
Automatic Internationalization and Localization Based on 

Android Location Services 

Aiman M. Ayyal Awwad1 and Nur EL-Din EL- Rez2 

 
1 Computer and Information Technology Department, Tafila Technical University, Tafila, 66110, Jordan 

 
2 Institute of Software Technology, Graz University of Technology, Graz, 8010, Austria 

 

 

Abstract 
Android operates on many smartphones in many locales. To 

reach the most users, the app should handle all resources such as 

text strings, layouts, graphics, and any other static data that the 

app needs, in ways proper to the locales where the app will be 

used. Doing that requires internationalization and localization of 

the app to support multiple languages. In this paper, we present 

an approach for localizing the Android app according to the 

location data that the application received from the device. In 

particular, the proposed feature automates the locale detection 

process using Android’s location services. Depending on the 

locale detected the resources’ contents are rendered in a 

particular language used in that locale. The testing results show 

that the proposed feature triggers the restarts of the app with the 

language spoken in that locale, updates the visible user 

interface properly, and delivers a more personal and context-rich 

user experience. 

Keywords: Android, Internationalization, Localization, 

Location-Based Services, Mobile Applications, Smart phones. 

1. Introduction 

Mobile phones and apps play an integral part in our 

everyday life. A tendency toward mobile application 

development has increased in the past few years. In order 

to compete in global markets, mobile app development 

companies need to publish world-ready products. If an app 

is going to be released in various countries or regions, it 

should support the languages of the target market. This 

asks for Internationalization (I18n) and Localization 

(L10n) of the application [1].  

 

Software internationalization and localization are vital 

steps in distributing and deploying software to various 

countries of the world [1, 2]. Users feel more comfortable 

and productive if the app talks to them in their native 

language and shows their cultural values [3]. Every 

country or region has its own language, customs, and 

culture; accordingly, the mobile app should be localized to 

meet all the expectations and needs of local users and 

thereby increase the total number of downloads and 

revenue [2].  

 

Localization of a product requires that the product is 

adapted to both the language and the culture of the 

particular market [2]. The higher an app is ranked in 

search results the higher the number of potential customers 

downloading the app. Therefore, mobile publishers should 

be aware of the app marketing principles in order to get 

the attention of customers in new markets.  

 

As of the first quarter of 2018, Google’s Play Store holds 

3.8 million apps either commercial or free for public 

download. While the Apple’s App Store holds 2 

million apps for download (see Fig. 1) [4]. This huge 

amount of apps to choose from for the main mobile 

platforms and the number of total downloads imply that 

there must be distinguishing features to make one app 

more interesting and usable than others [5, 6].  

 

According to data collected by Google and Admob in 

March 2014, the number of users who have stopped using 

an app due to a lack of localization in selected countries 

varies between 34% and 48% depending on the country 

these data were collected (United States, China, Japan, 

United Kingdom, and South Korea) [7]. This shows that 

there is definitely a need for localization which is also 

reflected by the general IT industry’s planned investment 

priorities for the years 2015-2017, where localization is 

among the top ten [8].  

 

Fig. 1 Available apps in leading app stores. 

 

In recent years, with the rapid advancements of wireless 

communication technology such as Global Positioning 

System (GPS) and Wi-Fi technology, Location-Based 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 42

2018 International Journal of Computer Science Issues



Services (LBSs) have become very common. LBSs are 

becoming vital on smartphones. Many people using LBSs 

to find where they are, track their devices remotely if they 

are lost, find nearby amenities, and get routing directions 

[9]. At the same time, Internet giants, such as Google, 

Facebook, Twitter, and Yahoo, have a rapid expansion in 

LBSs, which, in turn, make the user experience becoming 

better and better [10]. 

 

The LBSs of Android platform provide access to tools that 

can be utilized to find the device’s current location. This 

information can be used for a wide variety of purposes and 

can let a smartphone and the application that runs on it to 

have a better knowledge about its surroundings and 

present a richer user experience [11, 12].  

 

Therefore, in this paper, we employ the LBSs in localizing 

any Android app from the original language to other 

languages according to the location information that the 

app received from the device. The app’s language and 

locale will be switched without switching the 

smartphone’s interface language on the system level. 

2. Internationalization and Localization 

The mobile App Store allows users anywhere in the world 

to access any desired mobile app. Therefore, software 

companies need to develop world-ready apps that need to 

comply with the local user culture and the language of a 

particular market, which requires internationalization and 

localization of the app.  

 

In software development, internationalization and 

localization are activities of adapting applications for 

locales of other regions, and cultures [2]. 

Internationalization is the process of re-engineering a 

software product so that it can be easily adapted to 

different languages, regions, and cultures without further 

modification. While localization is the process of 

customizing an internationalized software for use in a 

specific geographical region or a specific target market. 

Typically, this process includes translating all original 

language strings to the target language and modifying the 

GUI so that it can be appropriate for the local market as 

shown in Fig. 2 [1].  

 

Furthermore, localization is the process of providing the 

appropriate resources for the product based on the device’s 

language settings and making sure the product meets the 

local user’s expectations in terms of language, cultural 

identity, features, and user experience. It aimed at 

developing an accessible, usable, and culturally suitable 

product for a particular locale [2].  

 

It is difficult enough to produce a mobile app with a good 

usability for the home market without worrying about 

potential users in other locales or cultures. Adjusting 

layout, graphics, colors, and menus for other regions and 

languages should be performed by a person who is 

familiar with the cultural and linguistic requirements of the 

particular country. Whether this person is a translator, 

designer, or developer does not matter. It is even better to 

let this process be performed by a usability engineer who 

knows best about software ergonomics and cultural 

variations.  

 

 

Fig. 2 Internationalization and localization 

processes. 

In software design especially for mobile applications, it is 

important to consider the features and attributes of 

different languages. Some of the issues that the 

internationalization process needs to implement include [2, 

13, 14]: 

 Time and dates formats  

 Measurements formats 

 Calendar formats 

 Phone numbers 

 Address formats 

 Currency format 

 User interfaces and printed documentation 

 Text directionality (left-to-right script vs. right-

to-left) 

 Language character encoding sets for textual 

display 

 Names and titles 

 Collation and sorting rules 

 Case conversion 

 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 43

2018 International Journal of Computer Science Issues



Similarly, the localization process may include [2, 13] 

 Language translation 

 Spelling variants (localization, e.g., en-US, en-

CA) vs. localization, e.g., en-GB, en-AU) 

 Visual language (logos and icons which have 

their own particular meanings) 

 Locales (e.g., number formats. In the U.S. 

(1,234.56). In Germany (1.234,56)) 

 Aesthetics (layout direction) 

 Cultural values and social context  

 

The pictures are another issue to consider in the 

internationalization of the app if they express subtle 

cultural connotations within them. Pictures or images may 

have particular negative meanings that may offend 

customers. In the course of localizing software, any kind 

of GUI elements that might be changed according to the 

locale, such as text, images, media, or styles, should be 

declared as resources and externalized from the software’s 

source code [2]. When the app is localized, the source 

code does not need to be changed for each locale, but only 

the app’s resources corresponding to the destination 

locales. 

 

As with pictures, symbols are also another issue that may 

cause problems in the localization of the app. For example, 

icons which represent hand gestures such as an OK sign or 

V-sign may express different meanings in different 

cultures [1]. However, Western symbols do not always 

express the same meaning abroad that they have for the 

local audience. Furthermore, the depiction of animals in 

icons may cause localization issues outside the home 

market.  

 

Moreover, colors may represent cultural meanings that 

need to be analyzed in the app’s localization. Picking the 

incorrect color for the app’s logo or background might 

have destructive consequences. When localizing the 

mobile app into any locale, it is essential to handle a 

catalog of images, logos, and colors to make sure they are 

culturally suited [1, 15]. 

3. Location-Based Services 

One of the prominent factors in the smartphones 

attractiveness is their LBSs. It is inconceivable to have a 

pocket device that can inform you exactly where you are 

in the world. LBSs are becoming increasingly significant 

in the world of mobile development. Such apps now make 

use of location information to present a richer user 

experience [9, 11]. 

  

Android provides some of the most appealing APIs that 

allow a user to determine, contextualize, and map physical 

locations. The location-related APIs and capabilities that 

the Android platform provides are utilized by developers 

to release great location-based applications [11].  

 

Discovering a smartphone’s location allows the developers 

to add an advanced functionality to a wide range of apps. 

For instance, applications that help users track daily 

exercises when hiking, biking, or running; notify them 

when interesting activities and services are nearby and 

where they are located; enable them to track their devices 

remotely; record current time, distance, speed, and other 

metrics; and more [16]. 

3.1 Determining a Device’s Current Location 

One of the main factors for the increase in popularity 

noted for smartphones is their portability; therefore, 

mobile app developers often have to retrieve the device’s 

current location. Location information is a key part of apps 

such as map, camera, and social media apps to add another 

aspect to the information they are already handling. For 

mobile developers who have decided to get the current 

location of a smartphone and track the location of a 

smartphone while it moves, Android supports a fairly 

robust API to its location service [11]. 

3.2 Android Location API Components 

Location-based service is a term that describes the various 

technologies the user can employ to discover a device’s 

physical location. The majority of the classes that the 

developer will frequently use when working with location 

data in Android are located in the location package. Fig. 3 

shows a high-level summary of how the location’s 

components relate to each other. The components of that 

package are: 

 

Location Manager 

LocationManager is the entry point into the location 

services on Android. The LocationManager enables an app 

to retrieve the device’s current location, track movement, 

inform Android when it is interested in obtaining updated 

location status (i.e., set up location update listeners), find 

available LocationProviders, and monitor the status 

information of the GPS receiver. The LocationManager 

can also provide information about the last known device’s 

location [11, 16].  

Location Provider 

The LocationProvider’s component is an abstraction for 

the different technologies that are used to determine the 

device’s current location in Android. Though each 

provider produces location data differently, they all 

provide similar data to an app in the same way. Depending 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 44

2018 International Journal of Computer Science Issues



on the device, each technology, available as a 

LocationProvider, offers various capabilities - including 

variations in power consumption, accuracy, and the ability 

to find elevation, speed, or bearing information [11, 12].  

Location 

Location’s component encloses the device’s current 

location data provided by a LocationProvider to a mobile 

app. It carries the quantifiable data such as latitude, 

longitude, and altitude. Once an app has handled a 

Location object, it can start the processing operation over 

that data [11].  

Criteria 

The Criteria component is used in a mobile app to query 

the LocationManager for LocationProviders that support 

specific requirements. This is helpful when an app is less 

interested in which LocationProvider is used and more 

interested that LocationProviders have some basic 

requirements. Practically, an app can set/unset attributes 

on a Criteria component to utilize the requirements of the 

chosen LocationProvider. In most situations, it is not 

recommended that the user can explicitly choose which 

LocationProvider to use. It is better to specify the app’s 

requirements and allow Android to determine the best 

technology to use. The Criteria component is usually used 

to dictate the requirements of a provider in terms of 

accuracy, power use, and the ability to retrieve the 

elevation, speed, and bearing information [11, 12].  

Location Listener 

The LocationListener interface includes a collection of 

callback methods that are called in response to variations 

in a device’s current location or variations in location’s 

service state [11].  

 
Fig. 3 Android’s location package components [11]. 

 

 

 

 

3.3 Selecting the Appropriate Location Provider 

This section provides the technologies that enable the user 

to find the smartphone’s current location such as GPS and 

cell- or Wi-Fi-based location sensing techniques. The user 

can determine explicitly which technology to use by name, 

or provide a group of criteria in terms of accuracy, cost, 

and other requirements and permit Android to pick the 

most appropriate. 

GPS Location Provider 

Nowadays, mobile phones are usually equipped with a 

GPS sensor. Due to the many satellites which are orbiting 

the earth, you can use a GPS sensor to determine user’s 

location easily. The GPS system operates with 27 satellites 

in space known as the Global Navigation Satellite System. 

Particularly, 24 of the satellites are active and three are 

backups. Each satellite revolves around the Earth every 12 

hours regularly broadcasting the changing position data. 

The smartphone can determine a location in the world in 

longitude and latitude by performing computations on data 

from at least three of these satellites [11]. 

Location-based services use latitude and longitude to 

pinpoint physical locations. Latitude represents locations 

on the Earth in terms of “up or down”. Latitude is the 

angular distance of a location on the Earth north or south 

of the Equator. The latitude of the Equator is 0°, the 

latitude of the North Pole is 90° N (north), and the latitude 

of the South Pole is 90° S (south). On the other hand, 

longitude represents locations on the Earth in terms of 

“left and right”. Longitude is the angular distance of a 

point’s meridian from the Prime Meridian. Lines of 

longitude are often referred to as meridians. The longitude 

of the Prime Meridian is 0° and the longitude of the 

Antimeridian is 180° as shown in Fig. 4 [12, 16]. 

In addition to latitude and longitude, which represent the 

vertical and horizontal location on the Earth, some 

geospatial sensors, including location providers in 

Android, can also express other metrics such as elevation, 

bearing, and speed. Elevation represents altitude or height 

above sea level on the Earth. The bearing expresses the 

direction (in degrees east of true north) from one’s current 

location to another point or a person’s manner of standing 

or moving. Speed means the rate at which something 

moves or how fast something is moving over the ground 

[11, 16]. 

 

The GPS location provider uses orbiting satellites and time 

to find the current location of a device and provide 

accurate location information. However, GPS provider 

needs a clear sky to operate and therefore does not always 

operate indoors or where satellites cannot penetrate (such 

as a tunnel through a mountain or underground 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 45

2018 International Journal of Computer Science Issues



environments). GPS is problematic when used in an urban 

environment where high buildings can cause signal 

problems. Nevertheless, because it depends on a separate 

radio, the GPS provider can also consume lots of battery 

power more than other location providers [11]. 

 
Fig. 4 Latitude, longitude, and coordinate system grids represented on a 

globe. 

 

Cell-tower Location Provider 

Another efficient means to discover a smartphone’s 

current location is through cell tower triangulation. When 

a mobile phone is turned on, it is regularly in contact with 

a cell tower enclosing it. By knowing the identity of the 

tower that a device is currently connected to, it is possible 

to interpret this information into a physical location by 

connecting to several databases storing the cell towers’ 

identities and their precise geographical locations. The 

advantage of cell tower triangulation is that it operates 

indoors; but, it is not as accurate as GPS. Cell tower 

triangulation operates best in dense areas where the cell 

towers are closely placed [11, 16].  

Wi-Fi Network Location Provider 

The third technology for discovering the location of a 

device is to use Wi-Fi triangulation. In practice, the device 

records what Wi-Fi access points can discover and the 

current signal strength of those access points. However, 

the device connects to a Wi-Fi network and examines the 

service provider against databases to define the location 

serviced by the provider. Further, as compared to the other 

technologies, Wi-Fi triangulation is the minimum accurate 

and often consumes less battery power than the GPS 

sensor [11, 12]. 

 

 

4. Employing Android Location Services in 

Localizing Mobile Apps 

In this section, the design and implementation of 

employing location services in the localization process are 

presented in detail. The ability to create apps that support 

language switching based on an up-to-the-current-time 

location information enables them to present an incredible 

level of usability that was before not possible [11].  

 

Since the LocationManager is the first door of the location 

service, the app needs to make a reference to the 

LocationManager and get the last known location. This 

can be achieved by using the following code snippet. 

locationManager = (LocationManager) 

        getSystemService(Context.LOCATION_SERVICE); 
String provider = locationManager.getBestProvider(new Criteria(), true); 
Location locations = locationManager.getLastKnownLocation(provider); 
List<String> providerList = locationManager.getAllProviders(); 

double longitude = locations.getLongitude(); 

double latitude = locations.getLatitude();  

To get the device’s current location, we use the Android 

Geocoder. Geocoding enables the developer to convert a 

street address to its latitude and longitude coordinates. 

Android gives the ability to geocode and reverse geocode 

(translate from latitude and longitude coordinates into 

location name) without the necessity for a third-party 

library. The Geocoder classes are introduced as part of the 

Google Maps library. The Geocoder class provides access 

to two geocoding methods [12, 17]: 

 Forward geocoding: determines the latitude and 

longitude of a location name. 

 Reverse geocoding: determines the location name for a 

given latitude and longitude. 

 

The Geocoding is used to translate between a location 

name and longitude/latitude map coordinates. The returned 

values for these calls are contextualized by means of a 

locale [12]. The following snippet of code is used to set 

the locale when creating the Geocoder. 

Geocoder geocoder = 

        new Geocoder(getApplicationContext(), Locale.getDefault());  

Both geocoding methods return a list of address objects. 

Each address object contains as much detail as the 

Geocoder can able to resolve. This can include the 

latitude, longitude, phone number, and granular address 

information from country to a street and house number as 

illustrated in the below snippet of code. 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 46

2018 International Journal of Computer Science Issues



List<Address> listAddresses = null; 

try { 

    listAddresses = geocoder.getFromLocation(latitude, longitude, 1); 

} catch (IOException e) { 

    e.printStackTrace(); 

} 
String countryName = listAddresses.get(0).getCountryName(); 

String countryCode = listAddresses.get(0).getCountryCode();  

To support multiple languages in an Android app, a new 

localization feature (to handle multi-language string 

resources) is created. Actually, we build up string 

resources based on the language-country codes which are 

supported by the application. These additional “values”-

directories are created inside the resource folder (“res/”) 

which folder name includes a hyphen and the ISO 

language code and sometimes the country code at the end, 

e.g. “values-en-rGB”. The language codes are two-letter 

lowercase ISO language codes (e.g.,“en”) based on ISO 

639-1, while the country codes are two-letter uppercase 

ISO country codes (e.g., “GB”) based on ISO 3166-1 [18]. 

 

To localize the Android app based upon the location 

data (longitude and latitude) that we (or our providers) 

received from the device, we need to map between the 

country code and its corresponding language code. In 

Android, a Map is an object that maps keys to values. A 

map cannot include duplicate keys; each key can map to at 

most one value as shown in Fig. 5 [19].  

 
Fig. 5 The HashMap for country and language codes. 

 

We identify a list of countries codes with their associated 

official language codes as shown in the snippet code 

below. The Map interface offers three collection views, 

which allow a map’s contents to be viewed as a collection 

of keys, a set of values, or a collection of key-value 

mappings [19].   

localeMap.put("US", "en"); 

localeMap.put("ES", "es"); 

localeMap.put("JO", "ar"); 

localeMap.put("PK", "ur"); 

Many countries, such as Canada, India, Ireland, South 

Africa, and Switzerland, are officially multilingual in their 

population. Some countries have official languages but 

also have regional and local official languages such as 

Brazil, China, Mexico, Russia, Spain, and Taiwan [20].  

 

In practice, due to the reality of some countries have 

populations who speak multiple languages we cannot 

automatically convert the country code to its 

corresponding language code (i.e. there is no built-in 

method). On the other hand, the Operating System (OS) 

localization method may support multiple variants of a 

particular language for different countries (for example, 

en_GB vs en_US). Therefore, we need to use the 

MultiMap object; A Map that supports multiple values per 

key.  

 

For localization purposes, we identify a set of countries 

and languages codes within the Multimap interface. For 

example, in Canada, English and French are the mother 

tongues of Canadians. So, we put one key “CA” with two 

different values in localeMap object as illustrated in the 

below snippet of code. 

localeMap.put("CA", "en"); 

localeMap.put("CA", "fr"); 

Similarly, in Switzerland, there are four official languages 

spoken in different regions of the country: German, 

French, Italian, and Rumantsch (see code snippet) [21]. 

localeMap.put("CH", "de"); 

localeMap.put("CH", "fr"); 

localeMap.put("CH", "it"); 

localeMap.put("CH", "rm"); 

In the proposed feature, the below snippet of code returns 

the value to which the specified key is mapped, in other 

words, a language code associated with the country code is 

determined based on the location that has been received. 

Also, the proposed feature should list all languages and 

locales available in the received location. 

Multimap<String, String> stringMap = Multilingual.localeMap(); 

String languageCode = ""; 

ArrayList<String> localesWithSameCountryCode = new ArrayList<>(); 

for (Map.Entry<String, String> entry : stringMap.entries()) { 

    if (entry.getKey().equals(countryCode)) { 

        localesWithSameCountryCode.add(entry.getValue()); 

        languageCode = entry.getValue(); 

        Log.i("value", languageCode); 

    } 

}  

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 47

2018 International Journal of Computer Science Issues



However, to support multiple languages on the app level it 

is necessary to instantiate a new locale for each supported 

language. A Locale object represents a specific 

geographical, political, or cultural region [1, 2]. The string 

value given (languages and country codes) will be used for 

setup (see code snippet).  

Locale locationLocale = new Locale(languageCode, countryCode);  

At app’s runtime, the Android will load the appropriate 

resources according to the device’s current location’s 

language. An app can include multiple sets of resources, 

each customized for a different device configuration. 

When the app is developed, the default and alternative 

resources for the app should be created. When users run 

the app, the Android system automatically selects and 

loads the proper resources, based upon the device’s current 

location as shown in Fig. 6.  

 
Fig. 6 The sequence steps for the proposed feature. 

When the language of an app is changed, the whole app 

should be recreated and the currently visible UI should be 

updated properly according to the extracted language. So, 

if the app has any data object, the object’s instance state 

must be handled (saved and restored) as shown in Fig. 7. 

5. Testing Results and Discussion 

The primary goal of the proposed feature is to employ the 

LBSs in localizing the Android App, therefore, enhancing 

overall user experiences. Certainly, the functionality of the 

proposed feature should be tested in different countries 

with different languages. The proposed feature is tested 

using the Pocket Code
1
 as a reference. Pocket Code, 

Catrobat’s version for the Android platform, is a free and 

open source visual programming language environment 

for smartphones [3]. 

                                                           
1
 https://catrobat.org 

 

Fig. 7 The sequence of processes for locale switching. 

To evaluate the quality of the proposed approach, different 

mobile testers from different countries are dedicated to 

testing the LBS feature. We provide each of them with the 

APK (Android Package Kit, i.e. Android application 

package) file for Pocket Code. Actually, the tester’s 

mission is to launch the product in his location and verify 

whether the expected and actual results are matched or not. 

However, if the actual locale is not the same as the 

expected locale, the actual locale is recorded in the 

“Actual locales” column. If the actual locale is the same as 

the expected locale, “Pass” is recorded in the “Actual 

locales” column to indicate that the expected and actual 

locales are identical as illustrated in Table 1. 

Table 1: The expected and actual results for the proposed feature 

Country Expected locales Actual locales 

United States English Pass 

France French Pass 
Jordan Arabic Pass 
Spain Spanish Multi-Locale List 

Austria German Pass 
Italy Italian Pass 

Switzerland 

German, French, 

Italian, or 

Rumantsch 

Multi-Locale List 

 

Fig. 8 (a) – (e) shows the localized versions for different 

languages: English, French, German, Italian, and Arabic in 

the selected countries: United States, France, Austria, 

Italy, and Jordan, respectively. During the testing phase, it 

is found that the proposed feature localizes the Pocket 

Code properly, and the product is cosmetically 

appropriate, linguistically correct, and culturally congruent 

to local customs and that no issues have been presented 

during the localization process. 

 

For the countries that are officially multilingual (e.g., 

Switzerland), the user can tap the location icon that 

appears in the ActionBar and then selects her preferred 

locale from the list of available locales (see Fig. 8 (f)).  

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 48

2018 International Journal of Computer Science Issues



   
(a) (b) (c) 

   
(d) (e) (f) 

 

Fig. 8 Screenshots for Pocket Code’s localized version (a) Origin version (b) French (c) German (d) Italian (e) Arabic (f) Available locales in Switzerland. 

 

 

 

 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 49

2018 International Journal of Computer Science Issues



6. Conclusion 

In this paper, a feature for localizing the Android app 

according to the received location data is introduced. In 

most of the applications, it will be more useful to present 

to users an option for location-based language switching. 

It will not affect the default language settings for the 

device and will not make any issue for other applications 

on the user’s device. Using location sensor, locale 

switching feature is enriched with location information 

which allows the Android app to be correctly localized and 

present an incredible level of usability. The testing results 

show that the proposed feature localizes the Android 

app properly without any issues that may be produced 

during the localization process and after automating 

internationalization and localization process there will not 

be a language barrier for the mobile apps users. 

 
Acknowledgments 

The authors would like to thank Professor Wolfgang Slany 

and the Catrobat development team
2
. 

References 

[1] Aiman M. Ayyal Awwad, “Localization to 

Bidirectional Languages for a Visual Programming 

Environment on Smartphones”, International Journal of 

Computer Science Issues (IJCSI), Vol. 14, No. 3, 2017, 

pp.1. 

[2] Aiman M. Ayyal Awwad, and Wolfgang Slany, 

“Automated Bidirectional Languages Localization 

Testing for Android Apps with Rich GUI”, Mobile 

Information Systems, Vol. 2016. 

[3] Luhana, Kirshan Kumar, Christian Schindler, and 

Wolfgang Slany. “Streamlining mobile app 

deployment with Jenkins and Fastlane in the case of 

Catrobat’s pocket code”, IEEE International 

Conference on Innovative Research and Development 

(ICIRD), Bangkok, 2018, pp. 1-6.  

[4] Number of apps available in leading app stores as of 

1st quarter 2018, The Statistics Portal, Statista. 

Accessed: 2018-07-05. [Online]. Available: 

https://www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores/ 

[5] Cumulative number of apps downloaded from the 

Google Play as of May 2016 (in billions), The 

Statistics Portal, Statista. Accessed: 2018-04-05. 

[Online].Available:https://www.statista.com/statistics/2

81106/number-of-android-app-downloads-from-

google-play/ 

[6] Cumulative number of apps downloaded from the 

Apple App Store from July 2008 to June 2017 (in 

billions), The Statistics Portal, Statista. Accessed: 

2018-03-12. [Online]. Available: 

                                                           
2
 http://developer.catrobat.org/credits 

https://www.statista.com/statistics/263794/number-of-

downloads-from-the-apple-app-store/ 

[7] Share of app users who have stopped using an app 

because it was not localized properly as of March 

2014, The Statistics Portal, Statista. Accessed: 2018-

04-15. [Online]. Available: 

https://www.statista.com/statistics/296304/mobile-app-

abandoment-rate-due-to-lacking-localization/ 

[8] Top information technology (IT) priorities over the 

next two years worldwide as of late 2015, The 

Statistics Portal, Statista. Accessed: 2018-04-15. 

[Online].Available: 

https://www.statista.com/statistics/529314/worldwide-

survey-it-top-priorities/ 

[9] C. Ferreira, L. F. Maia, C. Salles, F. Trinta, and W. 

Viana, “A Model-based Approach for Designing 

Location-based Games”, 16th Brazilian Symposium on 

Computer Games and Digital Entertainment 

(SBGames), Curitiba, 2017, pp. 29-38. 

[10] Mingjie Ma, “Enhancing Privacy Using Location 

Semantics in Location Based Services”, IEEE 3rd 

International Conference on Big Data Analysis 

(ICBDA), Shanghai, 2018, pp. 368-373.  

[11] Greg Milette, and Adam Stroud, Professional 

Android™ Sensor Programming, England: Wrox, 

2012. 

[12] Reto Meier, Professional Android 4 Application 

Development, England: Wrox, 2012. 

[13] N. Kotze, “Internationalization and Localization 

Testing”, Testing Experience: Magazine for 

Professional Testers, No. 27, 2014, pp. 16-19. 

[14] C. Kopsch, “Localization testing one-year status 

report for a localization project”, Testing Experience: 

Magazine for Professional Testers, No. 27, 2014, pp. 

20-22. 

[15] Aiman M. A. Awwad, C. Schindler, K. K. Luhana, Z. 

Ali, and B. Spieler, “Improving Pocket Paint Usability 

via Material Design Compliance and 

Internationalization & Localization Support on 

Application Level”, Proceedings of the 19th 

International Conference on Human-Computer 

Interaction with Mobile Devices and Services. ACM, 

Vienna, 2017, Vol. 99, pp.1-8. 

[16] Charlie Collins, Michael Galpin, and Matthias 

Kaeppler, Android in Practice, United States: 

Manning Publications, 2011. 

[17] Wei-Meng Lee, Beginning Android™ 4 Application 

Development, England: Wrox, 2012. 

[18] Locale, Android Developers, Accessed: 2018-04-10. 

[Online]. Available: 

https://developer.android.com/reference/java/util/Loc

ale 

[19] Map, Android Developers, Accessed: 2018-05-15. 

[Online]. Available: 

https://developer.android.com/reference/java/util/Map 

[20] List of multilingual countries and regions, Accessed: 

2018-06-12. [Online]. Available:  

https://www.revolvy.com/page/List-of-multilingual-

countries-and-regions 

[21] Switzerland’s Four National Languages, Markus G. 

Jud, Accessed: 2018-06-12. [Online]. Available: 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 50

2018 International Journal of Computer Science Issues

https://forums.realmacsoftware.com/t/how-to-do-location-based-language-switching/12824
https://forums.realmacsoftware.com/t/how-to-do-location-based-language-switching/12824
https://www.statista.com/statistics/529314/worldwide-survey-it-top-priorities/
https://www.statista.com/statistics/529314/worldwide-survey-it-top-priorities/
https://developer.android.com/reference/java/util/Locale
https://developer.android.com/reference/java/util/Locale
https://developer.android.com/reference/java/util/Map
https://www.revolvy.com/page/List-of-multilingual-countries-and-regions
https://www.revolvy.com/page/List-of-multilingual-countries-and-regions


http://official-swiss-national-languages.all-about-

switzerland.info/ 

 

 
Aiman Mamdouh Ayyal Awwad is currently a full-time lecturer in 
the Department of Computer Science and IT at Tafila Technical 
University. He received his B.Sc in Computer Science from Mutah 
University in 2007 and his M.Sc in Computer Science from the 
University of Jordan in 2010. He obtained his Ph.D. in Computer 
Science from Graz University of Technology/ Austria in 2017 with 
research interests related to smartphone applications. From 
February 2010 to September 2014, he was a lecturer at Computer 
Science and IT Department / Tafila Technical University. He has 
more than 7 publications in various international journals and 
conferences. His research interests include mobile computing and 
applications, image processing, and cellular automata. 
 
 
 
 

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.1467655 51

2018 International Journal of Computer Science Issues

http://official-swiss-national-languages.all-about-switzerland.info/
http://official-swiss-national-languages.all-about-switzerland.info/



