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 Abstract 
Distributed Denial of Service (DDoS) attacks considered the most 
critical attack for cyber security and serious security threat to 
Internet services in recent years. These attacks have evolved to 
be increasingly sophisticated, complex, and difficult to mitigate 
and detect. In this paper, we propose a new approach using HMM 
to detect DDoS attacks. The performance of the proposed 
approach is generally better and achieve higher detection rate and 
lower false positive rate comparing with two other machine-
learning algorithms Naive Bayes and Neural Network. Training 
and testing applied on a DDoS data set with reduced feature. 
Using the reduced feature set after applying the Feature Pruning 
algorithm that we implemented obtains a significant improvement 
in detection performance and reduction model training and testing 
time. 

Keywords: - Hidden Markov models (HMM), distributed
denial of service (DDoS). 

1. Introduction

Computer networks are vital to the smooth operation of the 
global society and economy.  The three parallel control 
objectives of confidentiality (or secrecy), integrity (or 
correctness), and availability must be assured to the 
maximum extent possible. Otherwise, our entire electronic 
infrastructure—travel, power, logistics, even defense—can 
almost literally disintegrate.  Malware that takes advantage 
of distributed denial of service techniques is capable of 
compromising these three control objectives.  It is therefore 
important to understand the various DDoS attacks that can 
be perpetrated against computer systems and networks.  In 
this paper, we investigate the DDoS attacks and then 
examine the applicability of two competing analytical 
methods—the hidden Markov model (HMM) and machine 

learning (ML)—in protecting systems and networks 
against them. 

DDoS attacks are intended to make it impossible for 
authorized users of computer systems to access the 
resources of those systems.  In general, DoS attacks and 
their distributed analogues operate by flooding target hosts 
and networks with traffic that is orchestrated to waste 
resources on the target hosts, thereby inducing them either 
to crash or to enter an unresponsive state [1].  The two most 
critically important DDoS attacks are the Smurf attack and 
the SYN flood attack.  In the Smurf attack, the attacker 
synthesizes phony traffic that consists of ICMP broadcast 
packets.  The source IP address recorded in these packets 
is spoofed so that they appear to originate from a host 
located within the trusted intranet under attack.  By actually 
responding to the packets, the target host becomes 
successively more burdened with fabricating more and 
more responses until it is altogether unable to muster the 
resources to process any more network traffic.  The Smurf 
attack can be readily defended against, albeit, by 
implementing a firewall that is able to recognize malicious 
inbound packets as Martians, that is, packets that arrive at 
the wrong place, seemingly as the result of a routing error 
[3].  Assuming that the firewall is built atop a dual-homed 
host with two network interfaces, it is straightforward to 
recognize and discard arriving packets that claim to be 
from hosts within the network but are being received at the 
interface physically connected to the outbound side [15].  
The SYN flood attack is conceptually similar.  In this class 
of attack, requests to establish brand-new TCP connections 
arrive at a rapid rate.  These requests take the form of 
initiations of the so-called three-way handshake.  By 
starting such handshakes but never completing them—
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merely sending more and more handshake initiations—the 
attacker succeeds in exhausting the pool of system 
resources available to the server for receiving and 
processing further inbound connections.  Therefore, all 
network processing grinds to a halt (“Understanding 
Denial of Service Attacks”). 

The reminder of the paper is organized as follows: Section 
2 reviews the related works. Section 3 presents the 
background of HMM and its problems. Section 4 discusses 
our methodology and approach. Section 5 discusses 
evaluation metrics and our results. Finally, Section 6 
concludes our paper. 

2. Related Works 

Research efforts to date that target the detection of and 
defense against DDoS attacks have taken advantage of both 
the hidden Markov model (HMM).  Four studies that have 
applied the hidden Markov model to DDoS attacks are 
those by Jain & Abouzakhar; Bhole & Patil; Devarakonda 
et al.; and Khosronejad et al.  

Jain & Abouzakhar analyzed the performance of the HMM 
in intrusion detection systems (IDS), including the 
perpetration of DDoS attacks, through the design of what 
they termed a Support Vector Machine (SVM).  The 
machine was capable of distinguishing and classifying 
TCP services that include both “normal” and “abnormal” 
packets, including the improperly formed packets that 
participate in the Smurf attack.    They used the KDD CUP 
1999 dataset to underlie their research and serve as the 
training set for the SVM.  The authors demonstrated that 
the hidden Markov model was able properly to classify 
network traffic with accuracy ranging from 76 to 99 
percent, depending upon the precise circumstances [8].   

Bhole & Patil used HMM to construct an intrusion 
detection engine that combined the detection of anomalies 
with the more traditional approach of signature detection.  
The HMM enabled them to construct an engine that was 
particularly effective in the recognition of novel, that is, 
previously unseen attacks.  Although they found that 
signature-based detection was more efficient and timely for 
known attacks, HMM enabled new classes of attacks to be 
learned [2]. 

Devarakonda et al. decided to augment a traditional 
intrusion detection system by using a combination of a 
Bayesian network and a hidden Markov model.  The IDS 
framework was designed to incorporate various levels of 
processing, including learning from the training data by 
subjecting it to the HMM and allied Bayesian classifier.  
The work was completed using the KDD CUP dataset and 
demonstrated “performance of high order” [4].   

Finally, Khosronejad et al. compared two standard 
approaches to IDS, the well-known C5.0 model and the 
HMM, also combining the two into what they termed “a 
hierarchical hybrid intelligent system model.”  Empirical 
results established that the hybrid system delivered 
considerable accuracy when applied to the KDD CUP 99 
dataset [10]. 

3. Hidden Markov Model 

HMMs have been extensively utilized in many applications 
such as speech recognition, finance, computer vision and 
bioinformatics. HMM is composed of hidden states, and 
observable emissions. States are the desirable events in a 
system, which are not visible to the observer, while 
emissions are the observable symbols emitted from the 
states. Using a sequence of emissions, an HMM can predict 
whether a system is in each state at a certain time. Fig.1 
shows the first-order HMM, where the observations  are 
shaded in gray.  

There are three fundamental sub-problems to HMM.  The 
first is the evaluation problem.  This addresses calculating 
the probability that the model can generate the indicated 
output sequence.  The second is the decoding problem.  
This strives to derive the model history—that is, sequence 
of states—that was most likely responsible for the 
generation of a specified output sequence.  The third is the 
so-called learning problem.  This problem endeavors to 
deduce model parameters from a set of output sequences in 
a manner that offers the greatest fidelity, that is, likelihood 
of correct sequence generation. 

3.1. The evaluation problem 
The evaluation problem is the first of these to be analyzed.  
Both a forward algorithm and a backward algorithm are 
integral to this problem.  The forward algorithm determines 
the various conditional probabilities, or alphas, by forward 
reasoning.  The procedure is subdivided into three phases 
known as initialization, induction, and termination.  The 
algorithm operates so that it requires only TN2 operations 
to evaluate all of the conditional probabilities engendered.  

 

Fig. 1 First-order HMM, where the observations  are 
shaded in gray 
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By way of contrast, the backward algorithm derives a set 
of backward variables, or betas.  These values reflect the 
probabilities of observation of a set of subsets of partial 
state sequences, or histories.  The algorithm requires the 
completion of two steps, initialization and induction, and—
like the forward algorithm—is able to deliver its results in 
only TN2 operations [6]. 
In stricter mathematical detail, the objective of both the 
forward and backward algorithms is to calculate the 
probability of an observation history, 𝑂 =
{𝑂$, 𝑂&, … , 𝑂(}																																																											(1)				
for a given model 𝜆 = (𝐴, 𝐵, 𝜋)																											(2)				
The algorithms carefully examine all possible sequences of 
states so as to determine the attendant probabilities. 
 According to the forward procedure, the probabilities of 
occurrence of the partial histories are represented by the 
set, αt(i) where, 
 𝑎4(5) = 𝑃(𝑂$, 𝑂&,. . , 𝑂(, 𝑆9 = 𝑆5|ʎ)																									(3) 
 
 Computing this set requires the completion of an 
initialization and induction phase, in which, 

 

𝛼>(𝑡) = @

𝜋>𝑏>B($), 𝑡 = 1

CD𝛼>(𝑡 − 1)𝑎5>
9

5F$

G𝑏>H(4), 𝑡 = 2,… , 𝑇
	(4) 

 
 and a termination phase, in which, 
 

𝑃(𝑂|ʎ) =D𝛼((𝑖)
9
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																																																										(5) 

  
 The backward procedure instead derives the set { βt(i) }, 
defined as 
 
𝑎4(5) = 𝑃(𝑂4M$, 𝑂4M&,. . , 𝑂(, 𝑆9 = 𝑆5|ʎ)														(6) 

 By way of contrast, the backward algorithm requires only 
the initialization and induction phase phase, in which  

𝛽>(𝑡) = @

1, 𝑡 = 𝑇

D𝛽5(𝑡 + 1)𝑎>5
9

5F$

𝑏5H(4M$), 𝑡 = 𝑇 − 1,… , 1							(7)			

Forward Formula 

𝑃(𝑂(|	𝜆) = 	∑ 𝛼>(𝑇)9
>F$ 																																																						(8)                                  

Backward Formula 

𝑃(𝑂(|	𝜆) = 	∑ 𝛽>(1)𝜋>𝑏>H($)																																									(9)9
>F$     

 

 

3.2. The decoding problem 
The decoding problem is a sub-problem that considers 
series of observations and tries to determine an optimal 
path through the hidden state sequence.  A dynamic 
programming technique known as the Viterbi algorithm is 
typically relied upon in order to calculate the critical path.  
This algorithm requires O( NQ2) time completely to 
establish the path through the network that maximizes the 
conjoint probability of transit [5].  
 
P(𝑆5|OW, 𝜆) = 	

XY(4)ZY(4)
∑ X[(4)Z[(4)\
[]^

																																											(10)               

3.3. The learning problem 
The third problem is the learning problem: given a 
sequence of emissions, how can an HMM be trained which 
best matches the sequence. This problem is all about 
maximizing the parameters of the HMM – A, B, and π, – 
to get the most descriptive model for the system. The 
algorithm of choice for solving this problem is the Baum-
welch algorithm. 

This algorithm can be broken into two steps: estimation 
and update.  

Estimation The estimation step of the algorithm first 
calculates the forward probabilities, then the backward 
probabilities to find the likelyhood of the observed 
sequence being produced from the estimated HMM 
(because of this step, this algorithm is sometimes referred 
to as the forward-backward algorithm). 

Update During this step, the algorithm uses Bayes’ 
theorem to create temporary varables and update the 
parameters: 

 

𝛾5(𝑡) = 𝑃(𝑆5|	𝑂(, 𝜆) = 	
a(bY,Hc|d)
a(Hc|d)

= 	 XY(4)ZY(4)
∑ X[(4)Z[(4)\
[]^

     (11) 

𝜀5>(𝑡) = 𝑃f𝑆4 = 𝑠5,	𝑆4M$ = 	𝑆>h	𝑆(, 𝜆) 																															

= 	
𝑃f𝑠5, 𝑠>, 𝑂(h	𝜆)
𝑃(𝑂(|𝜆) 																																																													(12) 

𝜀5>(𝑡) = 	
𝛼5(𝑡)𝑎5>𝛽5(𝑡 + 1)𝑏>(𝑜4M$)

∑ ∑ 𝛼5(𝑡)𝑎5>𝛽>(𝑡 + 1)𝑏>(𝑜4M$)9
>F$

9
5F$

					(13) 

As one may notice, 𝛾5(𝑡) is actually the Viterbi algorithm 
used to get the estimated state sequence. On the other hand, 
𝜀5>(𝑡) is the probability the model is in states i and j at times 
t and t+1 given the observed sequence 𝑉(. With these, the 
parameters of the HMM can now be updated: 

 

𝜋k = 	𝛾5(1)																																																																(14) 
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𝑎k5> = 	
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4F$
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																																																	(15) 
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 where 1HpFHq = s1,			𝑖𝑓	𝑜4 = 	𝑜n0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (16) 

 

These updated parameters are then fed back into the 
estimation step and the process repeats iteratively until a 
desired level of convergence is achieved. Note: It is 
possible for the algorithm to converge prematurely due to 
a local maximum, in this overfitting will occur. To counter 
this, one can adjust the tolerance and train using different 
initial parameters.  

4. Research Methodology  
4.1. Dataset 

One of the difficulties and Challenges associated with 
using machine learning is finding a large realistic training 
dataset. In this study, DDoS dataset is used for the 
evaluation [19]. It contains 27 features, which are 
labeled as either normal or an attack as it shown in Table 
1. The DDoS dataset include four types of the DDoS attack, 
which are Smurf, UDP-Flood, HTTP-Flood and SIDDOS. 
From this data set, a small portion of training and testing 
data is selected for the experimentation of the model. 

4.2. Feature Pruning 
Feature Pruning is a method of eliminating features from 
the original dataset to obtain a subset of features that has 
higher accuracy on low-cardinality sets. It plays a key role 
in building detection models. However, The DDoS dataset 
has 27 Features, from which reducing features from the full 
data set will reduce both the data and the computational 
complexity and improve both the efficiency and the 
accuracy of the model. On the other hand, using all 27 
features without applying Feature Pruning might increase 
the overhead of the model, which leads to increases the 
time to build the model. In order to perform feature 
pruning, we first need to standardize the data and then 
combine the standardized data to one sequence of 
observation, which then could be used afterward with 
Viterbi algorithm to compute the most likely state sequence 
and then be compared to the actual sequence of states to 
determine accuracy of the feature. The feature-pruning 
algorithm that we implemented automates this process and 
eliminates each feature from the full set of the features, and 
then checks the accuracy of the subset of features. More 
features that are least significant are eliminated if the 
obtained accuracy is within a certain tolerance of the 
accuracy, equal, or higher than the previous accuracy of 
every feature combined. This process continues until no 
improvement of the accuracy is observed on elimination of 
features. The pseudo-code is presented in Algorithm 1 that 
shows outlines the steps of method. The features in bold in 
Table 1 are the significant features that obtained by the 
Feature Pruning algorithm that used in our detection 
approach. 
 

 

Table-1 List of features of DDOS dataset. 

Feature 
# 

Description Feature 
# 

Description 

1 SRC ADD 15 PKT IN 

2 DES ADD 16 PKTOUT 

3 PKT ID 17 PKTR 
4 FROM NODE 18 PKT DELAY 

NODE 

5 TO NODE 19 PKTRATE 

6 PKT TYPE 20 BYTE RATE 

7 PKT SIZE 21 PKT AVG SIZE 

8 FLAGS 22 UTILIZATION 

9 FID 23 PKT DELAY 

10 SEQ 
NUMBER 

24 PKT SEND 
TIME 

11 NUMBER OF 
PKT 

25 PKT RESEVED 
TIME 

12 NUMBER OF 
BYTE 

26 FIRST PKT 
SENT 

13 NODE NAME 
FROM 

27 LAST PKT 
RESEVED 

14 NODE NAME 
TO 

28 ATTACK 
/NORMAL 
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4.3. Initializing HMM Parameters 
The next step after obtaining the significant features set and 
before training an HMM is to initialize the parameters.  
Technically, the HMM parameters could be 
initialized random and then determined or estimated over 
several training iterations by using the Baum-Welch 
training algorithm (also known as Forward-Backward 
algorithm). It is necessary to start with a rough guess to 
determine the parameters of HMM (the transition 
probability matrix and emission probability matrix). Once 
they are determined, they can be re-estimated by applying 
the Baum-Welch algorithm and find the more accurate 
parameters and obtain the HMM best describes the 
observed sequence. Then, this trained HMM can be used to 
the testing set to ensure it is able to detect the proper states. 
Fig. 2 shown the flow chart of the proposed approach. 
 

 
5. Performance analysis and evaluation 

 
5.1. Method of performance testing 
To evaluate the performance of our proposed model 
and how accurate the model classifying and 
predicting the class label of attack and normal, we 
need to know the following four terms: True Positive 
(TP):  The number of attacks instances  classified as 
attacks. True Negative (TN):  The number of non-
attacks instances classified as non-attacks . False 
Negative (FN): The number of attacks instances 
classified as non-attacks. False Positive (FP): The 
number of non-attacks instances classified as attacks 

Confusion matrix for a two class case (Attack and 
non-attacks) shown in Table 2 

For this study, we used the following performance 
measures to test the performance of the proposed model: 

Accuracy: the ratio of the total number of 
correctly predicted instances to total number of all 
instances.  In our study, accuracy measures by using the 
Viterbi algorithm to generate a likely state sequence and 
compare it to the known state sequence to get TP, FP, FN, 
and TN. The accuracy can be calculated by using the 
following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																					(17) 

 

The error rate (misclassification rate)/ False 
Negative Rate (FNR):  the ratio of the total number of 
misclassifications to total number of all predictions.  The 
error rate can be calculated by using the following 
equation:  

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 = 	
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁																				(18) 

 
Fall-out/ False Positive Rate (FPR): the ratio of the 
number of detected false positives to total number of 
predictions.  The Fall-out can be calculated by using the 
following equation: 

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 = 	
𝐹𝑃

𝐹𝑃 + 𝑇𝑁																																					(19) 

 
The sensitivity/ True Positive Rate (TPR):  the ratio of 
the total number of detected true positive that are correctly 
identified as attack to total number of positive instances. 
The Sensitivity can be calculated by using the following 
equation: 

sensitivity = 	
𝑇𝑃
𝑃 																																										(20) 

Where, 
P is the number of positive instances, P=TP+FP.  

Table-2 Confusion matrix for a two-class case (Attack and 
non-attacks) 

 Predicted Class 
Attack Non-attacks 

Actual 
Class 

Attack TP FN 
Non-attacks FP TN 

 

 
Fig. 2 Flow chart of training algorithm for HMM 
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The specificity/ True Negative Rate (TNR): the ratio of 
the total number of detected true negative that are correctly 
identified as non-attacks to all the negative instances. The 
Specificity can be calculated by using the following 
equation: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁
𝑁 																																										(21) 

Where, 
N is the number of negative instances, N=TN+FN. 

 
The precision /Positive Predictive Value (PPV) and 
recall: The precision and recall measures are widely 
used for performance evaluation of machine-learning  

classification methods. Precision is the ratio of the total 
number of positive instances that are correctly identified as 
attack to the total number of attacks. Whereas recall is the 
ratio of the total number of instances that are correctly 
identified as attack to the total number of all the instances 
that correctly identified as attack and misidentified attacks 
(it is the same as sensitivity). The precision and recall can 
be calculated by using the following equations 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																		(22) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																								(23) 

 

F measure: F measure is a testing score that testing the 
accuracy of the model and it considers both the precision 
and recall. F measure can be calculated by using the 
following equation 

𝐹	𝑚𝑒𝑎𝑢𝑟𝑒 = 	2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑎𝑐𝑎𝑙𝑙 													(24) 

 

Roc curve: One of the prime benefits of using an ROC 
curve is to get the ability to notice  the tradeoff between the 
true positive rate (sensitivity) and false positive rate (1- 
specificity) for all possible cut off points (thresholds) rather 
than just one cut off point. The area under the ROC curve 
(AUC) measures the ability of the model correctly 
distinguish between classes (Attack or Non-attack). Fig 3 
shown the ROC Curves for the performance of algorithms 
HMM, Naive Bayes and Neural Network.   
 

 

 

5.2. Result Evaluation 
The result shows our proposed approach can obtain better 
results in terms of attack detection rate. Moreover, the 
result shows improved performance with a reduced feature 
set after applying the Feature Pruning algorithm and 
selected the most important features. By training an HMM 
and testing it on the DDoS set, attacks were detected with 
greater than 97 percent accuracy in most trial runs.  Table 
4 summarizes the results of an experiment. The 
performance of the HMM algorithm compares against two 
classification algorithms, Neural Network and Naive 
Bayes algorithm. Both were taken from the WEKA. Fig. 4 
shows in a graphical way a comparison between the three 
classification algorithms. 

    Table-4 the summarily of the experiment results 

Performance 
Measures 

/Classification 
Algorithm 

Training/Testing (70/30 %) 
HMM Naive 

Bayes 
NN 

Accuracy 0.9741 0.9348 0.9356 
Error rate 0.0259 0.0652 0.0644 
Fall-out 0.0104 0.1888 0.1623 
Sensitivity/ recall 0.8413 0.9431 0.9418 
specificity 0.9896 0.8112 0.8377 
precision 0.9038 0.9867 0.9893 
F measure 0.8714 0.9644 0.9649 
Area Under ROC 
(AUC) 

0.9334 0.9177 0.8624 

 

 

 Fig 3 ROC curves for the performance of classification algorithms 
HMM, Naive Bayes and Neural Network. 

 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 14

2018 International Journal of Computer Science Issues



6. Conclusion 
In recent years, machine-learning methods are gaining the 
most attention in prediction due to its ability to learn, 
evolve, improve and adapt. Thus, in this paper, we 
presented our detection approach using Hidden Markov 
Models (HMM) that applied and tested on the DDoS 
dataset to detect the DDoS attack.  The result shows that 
we able to produce a great performance with maximum 
accuracy, minimum error rate and False Positive Rate. The 
detection result demonstrated that HMM gives a more 
accurate result than would have been obtained by Neural 
Network and Naive Bayes algorithms while detecting the 
attacks.  It achieved 97.41 % accuracy. 
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Fig. 4   Comparison chart of the performance of algorithms HMM, Naive Bayes 
and Neural Network. 

 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 15

2018 International Journal of Computer Science Issues




