
A Rich-Variant Architecture for a User-Aware multi-tenant SaaS

approach

Houda Kriouile
1
 and Bouchra El Asri

2

1

2

 IMS Team, ADMIR Lab, ENSIAS, Rabat IT Center, Mohammed V University in Rabat

Rabat, Morocco

 IMS Team, ADMIR Lab, ENSIAS, Rabat IT Center, Mohammed V University in Rabat

Rabat, Morocco

Abstract
Software as a Service cloud computing model favorites the

Multi-Tenancy as a key factor to exploit economies of scale.

However Multi-Tenancy present several disadvantages. Therein,

our approach comes to assign instances to multi-tenants with an

optimal solution while ensuring more economies of scale and

avoiding tenants hesitation to share resources. The present paper

present the architecture of our user-aware multi-tenancy SaaS

approach based on the use of rich-variant components. The

proposed approach seek to model services functional

customization as well as automation of computing the optimal

distribution of instances by tenants. The proposed model takes

into consideration tenants functional requirements and tenants

deployment requirements to deduce an optimal distribution using

essentially a specific variability engine and a graph-based

execution framework.

Keywords: Cloud Computing, SaaS, Multi-Tenancy, Rich-

Variant Component, Rich-Variant Architecture.

1. Introduction

The cloud computing idea dates back to 1961 [1] and it has

become a true technological trend, able to carry out the

strategies of companies in terms of optimization and

rationalization of expenses related to IT. Nowadays, cloud

computing is one of the most used technologies for

building and delivering IT services, using different service

delivery models depending on services nature.

Cloud computing characteristics - as on-demand self-

service, wide network access, resource pooling, fast

elasticity, and measurable service - enable to give the

illusion of having infinite resources available, to request

when and as we want. Thus, it is more interesting to have a

software as a service from a cloud provider, than to build

an entire datacenter, with the overcrowding of the

components needed to make the same service available

internally.

However, cloud computing adoption is not so intuitive and

so encouraging that it seems. Indeed, technical,

organizational and economic obstacles make the decision

to adopt cloud computing critical and hesitant. The

scientific community [2][3] has a great interest in this area:

Indeed, several research works focuses on the solution

proposal for each obstacle encountered.

It is in this context that our RV-Cloud approach takes

place where we are interested in one of the commonly

accepted Cloud service delivery models, namely Software

as a Service (SaaS) which refers to a software distribution

model wherein the applications are hosted by a service

provider and made available to clients on a network. In

particular, we seek to provide SaaS providers with a more

flexible, reusable and dynamic system, while allowing

them more economy and less service customers reluctance.

As a key factor in exploiting economies of scale, SaaS

favors the Multi-Tenancy (MT), a notion of sharing

resources within a large group of customer organizations,

called tenants. While MT brings several benefits to SaaS,

however, it only meets the requirements that are common

to all tenants. In addition, tenants themselves are hesitant

about tenancy sharing especially that they need

applications variability management to meet their specific

needs. And on the other hand, they have fears of disclosure

of their information with other tenants, competitors for

example.

Thus, in order to provide elements of answer to the

problem of the variability management of SaaS

applications, several research works were carried out to

propose approaches focusing on the facilitation of

customization of SaaS applications according to tenants

specific requirements [4] [5] [6] [7]. These works are

generally based on the exploitation of MT advantages,

applications variability management mechanisms, and

tenants isolation on the same instance.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 46

2018 International Journal of Computer Science Issues

Similarly, our approach aims to create a flexible and

reusable environment that allows greater flexibility and

elasticity for customers while taking advantage from

economies of scale. The proposed approach is a user-

aware solution that integrates a functional variability

across application components and a deployment

variability at multi-tenant level. In addition, the approach

focuses on satisfying both stakeholders, providers and

customers, while maintaining a level of performance and

efficiency.

To meet the need for reuse and flexibility, we take

advantage of the paradigm of component-based system

development that brings several benefits such as an

improved reuse, a huge flexibility, a configurability, and a

better scalability. These systems are usually built from

components whose individual behavior is well known and

correct. Moreover, through a combination of multi-

functionality and MT, we seek to benefit from the

multifunctional concept of multiviews as well as the high

configurability feature of MT, in order to allow some

economies of scale for SaaS application providers while

minimizing the cost for customers tenants of its

applications. We aim to achieve our goals by using Rich-

Variant Component (RVC) that provide more sharing

capabilities allowing more instance-sharing, more cost

reduction, as well as better communication between tenants

communities. Besides, we use the basics and some

theorems of graph theory to find the optimal distribution of

RVC instances on tenants.

The objective of our approach is to assign instances to

different tenants with a solution using a less number of

instances, thus a more optimal solution than existing

solutions in the literature while promoting the two

objectives sought by cloud providers which are ensuring

more economies of scale and avoiding tenants hesitation.

The most advantageous solution so far is the Mixed-

Tenancy [7]. Our contribution builds on Mixed-Tenancy

results and proposes an improvement of multi-tenant SaaS

applications while automating instances assignment

procedures. Thus, we propose a new artifact called RVC

that allows to customize services according to customer

requirements. Our contribution concern both services

functional customization and automation of the optimal

distribution of instances.

This paper treats the architectural part of our RV-Cloud

approach and present the different elements of our

architectural model. The remainder of this paper is

structured as follows. Section 2 identifies the treated

problem consisting in instances optimization. Section 3

provides definitions of main notions used in this work as

well as introductions to the RV-Cloud approach. Section 4

presents the main contribution of this paper consisting in a

rich-variant architecture. Finally, Section 5 is a conclusion

of the paper.

2. Problem of instances optimization

The emergence of cloud computing has required more and

more variability in term of types of services, types of

deployment, and cloud participants different roles. Thus,

variability modeling is needed to manage the inherent

complexity of cloud systems.

SaaS is a delivery model whose basic idea is to provide on-

demand client applications on the Internet. SaaS

applications are consumed by many customers who have

different requirements. Thus, customers who consume the

same application generally have different requirements.

This type of requirement usually requires alternative

software architectures. In other words, when the

requirements of the applications are changed, the software

architectures of these applications must be adapted to meet

them. As a result, the requirements and architectures have

intrinsic variability characteristics.

In addition, other problems are raised by Multi-Tenancy

which is favored by SaaS to exploit economies of scale.

This means that a single instance of an application serves

multiple clients. Customers or tenants are for example

businesses, clubs or private individuals who have adhered

to the use of the application. Even if several clients use the

same instance, each one of them feels that the instance is

only designated for them. This is archived by isolating

tenant data from each other. Unlike single tenancy, Multi-

tenancy hosts a plurality of tenants on the same instance.

However, one of the main disadvantages of multi-tenancy

applications is the need to ensure the accuracy of all

possible configurations of the application in addition to the

hesitation of customers to share the infrastructure, the code

of the application or data with other tenants. This is

because customers are afraid that other tenants may access

their data due to a system error, malfunction, or destructive

action.

On the other hand, in multi-tenant SaaS applications

consumer does not have to worry about doing updates and

upgrades, adding security and system patches and ensuring

the availability and performance of the service. In addition

to this, fast elasticity and pooling of resources are key

features of the Cloud [8], which promote variability in the

Cloud Computing environment and in particular for multi-

tenant contexts.

Operational cost of the application must decrease by

sharing computing resources among the plurality of tenants.

It is sought to realize a multi-rental application optimized

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 47

2018 International Journal of Computer Science Issues

for the operator and the tenant at the same time. For the

operator, the cost and effort must be reduced, especially

with respect to the use of the IT resource infrastructure.

And for the tenant, the data security needs to be improved

at the same time. Once a deployment configuration has

been created, there will be one or more instances of each

deployment level. The deployment configuration is optimal

if it generates a minimal cost, using only a minimum

number of units of application component instances and

the underlying infrastructure layers.

Cloud operators need less infrastructure to offer an

application in the MT model than the Single-Tenancy

model. But the resources required are not the only way to

save costs, the operator can also minimize the effort

required to maintain a high number of instances [9].

3. User-Aware multi-tenant SaaS approach

based on Rich-variant Components

In order to provide a more flexible, more dynamic and

more reusable environment for SaaS application providers,

our approach proposes a user-aware tenancy based on the

use of RVC.

3.1 Stakeholders

As a first step, we start by defining the different

stakeholders involved in our problem. We distinguish three

different stakeholders: the SaaS Provider, the Customer /

Tenant, and the End User. Their definitions are as follows:

SaaS Provider: A SaaS provider is a company that

develops an application and provides it to the market. A

SaaS operator deploys, runs, and maintains applications on

a rented or owned hardware infrastructure. In our work, we

consider the SaaS provider and the SaaS operator as the

same entity.

Customer / Tenant: A Customer or a Tenant, or even a

Tenant Customer, is a company that pays to use an

application provided by the SaaS provider. The term

Customer is used in a commercial point of view. The

technical term is Tenant. For the rest of our work, both

terms will be used interchangeably as they refer to the

same entity.

End User: An End User is a person or employee who has

the access to an application and, therefore, interacts with it.

Each end user belongs to the staff of exactly one customer

/ tenant or is employed by exactly one customer / tenant.

When designing an application, the application provider

predefines end-user profiles categorizing the business

needs of different end-users according to their missions.

3.2 Rich-Variant Component

In a second step, we define the concept of RVC component

on which our approach is based. The definition of an RVC

depend on the definitions of a software component existing

in the literature. One of the first definitions of the

component concept was proposed by Booch [8] which

defines a reusable software component by “ a logically

cohesive, loosely coupled module that denotes a single

abstraction.” Besides, one of the most quoted and globally

accepted definitions is given by Szyperski [9] who defines

a software component as “ a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition by third

parties.”

Indeed, depending on theese definitions of a software

component, the following definition is a definition of what

is called an RVC component in our present work.

Rich-Variant Component: An RVC is defined as an

application building block that encapsulates an atomic

functionality. All functionalities and properties that the

RVC provides to and requires from other RVCs must be

captured by a described interface, through which all

interactions flow. In addition, an RVC has several

deployment variants, it can be used in its different ways

and therefore changes behavior dynamically depending on

the functionality and the end user. Moreover, it is very

important for this work, that the RVCs can be deployed

independently of each other.

In fact, the focus on the possibility of independent

deployment is of particular importance to our work. This is

because one of the main challenges is that RVCs are

deployed multiple times, to be used by different tenants.

This is only possible if they can be separated from each

other.

In our approach, SaaS applications are built from a number

of basic RVCs, each RVC provides an atomic functionality

and dynamically changes behavior depending on the

available end user profile. Our SaaS applications built

from RVCs then behave differently depending on the end

user profile available.

3.3 Introduction to the RV-Cloud approach

Through our work, we seek to exploit economies of scale

while avoiding the problem of customer hesitation to share

with others as well as allowing better communication

between customer communities.

Our approach proposes a provider platform from which

information is exchanged between the provider and his

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 48

2018 International Journal of Computer Science Issues

customers. The provider presents his offers and the

customers express their needs and requirements.

In addition to collecting customers functional

requirements, the main idea of our work is to collect even

the deployment sharing requirements. This allows to

consider deployment requirements of all tenants when

calculating an optimal distribution of application instances

over customers renting this application. The following are

the definitions of what is called functional requirement,

deployment requirement, and optimal distribution in our

present work.

Functional Requirement: A functional requirement

consist in a selection of application functionalities based

on variation points proposed by the application provider.

Deployment Requirement: A Deployment requirement is

a description of a customer's desire or unwillingness to

share a part of the application. It is necessary for a tenant

to provide a number of deployment requirements for the

deployment of an entire application.

Optimal Distribution: It's about a distribution of

application instances on its tenant customers. A

distribution must necessarily meet the functional

requirements and deployment requirements defined by all

tenants. This distribution is optimal if it results a minimal

cost using an optimal number of RVC instances.

4. Our Rich-Variant Architecture

The overall vision of the architecture of our approach is

presented in Figure 1. The main elements of our

architecture are the configurable applications, the

Variability Engine, the Execution Framework, and the

Optimal Distribution. In the following subsections, we will

explain and detail each element of our Rich-Variant

architecture.

Fig. 1 Our Rich-Variant Architecture.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 49

2018 International Journal of Computer Science Issues

Fig. 2 Organization of applications.

4.1 Configurable Applications

The first element of our architecture is the applications

offered by the provider. These are applications built based

on RVCs. The applications offered by the provider are

organized as shown in Figure 2.

In a first level, the highest level of abstraction, we have the

provider Catalog which is a formal description of all

applications available and offered by this provider. The

Catalog presents applications functional variability by

describing the different functionalities of each application

in addition to the specification of the points of variability,

thus showing to the customers how each application can be

customized.

Considered as an instantiation of the Catalog related to an

application, the Configuration Template comes in a second

level of abstraction describing the basic RVCs that must be

linked to create and build a given application. It describes

the RVCs and their variants needed to realize the different

functionalities of the given application.

The last abstraction level is represented by the Rich-

Variant Configuration generated by the Variability Engine

that is the subject of the next section.

4.2 Variability Engine

All tenants use the same Variability Engine that captures

the functional requirements and deployment requirements

of each tenant. The Variability Engine generates Rich-

Variant Configurations which are each specific to a tenant.

Generated from a given Configuration Template, a Rich-

Variant Configuration describes a specific application

tailored to the needs of a specific tenant with behavior that

dynamically changes when executed according to the end-

user's point of view available. At this level, the values of

the parameters or points of variability of each RVC are

defined, it is the functional description of the concrete

application that will be provided to the tenant. A Rich-

Variant Configuration is derived based on the functional

requirements of a specific tenant.

As we have already mentioned, our SaaS applications are

built of RVCs. Each RVC has a number of variants. And

every application functionality is achieved through the use

of a number of variants of the RVCs building the

application.

From our platform, tenants view the provider Catalog,

choose the functionalities they want to have in an

application, and specify their deployment requirements for

each functionality in the application.

An example of a deployment requirement is "I do not want

to share functionality F with any other tenant", or "I want

to share functionality F with tenant X" ...

To facilitate the collect of deployment requirements, we

formalized their expressions by defining four possible

cases. Tenants can express their deployment requirements

concerning each application functionality using the

following expressions:

 SWAny: Share with anyone (default value)

 SWJ(X): Share with just X ;

 DSW(X): Don't share with X ;

 DSWAny: Don't share with anyone.

Where X can take the values: "P" (as Partners), "Cp" (as

Competitors), "Ti" (for a specific Tenant), or a list of the

previous values.

Requirements are ordered in a table where are stored

requirements of each tenant for each application

functionality. We have a such table for each application.

When a tenant does not specify deployment requirement

for a functionality, it means that the tenant has no problem

sharing this functionality. In this case, we take the default

value which means "Share with any other tenant".

On the side of customers or tenants, we talk about sharing

functionalities, whereas on the side of providers, we talk

about sharing variants of RVCs. As a result, the final step

of the Variability Engine is to translate customer

requirements concerning functionalities into requirements

concerning variants of RVCs. Two tenants can not share a

functionality means that they can not share variants of

RVCs that participate in the realization of this

functionality. Then we get one table by RVC containing

each tenant requirements for each RVC variant. However,

there may be several expressions in one table cell, to settle

this problem we apply the transition rules presented in

Table 1, where Z can take one of four possible expressions

(ie, whatever Z).

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 50

2018 International Journal of Computer Science Issues

Table 1: Transition Rules

1st

expression

2nd

expression
Combination result

SWA Z Z

DSWA Z DSWA

DSW(X) DSW(Y) DSW(X,Y)

SWJ(X) SWJ(Y) DSWA

DSW(X) SWJ(Y) SWJ(Y)

DSW(X) SWJ(X) DSWA

SWJ(0) DSWA

DSW(0) SWA

The Variability Engine captures tenants' functional

requirements as well as tenants' deployment requirements.

It handles the data to give both tenant-specific Rich-

Variant Configuration and tables of requirements

concerning variants of RVCs, one table for each RVC.

Each RVC variant-ordered table is the input of our

Execution Framework. Figure 3 schematizes the

Variability Engine treatment.

Fig. 3 Variability Engine functioning.

4.3 Execution Framework

Our Execution Framework takes as input the ordered

requirements of application tenants provided by the

Variability Engine, and it gives as output the Optimal

Distribution of application instances on tenants of the

application. The work of the Execution Framework with

the progress of its various steps is shown in Figure 4. The

Execution Framework reproduces the treatment for each

RVC.

Fig. 4 Description of our Execution Framework.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 51

2018 International Journal of Computer Science Issues

The first steps of the Execution Framework treatment

consist in the execution of a first algorithm that aims to

extract the deployment relationships. Indeed, based on the

RVCs variants-ordered requirements of tenants, the

algorithm retrieves the deployment relationship between

tenants concerning one RVC as a formal representation

based on graphs.

Deployment relationships: Deployment relationships

concerning an RCV are created based on all deployment

constraints and requirements identified by all customers.

Deployment relationships describe which tenants can share

which variants of the RVC. In our work, we formally

represent deployment relationships with graphs, one graph

by an RVC.

For the formal representation of deployment relationships,

we work with Undirected Edge Labeled Graphs. Indeed,

while vertices represent tenants, edges represent if two

tenants can share variants or not. Besides, labels on edges

indicate the variants involved in sharing relationship

represented by the edge. When an edge has no label, that

means that sharing relationship concerns the RVC with all

its variants.

An example of deployment relationships representation

based on an Undirected Edge Labeled Graph is presented

in Figure 5. It's about deployment relationships of six

tenants T1 to T6 concerning an RVC having four variants

A, B, C, and D.

The second Execution Framework treatment step consists

in executing a second algorithm that aims to inverse the

graph of deployment relationships provided as an output

by the first step to have the inverse graph of deployment

relationships.

Fig. 5 Example of deployment relationships graph-based representation

The third Execution Framework treatment step consists in

the execution of a third algorithm -Algorithm A from

Figure 6- that colors the input graph. This algorithm takes

as input the inverse graph of the deployment relationships.

The coloring of the inverse graph according to our

coloring algorithm makes it possible to deduce the optimal

distribution of the instances of the RVC variants on tenants

of the application.

Fig. 6 Our coloring function's algorithm

While completing these steps, our Execution Framework

achieves its goal by providing application tenants with

application instances deduced from optimal distributions

given as output of the algorithm for each RVC building the

application.

The different algorithms used in the three steps of the

treatment of our Execution Framework as well as the types

of graphs used was detailed in previous work [10] while

mentioning their origins and the main idea of their use.

4.4 Optimal Distribution

Let's first recall the definition of an Optimal Distribution

cited in the previous sections:

Optimal Distribution: It's about a distribution of

application instances on its tenant customers. A

distribution must necessarily meet the functional

requirements and deployment requirements defined by all

tenants. This distribution is optimal if it results a minimal

cost using an optimal number of RVC instances.

Since our SaaS applications are built from a number of

RVCs, calculating the Optimal Distribution of instances of

an application will then entails calculating the optimal

distribution of instances of RVCs building the application.

A big part of our contribution is a treatment that recurs on

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 52

2018 International Journal of Computer Science Issues

every RVC building the application. What we need for this

RVC treatment is the deployment relationships concerning

each RVC resulting from the translation of tenants

requirements for functionalities and which indicates for

each two tenants whether or not they can share a specific

variant of an RVC.

The Optimal Distribution of RVC-based application

instances on tenants is derived from the optimal

distributions of variants instances of each RVC on tenants

while meeting their requirements.

5. Conclusions

Flexibility, dynamicity, and reusability are challenging

issues for cloud environments and particularly for SaaS

application providers. Therein, our user-aware multi-tenant

SaaS approach called RV-Cloud approach comes to create

a more flexible, more dynamic, and more reusable SaaS

environment while using RVCs. In this context, this paper

treats the conceptual part of our RV-Cloud approach and

present the different elements of our conceptual model.

After identifying the treated problem in our work

consisting in instances optimization in cloud computing

environments, the paper provided definitions of main

notions used as well as introductions to our RV-Cloud

approach. Later, we get to present the main contribution of

this paper consisting in our rich-variant architecture. As

future work, we think about projecting our approach in the

domain of Model-driven engineering for a more modern

and more general vision.

References
[1] J. McCarthy, 1961. MIT Centennial Speech. MIT.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia, "Above the Clouds: A Berkeley View of

Cloud Computing". EECS Department, University of

California, Berkeley, 2009

[3] S. Singh, and I. Chana, "Cloud Based Development Issues: A

Methodical Analysis", International Journal of Cloud

Computing and Services Science (IJ-CLOSER), 2013, 2, 73-

84.

[4] R. Mietzner, "A method and implementation to Define and

Provision Variable Composite Applications, and its Usage in

Cloud Computing", Ph.D. thesis., Stuttgart University, 2010.

[5] M. Zaremba, T. Vitvar, S. Bhiri, W. Derguech, and F. Gao,

"Service Offer Descriptions and Expressive Search Requests

- Key Enablers of Late Service Binding", Proc. 13th

International Conference on E-Commerce and Web

Technologies (EC-Web), Vienna, Austria, 2012, 50-62.

[6] S. Walraven, D. V. Landuyt, E. Truyen, K. Handekyn, and W.

Joosen, "Efficient customization of multi-tenant Software-as-

a-Service applications with service lines", Journal of Systems

and Software, vol. 91, 2014, 48-62.

[7] S. T. Ruehl, "Mixed-Tenancy Systems A hybrid Approach

between Single and Multi-Tenancy", Ph.D. thesis,

Department of Informatics, Clausthal University of

Technology, June 2014.

[8] P. Mell, and T. Grance, "The NIST Definition of Cloud

Computing. National Institute of Standards and Technology",

In: Information Technology Laboratory, Version 15

(September 2011), 10–7.

[9] C. P. Bezemer, A. Zaidman, "Multi-tenant SaaS applications:

maintenance dream or nightmare? ", in IWPSE-EVOL’10,
Antwerp, Belgium, 20-21 September 2010, pp. 88-92.

[10] G. Booch, Software Components with Ada: Structures,

Tools, and Subsystems, Benjamin/Cummings Menlo Park,

CA, 1987.

[11] C. Szyperski, Component Software: Beyond Object-

Oriented Programming, 2nd ed. Addison-Wesley

Professional, November 2002. ISBN: 0201745720.

[12] H. Kriouile, and B. El Asri, "Graph-Based Algorithm for a

User-Aware SaaS Approach: Computing Optimal

Distribution", Int. Journal of Engineering Research and

Application, Vol. 6, Issue 12, (Part -3) December 2016,

pp.33-45.

Houda Kriouile was born at Nancy in France, in 1990. She is a
Ph.D. candidate, and a member of the IMS team from the SIME
laboratory, National Higher School for Computer Science and
Systems Analysis (ENSIAS), Mohammed V University of Rabat,
Morocco. She received her engineer degree in computer science
and software engineering in 2012 from the ENSIAS School at
Mohammed V University of Rabat, Morocco.

Bouchra El Asri is a professor in the Software Engineering
Department, National Higher School for Computer Science and
Systems Analysis (ENSIAS), Mohammed V University of Rabat,
Morocco. She received her Ph.D. degree in computer Science
from National Higher School for Computer Science and Systems
Analysis (ENSIAS). Her research activities focus on Cloud
Computing, Engineering of complex systems based on multi-
dimensional components, Generation of safe components,
Development of dynamic systems based on contextual services,
Model Driven Engineering, Transactional services, Specific
domain component engineering.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346047 53

2018 International Journal of Computer Science Issues

