
Building Imaging Forensic Application Using Libewf and Design

Pattern Approach

Muhammad Miftahul Huda1, Gusti Made Arya Sasmita2 and Kadek Suar Wibawa3

 1 Information Technology Department, Faculty of Engineering, Udayana University

Badung, 80362, Indonesia

2 Information Technology Department, Faculty of Engineering, Udayana University

Badung, 80362, Indonesia

3 Information Technology Department, Faculty of Engineering, Udayana University

Badung, 80362, Indonesia

Abstract
Computer science has many branches. Digital forensics is one of

these branches. One application of digital forensic science is

software for digital forensic purposes itself. The ewf file format

is a commonly used forensic disk image format. Using Libewf to

help programmers develop a forensic imaging application in

storing acquisition data into ewf files. Application development

can be focused on designing business logic, data flow, choosing

design pattern, and implementation to program code. The role of

the design pattern in building forensic applications aims to

classify the related components into an object, dividing the

program flow into small sub-programs, so that it can improve

program code reusability and be easy to maintain. We can also

know which design pattern is suitable to apply to certain

problems in making digital forensic applications.

Keywords: Digital forensic, Ewf file format, Libewf, Design

pattern, Imaging, Qt frame work.

1. Introduction

Digital forensic is one of specialzation of computer

science. It is used to proofing the crimes that involve

computer technologies and devices[1]. Officers or

investigators as digital forensic analyst must use methods

or procedures that proofed scientifically. Thus forensic

applications are created to ensure the principle chain of

custody[2] and integrity of data that contained inside

evidences.

Application for imaging media storage is one from

many forensic applications. It is useful to acquire data

digital that stored inside media storage such as harddisk,

thumb drive, memory card, and optical drive. As what we

already known data digital inside media storage are

volatile and tend to lose or broken if we not care enough

maintaining the media storage. Imaging application has a

role to makes snapshoot from the current media storage’s

state[3]. With the disk image[4] as output from imaging

process, officer can performs any analyst methods using it

and keep the original media storage stay safe.

Libewf[5] as open source library is able to create ewf file

that can store evidence data together with case’s metadata.

Programmers can build their own imaging application or

also ewf file reader application with using Libewf library

as interface that can handle data that needed from or into

ewf file and the application. Besides for C/C++, this

library has support for Python programming language.

2. Overview

The proposed forensic application is a desktop GUI based

application. It is builded with using Libewf, thus the

application will has ability to creating ewf file from media

storage, retrieving metadata and storage bytes from ewf

file using functions that imported from Libewf. GUI

components for application and logic implementation are

created by using Qt C++ library.

2.1 Application Architecture

Author’s architecture of the application designed with

different individual components that will handle different

task according their functionality. One component can be

used together with other components to accomplish

complex process. Application’s architecture is depicted in

Figure 1.

In application layer, application contains main components

that grouped together as utility and Libewf as the backend

library. Operating Sytem (OS) layer has functionality to

provides how application access/interacts with Storage

layer, thus application can access media storage with

procedure provided by OS then performs imaging process.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 30

2019 International Journal of Computer Science Issues

Fig. 1 Architecture of application.

2.2 Create EWF File Component

Create ewf file componen has a role to creates disk image

from metada given by user and raw bytes from source

media storage. The process is straigh forward from the

start until process end with using some functions from

Libewf. Here Figure 2 is pseudocode about how

component create ewf file works, pseudocode with prefix

“libewf_” means it use function from Libewf.

libewf_create ewfhandle instance

libewf_open ewfhandle instance

open media storage

libewf_insert metadata values into

ewfhandle

libewf_set_compression ewfhandle

create hash value instance

while media storage sector 0 to last

sector then

 read sector

 update hash value from sector

 libewf_write sector to ewfhandle

end while

libewf_set_hash hash into ewfhandle

libewf_write_finalize ewfhandle instance

libewf_close ewfhandle instance

close media storage

Fig. 2 Pesudocode create ewf file

The big process is the looping section. The time to

complete imaging process is directly proportional with

media storage’s total sectors. That we can see the simple

implementation of the loop pseudocode in Figure 3

Fig. 3 Simple loop implementation

Each loop start after another one have finished it’s write

process. There is one case if write process takes longer

time than what it should means new loop process will not

started and get delayed, thus that will increases amount of

time imaging pocess. From that figure too we know, while

write process run, source storage is in idle state because

there is no read process running.

To press the amount of imaging process time and idle time

of source storage[6], we can make write process run

simultaneously with read process in the next loop. To

make this posible, we need add another threads to execute

write process. We can achive big throughput in short time

with this method.

Fig. 4 Looping with multi thread

From Figure 4 we can see the read process will executed

after calculating hash process executed in main thread and

the other threads will execute write process asyncronously.

There are many multi threading paterns we can use to

implementing this approach. As an example we can use

thread pool patern, that the main thread executes read and

calculate hash process then notify and give the data to one

of available worker threads to execute write process.

Another example is with using Semaphore patern, that the

main thread will execute read and calculate hash process

then store the data into a list or queue, while thread

workers watching the list or queue and perform get the

data then write process when data available inside list or

queue.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 31

2019 International Journal of Computer Science Issues

2.3 Read EWF File Component

Read ewf fle compoent has role as interface between

application and Libewf to open and to read ewf file. This

component has ewfhandle instance that used to hold user’s

opened ewf file. As interface means this component will

hides or emulates any processes related with Libewf

function to initializating an ewfhandle instance, open file

ewf, close ewfhandle instance, read storage data from ewf

file, seek position from ewf file, and error handling for the

application. Therefor in implementation, this componenent

will and only provides open(), read(), seek(), close(), and

function to retrives ewf metadata. Other components that

need data from ewf file should access or request from this

component.

2.4 File System Component

File System component has roles to read meta data that

stored inside partition and translate directory structure into

directory list. File system is one aspect of operating system

that the most felt by user[7]. File system gives user a

method to save data as strcture file and directory[8]. Inside

ewf file exist partition that also contains file system inside,

thus with implementing file system logic in file system

component for application we can retrives those directories

and files that stored inside ewf file. When user wants to see

or request what are files inside a folder, this component

will called by application to process that request.

There are many file systems exist that supported by many

operating system too. To support many file system logics

for the application that easy to maintain, author use

abstract class and inheritance. That is common scenario

when we need object or instance with farious

implementation in one function, then we need child classes

to implement abstract method from parent class. In Object

Oriented Programming we can assign object of parent class

for it’s child class instance (up casting), we can let an

empty object of parent class declared then assign it at

running time with apropriate child class instance. Author in

implementation inside application uses this method for

every object that needs to use file system component

object. These object only have empty file system object

inside and it will be filled at the run time apropriate by file

system type the partition has.

To handle instantiating various types of file system

component object at run time, author use a factory

pattern[9]. This approach will increases code’s modularity

along with easy to maintain. All of logics to instantiating a

correct file system component object will be handled

inside factory object. Component that needs file system

instance only needs to calls factory object with some

parameters passed to factory object, then it gets file system

instance.

File system component has dependency with read EWF file

instance for it’s data source. Author creates data

transaction between file system component and read EWF

file component in sector level. Each time the file system

instance need to get data, it will requests read EWF file

instance to reads sectors where that data stored. Any

translation between file system’s logical address into

physical address in read EWF file should be handled by

file sysytem object.

2.5 Recovery Component

Recovery component has role to export file from file

system instance into user’s storage, so file can be opened

and analized using other tools. This component works with

metadata file as the input, that will inform there is a file

with some size of bytes will be written into user’s storage,

and where is it first cluster in the file system. Next, this

component need path in the user’s storage as the output’s

destination. Recovery process then works by requesting

files’content from file system instance until all bytes of the

file already written to the output’s destination.

Recovery component need file’s content from files system

instance. In this component point of view, it will request

cluster by cluster to the file system instance. By that, file

system component should be able to handle cluster address

translation to the apropriate logical address inside file

system before translated into physical address. Complete

addresses translation for file system component is depicted

in Figure 5. The function will be implemented by child

classes acording what file system type they will purposed

to handle.

Fig. 5 File system address translation

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 32

2019 International Journal of Computer Science Issues

3. Implemented Features

3.1 Aquisition

This feature is used to copying byte per byte for each

sectors from original media storage into an ewf file as

output. Ewf file as disk image will be used for further

analysis and investigation

This feature use Create ewf file component as core process

that will be executed after user provides data source and

metadata for for imaging process. Firstly user will see

choose disk dialog that depicted in Figure 6. User should

chooses which media storage that want to be aquired either

logical drive type to acquire whole data of one partition

inside the logical drive or physical drive type to acquire

whole data inside selected device.

Fig. 6 Choose drive dialog

Secondly after user chooses media storage, user will see

information form like in Figure 7 to input case metadata

for media storage and output file destination. In this form,

user able to sees media storage’s physical specification.

Finally after user provides evidence’s metadata and correct

output path in information form, user can proceed into

imaging process in the Figure 8 and waits until this process

finished.

Fig. 7 Information form

Fig. 8 Imaging process

3.2 Open EWF File

This feature intended to retrive data stored inside ewf file,

thus user can be able to sees metadata that inserted at

acquisition also with all bytes from media storage that

acquisitioned. This feature consist of some sub

components that using different utility component

according to their functionality. Figure 9 shows an ewf file

that opened inside open ewf file window.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 33

2019 International Journal of Computer Science Issues

Fig. 9 Open ewf file

3.3 Metadata Panel

Metadata panel is used for displaying ewf file’s metadata

such as storage’s size, total sectors, ewf type, chunk size,

case metadata, and the last is storage’s hash checksum

value. When ewf file success opened, the first task to do

are retrieving metadata stored inside ewf file, then give it

to metadata panel to be displayed. Metadata panel is

shown in Figure 9a.

3.4 Block Visualizing

Block visualizing is feature to create a visual

representation of blocks of sectors contained inside media

storage. Sectors of media storage will be divided into some

fragments or blocks, as example sector 0 is used for MBR

that contains partition table, next is some sectors started at

position n until sector m will be used as a partition like

what written in partition table, and another blocks of

sectors as partition if there are more than one partition

exist in partition table.

With block visualizing, user can see how many partitions

exist inside media storage, counts how many sectors inside

block, and which block contains the most or the smallest

sectors. User can do these processes manually by looking

at partition table and calculate them. Block visualizing

help user from doing these manual calculations.

Unused sectors also included and displayed in block

visualizing. Unused sectors may exist inside media storage

between two partitions, between MBR and first partition,

even after the last partition. Continues unused sectors will

be grouped as one block then labelled as unused block.

Author makes block visualizing become informative,

attractive, and simple for user. When user hovers mouse’s

pointer on block, an information panel will appear that

contains type of block either MBR, partition, or unused

block, then block’s offset of start sector, the last is block’s

size that sum of sectors contained inside block. Block

visualizing is shown in Figure 9b.

3.5 Directory Listing

Directory listing is used to displaying files and directories

inside partition. With this, user also can performs change

directory either entering directory or move back to parent

directory.

This feature using file system component implementation

to retrieve raw bytes inside directory’s clusters. All

retrieved metadata will be translated into appropriate item

either directory or file with it’s name, size, first cluster, and

is it already deleted or still exist.

Data that displayed into user are item’s name, type, and

size. Item with directory type will be marked with

character “d” and character “f” for file type. Deleted item

will be marked with character “!” in front of it’s type.

Directory listing is displayed in Figure 9c.

3.6 Hex View

Hex view is used to displaying raw bytes contained inside

media storage from start sector until last sector. This

component will display each bytes with two digits

hexadecimal number in the left part, then followed with it’s

character representation in the right part. Hex view is

displayed in Figure 9d.

3.7 File Recovery

File recovery is feature to export file type item that listed

inside directory listing either the file still exist or deleted

file. This feature use recovery component to complete it’s

task.

To perform recovery task user must performs right click on

file type item that listed in directory listing like in Figure

10 as example. Next step is user should choose destination

directory for application to write output file, this can be

shown in Figure 11. Finally Recovery component will do

it’s task to get file’s data cluster by cluster and write them

into output file.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 34

2019 International Journal of Computer Science Issues

Fig. 10 Right click on file type item

Fig. 11 Choose destination directory

4. Conclusions

Design pattern helps to create better code by separating the

logic into smaller pieces that most of them can be reusable

for other components. For imaging application authors

create four main component utilities that applied in main

program appropriate to their usability. Decreasing idle

time of resource can make long running process done

faster, like imaging process, by decreasing media storage

source’s idle time with using other threads to perform write

process asynchronously. For that thread pool pattern is

chosen to maintains thread workers. Factory pattern is

suitable to maintain collection of object instantiation, thus

this pattern is used to handle instantiation of any type of

file system objects.

In the future, authors hope can improve this application

either by adding new features or improving algorithm that

can make application run faster, more reliable, and better

memory management.

Acknowledgment

Authors give thank you very much to team Laboratorium

Forensik POLDA Bali for their support provide authors

place and devices related digital forensic for application

test. Also with their advices that help authors make

application that fulfill principle of digital forensic.

References
[1] M. N. Al-Azhar, Digital Forensic Panduuan Praktis

Investigasi Komputer. Jakarta: Salemba Infotek, 2012.

[2] ACPO, “ACPO Good Practice Guide for Digital

Evidence,” no. March, p. 41, 2011.

[3] C. Prosise and M. Kevin, Incident Response&Computer

Forensics, Second Edition, 2nd ed. New York:

“McGraw-Hill, 2003.

[4] S. Vandeven, “Forensic Images: For Your Viewing

Pleasure,” SANS Inst., p. 38, 2014.

[5] Joachimmetz, “LibEwf.” [Online]. Available:

https://github.com/libyal/libewf/. [Accessed: 09-Dec-

2015].

[6] S. H. . Hamid, M. H. N. . Nasir, W. Y. Ming, and H.

Hassan, “Improving the Performance of the

Authorization Process of a Credit Card System Using

Thread-Level Parallelism and Singleton Pattern,” Res. J.

Inf. Technol., vol. 1, no. 1, 2009, pp. 30–40.

[7] G. Gagne, B. P. Galvin, and A. Silberschatz, Operating

System Concepts, 8th ed. USA: John Wiley & Sons,

2008.

[8] B. Carrier, File System Forensics Analysis. Addison

Wesley Profesional, 2005.

[9] E. B. Eskca, S. Bondugula, and E. T. Tarik,

“Simplifying the Abstract Factory and Factory Design

Patterns,” ARPN J. Sci. Technol., vol. 4, no. 12, 2014,

pp. 789–794.

Muhammad Miftahul Huda born in Denpasar, 16 February 1995.
He was Educated in Department of Information Technology,
Udayana University.

Gusti Made Arya Sasmita born in Pengastulan, 26 March 1973. A
lecturer in Department of Information Technology from Udayana
University. Received the Bachelor of Engineering degree in
Electrical Engineering from Udayana University, and Master of
Engineering degree in Electrical Engineering from Gadjah Mada
University.

Kadek Suar Wibawa born in Sangsit, 16 August 1983. A lecturer
in Department of Information Technology from Udayana University.
Received the Bachelor of Applied Science degree in Electrical
Engineering from Bandung Institute of Technology, and Master of
Engineering degree in Electrical Engineering from Bandung
Institute of Technology.

IJCSI International Journal of Computer Science Issues, Volume 16, Issue 1, January 2019
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.2588243 35

2019 International Journal of Computer Science Issues

