Pen category

allow an object to draw shapes and color pixels. In doing

so, you can also change the size of the pen. Data is the

important category, which contains bricks to initialize and

show variables as well as to change their values.

(A) (B)

Fig. 4. Snapshot of (A) Categories (B) Script view for RTL

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 5

2019 International Journal of Computer Science Issues

5. Bidirectional Localization Testing

The software applications should be bug free and accurate

all over the world. Hence, every software application

before distribution into the global markets, some kind of

internationalization and localization testing - whether

manually or automatically - must be performed. The

localization testing of mobile app faces many problems

merely because of the difficulty of testing and limited

resources. The Android operating system, supporting

different GUI elements and a huge number of different

keyboard applications, can be chosen freely by users. As

well as they can use a hugely varying display resolutions,

and aspect ratios of devices with all combinations, which is

a difficult challenge [23]. The Bidirectional (BiDi)

describes any software applications, manipulating and

displaying text in both directions i.e. LTR and RTL. For

bidirectional script processing algorithm, described by

Unicode such as Bidi Algorithm, confirms the exact

rendering and formatting of Arabic script. The requirement

regarding BiDi, affect the coding, design and testing of the

internationalized app [25].

Similarly, the tests must have the ability to confirm the

functionality and performance of localized software and

the components according to the original product as well

as to detect linguistic and functional problems. It is

essential that the correctness of translations is verified and

the consideration of cultural issues is guaranteed.

However, the localization process often introduces severe

issues, such as, clipped strings or strings that overlap the

edge of UI elements on the screen, inappropriate layout or

text direction, incorrect alphabetical sorting and

untranslated strings [23, 27]. For misplaced translations,

grammar and spelling issues and layout problems,

localization testing usually emphasizes checking of the

graphical user interface, (GUI). Usually, these belongings

are tested manually, which is time consuming and a

resource-intensive task. In this case, the automation

support for localization testing helps to save the time as

well as allows running the localization test more frequently

[24].

Software applications always need to be developed in

different regions of the world. However, the local version

of application helps local customers for better

understanding, and to attract more customers, and

maximize its sales [26]. For quality assurance testing of a

software application, localization testing is the type that

mainly focuses on the quality of the localization and

evaluation of the products functionality and cosmetics. The

objective of the automatic localization testing for BiDi-

languages are as under:

 To document the attributes of different localization

issues to the developers who do not know about the

language and cultural background.

 To make sure at a later stage that the localization is

stable even though when the bugs and deficiencies are

introduced.

 The localization defects should be reported and

detected.

The challenges encountered when localizing apps into

bidirectional languages include, Character encoding,

Right-to-left and vertical text, Mobile Phone Screen Size,

Font Style for Mobile Applications, Text Expansion,

Regional standards, Search and replace [27, 21].

6. The Proposed Behavior-Development

Practices for Catrobat

The objective of the Catrobat programming language is to

deliver dependable functionality and stable experience and

to ensure that the program script is behaving exactly as

expected. The Catrobat project has different functionality

bricks. Every program has one or more objects, and these

objects contain a list of scripts, which is the code portion

of the Catrobat program (See Fig 4). The script is a set of

many bricks that combine the logic of the program.

Scripts essentially behave like subroutines because they are

triggered by different external or internal events. In these

cases, a script is constructed to execute automatically when

the whole program is started. The following examples

show how some of the primary features of Catrobat have

been specified in a behavior-driven way, using Cucumber

scenarios. The below mentioned specifications are plain

domain-specific language “Gherkin”, which does not

associate with the so-called Java code. Step-definitions are

used to map the Gherkin language to Java code, and to

reside in Java code, which are written in a regular

expression to match the Cucumber feature scenario steps.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 6

2019 International Journal of Computer Science Issues

6.1 Case Study 1

In the Catrobat programming language, scripts begin to run

in response to an event, which is the same behavior as in

Scratch. The event can be at the starting of the whole

program, an external input event on the hardware or some

kind of internal event. The Cucumber feature starts with

the keyword “Feature” followed by a short description.

The keyword “Background” tells Cucumber to execute the

following steps before every scenario. The below

mentioned scenarios contain two common steps. In the

existing version of the Catrobat project, the Set variable

brick must display the variable correctly on the mobile

screen/stage. Therefore, in a script when you are using

more than one variable, it displays always the last

initialized variable.

This Cucumber feature relies completely on native features

of the Catrobat programming language to specify the

expected behavior of a broadcast and set variable brick.

The scenario involves two scripts, which start running at

the same time and continue to run concurrently. One of the

scripts contains a set variable 10 and broadcast message

“hello”. The other script specifies where When scripts

(When you received “hello”) react to the same message,

wait for two seconds and then check the value of the

variable. The correct behavior of the set variable should be

equal to 20. The incorrect behavior is that the variable

should not be equal to set variable. However, in the second

scenarios, the correct behavior of the script with the

change brick, the variable should be equal to 3.

Feature: Catrobat bricks

The Correct Behavior: Test the different bricks in Catrobat. The variable should be equal to their values in different

scenarios.

Background:

Given I have a program

And this program has an object 'Object'

Scenario: To test the "Set variable" and "Broadcast" brick.

Given 'Object' has a start script

And set 'var' to 10

And broadcast 'hello'

Given 'Object' has a When 'hello' script

And wait 2 seconds

And set 'var' to 20

When I start the program

And I wait until the program has stopped

Then the variable 'var' should be equal 20

Scenario: To test the "set variable","change variable" and "broadcast" brick.

Given 'Object' has a start script

And set 'var' to 1

And broadcast 'hello'

Given 'Object' has a When 'hello' script

And wait 2 seconds

And change 'var' by 2

When I start the program

And I wait until the program has stopped

Then the variable 'var' should be equal 3

Listing. 1. Cucumber specification for set variable, change variable and broadcast brick

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 7

2019 International Journal of Computer Science Issues

6.2. Case Study 2

For an object, the user can add some images taken from the

gallery of his own device or can draw the image in Pocket

Paint App. The user must assign a name to the new object

(LTR or RTL languages). Then, by tapping on the element,

he can assign some script, background or some sounds to

the object. This item is treated as the background object of

the program script. We can say that the item background is

the default object and then the user can customize his

application by adding custom elements in the objects

activity. In the below-mentioned Listing 2, we tested the

object name with one of the RTL languages, i.e., Urdu

language. The program has an object name “آبجیکٹ” The

correct behavior should be equal to “آبجیکٹ”.

Feature: Object

Scenario: To test the object name with RTL

 Language (Urdu)

Given I have a program

And this program has an object "آبجیکٹ"

When I start the program

And I wait until the program has stopped

Then the object should be equal to "آبجیکٹ"

Listing. 2. Cucumber specification for object (RTL)

6.3. Case Study 3

In the below mentioned Listing 3, the first scenario with

object name "آبجیکٹ". This is to test the name of the

variable with RTL language (i.e., Arabic/Urdu) "متغیر" and

make sure that the variable is initialized with RTL

characters/words correctly. We need a fast method to

check the exact behavior of the bricks, which is used in the

program script. Hence, we are using Cucumber

specification for the same configuration, the one that has a

set variable brick. The proposed test case checks that the

variable name should be equal to "متغیر", otherwise, the

name of the variable is not set and the localization issues

are revealed. The second scenario introduces two variables

name with RTL language (i.e., Urdu and Arabic). For

example, we add two variables with RTL language names:

and "2 "متغیر1" رمتغی ". These are the test cases in the form

of a scenario and pass a variable value. In this

specification, the correct behavior of the program in

Catrobat bricks should be equal to 10.

Therefore, the Catrobat project is localized correctly and

their bricks are working properly, otherwise, localization

issues will be detected. In the third scenario, we need to

test the variable and broadcast bricks with RTL language.

In orders to complete this type of testing, a small program

is created, and this program contains two bricks, one brick

is to set a variable and the other to broadcast a message

(RTL). The broadcast is signals or undirected messages,

which are sent into the script at the app's runtime. A

broadcast brick should send a message with (RTL or LTR)

language and the scripts should react to it. We also set the

variable to "متغیر", and it must show the last variable

initialized on the stage.

Feature: RTL language

Background:

Given I have a program

And this program has an object "آبجیکٹ"

Scenario: To test the Variable name with RTL Language.

Given this "آبجیکٹ" has a start script

And set "متغیر" to 4

When I start the program

And I wait until the program has stopped

Then the name of the variable should be equal "متغیر"

Scenario: Test and add two variable name with RTL Language.

Given this "آبجیکٹ" has a start script

And set "1متغیر" to 6

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 8

2019 International Journal of Computer Science Issues

And set "2متغیر" to 4

And set "ٹیسٹ" have set "1متغیر" + set "2متغیر"

When I start the program

And I wait until the program has stopped

Then the "ٹیسٹ" should be equal to 10

Scenario: To test "Set variable" and "Broadcast" brick message with RTL language.

Given this "آبجیکٹ" has a start script

And set "متغیر" to 10

And broadcast "نشر"

Given this "آبجیکٹ" has a When "نشر" script

And wait 2 seconds

And set "متغیر" to 20

When I start the program

And I wait until the program has stopped

Then the "متغیر" should be equal to 20

Listing. 3. Cucumber specification for variable & Broadcast brick (RTL)

7. Conclusions

In this paper, we presented the BDD practice and

Cucumber-base testing for the Catrobat project

development. The Cucumber scenarios are used as

acceptance testing in the project. With the help of BDD

practice, we concise few challenging aspects regarding

LTR and RTL languages, which are faced by the Catrobat

development team. The acceptance tests results show that

the test automation allows BDD base testing for

localization issues, especially for RTL languages. The

purpose is to develop a unified system that enables mobile

testers to dynamically test the apps without dependence on

any scripting language. The BDD approach enables testers

to define the scenarios to be tested in a natural language

that supports seamless and efficient testing of mobile apps.

In this approach, we attempt to design a system capable of

testing the properties of the app automatically once the

scenarios are written for a set of features. This helps in

defining key scenarios for each story and eliminates

ambiguities from the requirements. The primary purpose of

such methodology is to encourage communication

amongst the stakeholders of the Catrobat project. The

results show that the proposed approach examines the

issues of RTL languages from different angles and track

regression errors as well as diagnose localization issues of

such languages. For future work, we are endeavoring to

develop and improve the correctness of localization for

Korean, Japanese, Hindi and Chinese languages.

Acknowledgments

The author is grateful for the support of Catrobat team.

References
[1] Sogeti, World Quality Report 2018-19

https://www.sogeti.com/globalassets/global/wqr201819/wqr-

2018-19_secured.pdf.

[2] H. Muccini, A. D. Francesco, and P. Esposito, “Software

testing of mobile applications: Challenges and future

research directions”, In proceedings of the 7th International

Workshop on Automation of Software Test, 2012, pp.29–35.

[3] Padmaraj Nidagundi and Leonids Novickis. New method

for mobile application testing Using lean canvas to

improving the test strategy. In Computer Sciences and

Information Technologies (CSIT), 2017 12th International

Scientific and Technical Conference on, volume1, pages

171–174. IEEE, 2017.

[4] A. Contan, C. Dehelean, and L. Miclea “Automated Testing

Framework Development based on Social Interaction and

Communication Principles” 14th International Conference on

Engineering of Modern Electric System(EMES), 2017,

pp.136-139.

[5] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui

crawling-based technique for android mobile application

testing”, In 2011 IEEE Fourth International Conference on

SoftwareTesting, Verification and Validation Workshops, .,

March 2011, pp.252–261.

[6] Net-Translators, Localization for Mobile Apps. Available at:

https://www.net-translators.com/blog/localization-for mobile-

apps ; [Last accessed February 2019].

[7] S. Abufardeh, and M. Kenneth, “Software localization: the

challenging aspects of Arabic to the localization process

(Arabization)”. In Proceedings of the IASTED International

Conference on Software Engineering 2008, pp275–279.

[8] Explore, Collab, versionone Agile report

https://explore.versionone.com/stateofagile/version one-12th-

annual-state-of-agile-report

[8] H. Flora, and S. Chande, “A REVIEW AND ANALYSIS

ON MOBILE APPLICATION DEVELOPMENT

PROCESSES USING AGILE METHODLOGIES”, In

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 9

2019 International Journal of Computer Science Issues

http://www.net-translators.com/blog/localization-for%20mobile-apps
http://www.net-translators.com/blog/localization-for%20mobile-apps
https://explore.versionone.com/stateofagile/version%20one-12th-annual-state-of-agile-report
https://explore.versionone.com/stateofagile/version%20one-12th-annual-state-of-agile-report

International Journal of Research in Computer Science,

volume 3, July 2013, pp.9–18.

[9] C. Solis, and X. Wang, “A Study of the Characteristics of

Behaviour Driven Development”, In Proceedings of the 2011

37th EUROMICRO Conference on Software Engineering

and Advanced Applications, 2011, pp.383–387.

[10] J. Medeiros, A Vasconcelos, M Goulao, and C Silva,

“Approach based on design practices to specify requirements

in agile projects” In Proceedings of the Symposium on

Applied Computing (SAC '17), Morocco, 2017.

[11] W. Slany, “Pocket code: A scratch-like integrated

development environment for your phone”, In Proceedings of

the Companion Publication of the 2014 ACM SIGPLAN

Conference on Systems, Programming, and Applications:

Software for Humanity, 2014, pp.35–36.

[12] W. Slany, “A mobile visual programming system for

android smartphones and tablets”, In 2012 IEEE Symposium

on Visual Languages and Human-Centric Computing

(VL/HCC), 2012, pp265–266.

[13] M. Ficco, R. Pietrantuono, and S. Russo, “Bug Localization

in Test-Driven Development” Hindawi Publishing

Corporation Advances in Software Engineering , 2011.

[14] N. Nagappan, E.M. Maximilien, and T Bhat, “Realizing

quality improvement through test-driven development:

results and experiences of four industrial teams” Empirical

Software Engineering 13.3, 2008, pp.289-302.

[15] A. M. Braga, D.C. Schwab, and A.L. Vannucci, “The Use

of Acceptance Test-Driven Development in the Construction

of Cryptographic Software”, The Ninth International

Conference on Emerging Security Information, Systems and

Technologies, 2015.

 [16] C. Solis, and X. Wang, "A Study of the Characteristics of

Behaviour Driven Development," 37th EUROMICRO

Conference on Software Engineering and Advanced

Applications, 2011, pp.383-387.

 [17] J.F Smart, BDD in Action, Behavior-driven development

for the whole software life cycle, 2014

 [18] C. Tao, and T, Wang, “An Approach to Mobile Application

Testing Based on Natural Language Scripting”, SEKE, 2017,

pp.260-265.

[19] The Cucumber for Java Book by Seb Rose, Matt Waynne,

Aslak Hellesoy.

[20] N. Li, A. Escalona, T. Kamal, “Skyfire: Model-Based

Testing with Cucumber”, IEEE International Conference on

Software Testing, Verification and Validation (ICST), 2016

[21] D. B. Silva, A. T. Endo, and M. M. Eler, “An analysis of

automated tests for mobile Android applications “, XLII

Latin American Computing Conference (CLEI), 2016, pp.1-

9.

[22] M. K. Kulkarni, and P.Soumya A, “Deployment of

Calabash Automation Framework to Analyze the

Performance of an Android application” Journal for

Research, 2016.

[23] A. M. A. Awwad, and W. Slany, “Automated Bidirectional

Languages Localization Testing for Android Apps with Rich

GUI” Mobile Information Systems, 2016.

[24] R. Ramler, R. Hoschek, “Process and Tool Support for

Internationalization and Localization Testing in Software

Product Development”, Springer International Publishing

2017, pp.385-393.

[25] S. Abufardeh and K. Magel, “QA/Testing Bi-directional

Languages Software: Issues and Challenges” 32nd Annual

IEEE International Computer Software and Applications

Conference, 2008, pp. 172-175.

[26] X. Xia, D. Lo, F. Zhu, X. Wang and B. Zhou, “Software

Internationalization and Localization: An Industrial

Experience”, 18th International Conference on Engineering

of Complex Computer Systems, 2013, pp. 222-231.

[27] A. M. A. Awwad, “Localization to Bidirectional Language

for a Visual Programming Environment on Smartphones,”

IJCSI International Journal of Computer Science Issues,

Volume 14, Issue 3, May 2017, doi:10.20943/01201703.113.

Zulfiqar Ali was born in Pakistan. He received his Master

Degree (MCS) from Kohat University of Science and

Technology (KUST). Currently, he is doing Ph.D in Computer

Science under the supervision of Prof. Wolfgang Slany from

Graz University of Technology, Austria. His main area of

research interest related to software engineering, mobile

applications and testing using Behavior Driven Development,

methodology and Cucumber framework.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 2, March 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3234110 10

2019 International Journal of Computer Science Issues

