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Abstract

The use of lipreading as a standalone modality for biometric classifi-
cation continues to gain ground but is still presented with several real
world challenges. The paper presents a novel form of video tempo-
ral modelling using the Longest Matching Segment (LMS) method
on a given baseline training model. LMS uses a Vector Quantiza-
tion (VQ) model to encode full training video dynamics by map-
ping it to a frame sequence of maximum likelihood codewords. The
model is applied to person identification from text independent lip
movement on segmented test sets of the CMU-PIE, VidTIMIT and
XM2VTS talking datasets and identification is based on the class
with the longest matching segment. The results show that LMS im-
proves the conventional VQ models especially when combined with
dynamic delta features. Combined with magnitude 2D-FFT (Mag-
2D-FFT) features, the system delivers comparable accuracies to full
face recognition.

Keywords— Lip Movement, Vector Quantisation, Longest
Matching Segment, Person Identification

1.Introduction

From the beginnings in the latter half of the 20th century
lipreading systems have made significant progress in theoreti-
cal research and practical implementation. At first it was as an
important aid to audio speech recognition [1, 2, 3]. Over time
it became more established in human and speech recognition.
Now machine-based lipreading systems are significantly bet-
ter than the human equivalent [4], and there is a wide range
of applications in public security, banking, medicine, and law
enforcement. One such is LipVerify, an easy-to-use biomet-
ric authentication solution developed by Liopa that validates
user identity and performs visual phrase recognition via any
smartphone, tablet, laptop or desktop from viseme profiles [5]
The standalone use of lip motion as a human biological trait
began near the turn of the 21st century. Kittler et al in 1997
showcased the importance of lip boundary geometric features
in identity recognition [6]. Yamamoto et al in 1998 showed
significant performances with lip movement captured from
sensors around the mouth [7]. CetingÃijl et al in 2004 ob-
served improved speaker identification with speaker depen-
dent lip motion features [8, 9]. CetingÃijl et al in 2006 fur-
ther showed that explicit lip motion information was useful

for speaker identification and speech-reading [10]. Faraj et al
in 2009 achieved 80% person recognition accuracy with Sup-
port Vector Machines (SVM), a Radial Basis Function (RBF)
kernel and optical flow features on the full XM2VTS dataset
[11]. Bakry et al in 2013 presents a Manifold Kernel Partial
Least Squares (KPLS) for lipreading and speaker identifica-
tion on the AVLetters and OuluVS databases [12].
On the other hand the inherent low quality of real world video
is prone to weakly constrained factors and limited cooperation
leaving room for more robust improvements. The encoding of
more accurate temporal dynamics is a significant contributor
to recognition accuracy. It can be grouped as fixed or vari-
able, short or long-range, dynamic features captured during
feature extraction, or dynamic models built into the training
model. Scholars have adopted several means of encoding the
different forms for person identification. The most common
form of dynamic features are fixed short range delta (veloc-
ity) and delta-delta (acceleration) features [13], but there are
other types. Edwards et al improved person identification by
actively learning how individual faces vary through in video
[14]. FrÃűba et al in 2000 uses lip motion features derived
from the inter-frame optical flow power spectrum to evaluate
sensor calibration in a biometric person recognition frame-
work [15]. Lee et al applied a pattern classification algorithm
called LDG (Locality Discriminant Graph) to the temporal fil-
tering of visual speech in 2007 [16]. Zhang et al proposed a
two-stage, space-time discriminant analysis to extract lip mo-
tion features in 2012 [17].
Hidden Markov Models (HMMs) are among the most widely
used dynamic models for a visual-only recognition systems
due to its strong time sequence ability [18]. Luettin et al ob-
tained promising results in 1996, using spatial and temporal
HMM analysis with lip contour and shape-based features on
the Tulips database [19]. Jourlin et al extended this task to the
M2VTS database using 37 speakers in 1997 [20]. Liu et al
in 2003 used Adaptive HMMs to learn temporal statistics of
a subject model for video-based face recognition [21]. Ship-
ilova et al in 2006 presented a person recognition problem
using Luettin’s setup with HMMs and GMMs and achieved
better lip-based recognition results than face-based or voice-
based methods [22], a work later improved by Faraj in [23].
Seymour et al in 2008 used HMMs with DCT and DWT fea-
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tures for visual-only identification [13]. In 2012 Mehraj et al
presented a comparative review of various lip based biomet-
ric techniques using HMMs trained with DCT and lip contour
features on the VidTIMIT corpus [24].
Deep learning has delivered step improvements over HMMs
in lipreading classification. Techniques such as Deep Autoen-
coders (DAE) [25] and Deep Boltzmann Machines (DBMs)
[26] were used between 2011-12 in cross-modality unsuper-
vised feature learning to improve classification performance
on the AVLetters and CUAVE databases.

2.Modelling the Video Temporal Dynamics for
Person Identification

LMS has been successfully used in statistical training to
model long range audio speech dynamics. Jafari et al used
LMS with frame-based GMMs for text-independent speech
recognition [27]. Srinivasan et al used the same setup to dis-
tinguish clean speech corrupted with nonstationary noise [28].
LMS has been combined with HMMs for speechreading [29],
where it is argued to be an improvement opportunity with
Deep Neural Networks (DNNs). However a text independent
system can be suitably modelled as a collection of discrete
frame templates with no time sequence information, or a VQ
model. Since LMS is under study, the baseline model is fixed
throughout, and VQ is proven in face and speech recognition
[30, 31, 32, 33] this paper integrates LMS with a baseline
or conventionall VQ model. The ease of computation makes
VQ a suitable framework to evaluate long-range LMS dy-
namics against conventiona VQ training models with static
and dynamic delta features in person identification.
Let lip motion dynamics be the time series of variations
locked between frame events, containing the unique temporal
discrimination that can be interpreted as biometric signatures.
For lipreading person identification fixed short range dynamic
features and a baseline VQ training model are applied to the
formulation of long-range inter frame dynamics using the
LMS method.

2.1.Training the Lipreading Image Sequence

Given static feature fi of lip ROI frame i, delta features ∆fi
and acceleration features ∆∆fi facilitate the mathematical re-
moval of constant inter-frame bias via the regression formula
[34].
The conventional VQ model is trained with static and dy-
namic features using the Linde-Buzo-Gray (LBG) technique
[35], with Euclidean distance replaced by Cosine Similar-
ity. VQ clusters IX -frame training video X = {xi : i =
1, 2, ..., IX} of each class m into a codebook of N finite vec-
tor mean codewords Φm = [φn,mwn :: n = 1, ..., N,N <=
IX ]. The VQ model for the entire training set Φ is the set of
M codebooks such that Φ = {Φm,m = 1, ...,M}.
Video-based LMS training considers a lipreading database of

M classes containing IX -frame training video X , and M
N -component baseline training models Φm. LMS models
the full dynamics of each video X per class m such that
any segment of any length up to the complete video can be
used as a whole unit for identification, and the same class
produces a greater number, length, and similarity of match-
ing segments over all possible segment lengths than different
classes. LMS maps frame xi to the codeword φn,m with the
maximum cosine similarity, resulting in a time series model
of the maximum-similarity VQ components φnX,i,m. The re-
sulting frame sequence model can be formulated with the fol-
lowing time series of indices:

(nX ,m) = ([(nX,i,m), i = 1, 2, ..., IX ] (1)

The indices (nX,i,m) denote maximum likelihood codeword
sequence of lip ROI templates. This model offers both a
smooth representation of the short-time spectra and a video-
length representation of the temporal dynamics.

2.2.Identifying the Longest Matching Segments

Given TY -frame test video Y = {yt : t = 1, 2, ..., TY } where
yt is a frame at time t, the likelihood of test frame yt associ-
ated with training frame xi is based on cosine similarity mea-
sure ψ(xi, yt) defined as:

ψ(xi, yt) =
xi.yt

|xi|.|yt|
(2)

Rewriting ψ(xi, yt) in exponential form proportional to equa-
tion 2, by raising it to a large positive scalar λ gives:

ζ(xi, yt) = λψ(xi,yt) (3)

The function ζ(xi, yt) takes the form of the likelihood of xi
associated with yt, similar to probability distribution p(xi|m)
[36].
Let Y contain segment Yt:τ = {Yε : ε = t, t + 1, ..., τ},
and frame sequence model (nX ,m) contain a same length
training segment indexed by (nX,u:v,m) = [(nX,i,m) :
i =, u, u + 1, ..., v]. LMS performs identification by seek-
ing the longest matching segment in all frame sequence
models (nX,i,m) of all speakers, forcing a match to the
codeword sequences of training videoX . Assuming indepen-
dence between frames, the likelihood of Yt:τ associated with
(nX,u:v,m) is the likelihood function p(Yt:τ |nX,u:v,m) as a
function of exponential similarity ζ(Yt:τ , XnX,u:v,m) or:

p(Yt:τ |nX,u:v,m) = ζ(Yt:τ , XnX,u:v,m)

=
τ∏
ε=t

λ(ψ(Yε,XnX,ε,m)) (4)

where iε is the most-likely frame map path between test
frames Yε and the training frame sequence model (nX,iε ,m)
so that it = u and iτ = v.
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Assuming equal prior similarity ρ for all video segments S
that may match Yt:τ , the similarity between the test and train-
ing segments is measured by the following posterior proba-
bility formulation P (nX,u:v,m|Yt:τ ) that derives the longest
matching segment:

P (nX,u:v,m|Yt:τ ) =
p(Yt:τ |nX,u:v,m)ρ

p(Yt:τ )

=
p(Yt:τ |nX,u:v,m)ρ∑

S∈Database
(p(Yt:τ |S)ρ) +

∑
S 6∈Database

(p(Yt:τ |S)ρ)

=
p(Yt:τ |nX,u:v,m)∑

m′
∑
X′
∑
u′ ,v′ p(Yt:τ |nX′ ,u′ :v′ ,m

′) + p(Yt:τ |ξt:τ )

(5)

Applying the exponential similarity ζ(Yt:τ , XnX,u:v,m) to
Equation 5 creates a posterior similarity formulation, written
as:

P (nX,u:v,m|Yt:τ ) =
ζ(Yt:τ , XnX,u:v,m)ρ

ζ(Yt:τ )

=
ζ(Yt:τ , XnX,u:v,m)ρ∑

S∈Database
(ζ(Yt:τ , S)ρ) +

∑
S 6∈Database

(p(Yt:τ |S)ρ)

=
ζ(Yt:τ , XnX,u:v,m)∑

m′
∑
X′ (
∑
u′ ,v′ ζ(Yt:τ , Xn

X
′
,u

′
:v

′ ,m′) + p(Yt:τ |ξt:τ ))

(6)

The denominator first term is the sum of the similarity of all
training segments from all locations in all videos of all the
classes that are likely to match Yt:τ . The denominator second
term (p(Yt:τ |ξt:τ )) is the Universal Segment Model (USM)
representing the similarity that Yt,τ is not seen in any cor-
pus segments in the training model. It is calculated as the
frame-by-frame product of either the sum of the maximum
class component similarities normalized over all classes, or
the sum of the class component similarities normalized over
all components, or:

p(Yt:τ |ξt:τ ) =


∏τ
ε=t

M∑
m=1

wm( max
1≤n≤N

(ζ(Yε, φn,m)))

M

∏τ
ε=t

M∑
m=1

wm(
N∑
n=1

(ζ(Yε, φn,m)))

MN
.

(7)
A more robust formulation takes into account both the for-
ward and reverse context of the test video. The forward VQ-
based LMS is the posterior similarity formulation applied to
test segment Yt:τ and training segment (nX,u:v,m) in their
exact frame sequences as shown in Equation 6. The reverse
VQ-based LMS represents the posterior similarity formula-
tion of test segment Yτr:t, and training segment (nX,vr:u,m)
in their reverse frame sequences, where u − vr = v − u and
t− τr = τ − t, given by:

P (nX,vr:u,m|Yτr:t) =
ζ(Yτr:t, XnX,vr :u,m

)ρ

ζ(Yτr:t)

=
ζ(Yτr:t, XnX,vr :u,m

)ρ∑
S∈Database

(ζ(Yτr:t, S)ρ) +
∑

S 6∈Database
(ζ(Yτr:t|S)ρ)

=
ζ(Yτr:t, XnX,vr :u,m

)∑
m′
∑
X′ (
∑
v′r,u

′ ζ(Yτr:t, Xn
X

′
,v

′
r :u

′ ,m) + p(Yτr:t|ξτr:t))
.

(8)

Central LMS is computed over segment lengths 3, 5, 7, ..., 2t+
1, ..., T by the following:

Pcentral(nX,iε ,m|Yε) =


P (nX,u:v,m|Yt:τ ).
P (nX,vr :u,m|Yτr :t) if τ ≤ T and τr ≥ 1

P (nX,u:v,m|Yt:τ ) if τr < 1
P (nX,vr :u,m|Yτr :t) if τ > T .

(9)

2.3.Recognition Formulation using the Longest Match-
ing Segment Method

For a conventional VQ model, assuming the codewords φn,m
are independent, person identification is based on the class
with the maximum product of the best single-frame cosine
similarity ψ or exponential cosine similarity ζ between the
T -frame test video and codeword, defined as:

ScoreV Q =


arg max

1≤m≤M

(∏T
t=1 max

1≤n≤N
(ψ(yt, φn,m))

)
arg max

1≤m≤M

(∏T
t=1 max

1≤n≤N
(ζ(yt, φn,m))

)
.

(10)

The LMS method uses the central posterior similarity for-
mulation Pcentral for classification. Person identification is
based on the class m with the longest matching segment [28],
or the class m containing segment nX,u:v,m with the max-
imum central posterior similarity score Pcentral. This score
is computed from equations 6 and 8, over all possible seg-
ment lengths (3, 5, 7, , ..., 2t+ 1, ...,min(IX , TY )), based on
the exponential likelihood function of Equation 4, or:

ScoreLMS = max
1≤m≤M

(
max

1≤ε≤min(IX ,TY )
(Pcentral(nX,iε ,m|Yε))

)
.

(11)
If the selected class m is the same as that of the test video it
scores a match. Overall system accuracy is achieved by col-
lating all correct matches as a percentage of the total number
of test cases per test set.

3.Person Identification Experiments

Multiple text-independent tasks are carried out to evaluate
the impact of LMS temporal dynamics on lipreading per-
son identification. Test results show there is very little to
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learn from full test videos in the chosen CMU PIE [37], Vid-
TIMIT [38] and the XM2VTS [39] talking datasets, so small
video segments are used instead to simulate limited training
data. Each dataset is preprocessed into cropped and nor-
malized grayscale 48×64 lip ROI frames, further downsized
to 12×16-pixels. Each frame is decoded into 191-length
Mag-2D-FFT, features that are preferred due to their superior
performance over benchmark imaged-based types [29]. Four
similarity-based VQ models per feature type are trained with
resolutions N=8, 16, 32, 64 using a similarity-based Linde-
Buzo-Gray (LBG) method.
LMS training maps each frame to the maximum similar-
ity codeword, encoding temporal dynamics the full training
video length. Person identification on the VQ and LMS
models are performed and the LMS histogram plotted in
Figure 1, revealing an optimum segment length of 3-frames
per database, meaning the longer the test segment the more
potential longest matching segment candidates (nC3) and the
more accurate the model. The XM2VTS has a second peak
at 19-frames, on account of more variations per class from
larger training data. There is limited benefit from LMS to
a 3-frame test video which only has one longest matching
segment candidate. If the test video is under 3 segments the
LMS model is likely to struggle..

Fig. 1: LMS Histogram of the frequency of longest matching
segment lengths on the CMU-PII, VidTIMIT, and XM2VTS
databases.

3.1.Person Identification Using the CMU-PIE Database

The frontal (c27) is selected for training and three-quarter
(c05) profiles selected for test for all 68 speakers of the CMU
PIE database. The maximum VQ resolution is 60 codewords
for the 60-frame training videos. Perfect scores are regularly
achieved with full video, so each test video divided into 3x30-
frame evenly overlapping segments to get 204 test cases. The
similarity-based person identification accuracies in Figure 2
show that the novel introduction of variable long-range LMS
dynamics with static features delivers performance improve-

ment to a VQ-based text-independent person identification
model with static features on the CMU-PIE database given
limited training data and slight variations in pose.

Fig. 2: VQ vs VQ-LMS person identification accuracies on
the CMU-PIE database using Mag-2D-FFT features

3.2.Person Identification Using the VidTIMIT Database

In the VidTIMIT talking dataset the first eight utterances of
each speakers are used for training, while the last 2 are di-
vided into 60-frame equally overlapping segments to com-
plete a 161 member test set, as perfect scores are regularly
achieved with the full video. The Similarity-based person
identification accuracies are shown in Figure 3. The results
show that the more training data with greater discriminative
content in VidTIMIT increases accuracy and consistency with
resolution, and LMS temporal models also return distinct im-
provements on the equivalent baseline VQ models with static
features.

Fig. 3: VQ vs LMS person identification accuracies on the
VidTIMIT database for Mag-2D-FFT features
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3.3.Person Identification using the XM2VTS Database

Preprocessing extracts 176× 144 frames from which normal-
ized 12 × 16 grayscale lip ROIs are cropped from the sig-
nificantly larger XM2VTS database. From the four recorded
sessions of two utterances each, the first three are used for
training and the last for test. Silence is not removed from the
database. The first 100-frames of each test video forms a test
segment resulting in 590 test cases. 382-length dynamic fea-
tures comprising of Mag-2D-FFT static and delta features are
introduced for benchmarking against face recognition. The
Similarity-based person identification accuracies are shown
in Figure 4. The results show stable class discrimination with
consistent trending across resolution N where LMS recogni-
tion accuracies are not just superior; they tends towards face
recognition benchmarks with averages of 90.04% static vs
99.96% LMS and 91.10% delta.

Fig. 4: VQ vs VQ-Delta vs VQ-LMS person identification ac-
curacies on the XM2VTS database for Mag-2D-FFT features.

Fig. 5: Similarity-based person identification using VQ with
LMS dynamics and Mag-2D-FFT-∆ features

The identification accuracies for a VQ-LMS-Delta setup are
compiled in Figure 5 and their performances rated against

Table 1: Benchmarking person identification performance
under near-matching to identical test conditions on the
M2VTS and XM2VTS databases

CITE METHOD FEATURE TRAIN/TEST %REC
Paper VQ Mag-2D-FFT-∆ 1/4 (Session ID) 72.29
[20] HMM Shape,Intensity Protocol 2 72.00
[11] SVM-RBF Optical flow Protocol 2 80.00
[13] HMM DCT-∆∆ 1-3/4 (Session ID) 1.03 EER
[13] HMM DWT Z-Score 1-3/4 (Session ID) 1.55 EER

Paper VQ Mag-2D-FFT-∆ 1-2/4 (Session ID) 100.00
Paper VQ Mag-2D-FFT-∆ 1-3/4 (Session ID) 100.00

state of the art lipreading systems in Table 1. One-utterance,
two-utterance (protocol 2 [11]), and three utterance training
models are developed for all 295 speakers. Once LMS train-
ing and delta features are combined the performance takes a
significant leap towards face recognition benchmarks, achiev-
ing perfect scores on 2-video and 3-video models for all res-
olutions.

4.Conclusion

In this paper LMS is successfully used to model variable long
range lipreading dynamics on a given baseline training model
for text-independent person identification on the CMU PIE,
VidTIMIT, and XM2VTS databases. LMS extracts the com-
plete temporal dynamics of the training videos by mapping it
to a frame sequence of the maximum likelihood codewords
per person. The results show that the novel introduction
of LMS dynamics consistently delivers better person iden-
tification performance in the constrained conditions of the
CMU-PIE and VidTIMIT databases, and balanced training
conditions in the XM2VTS database. When trained with
Mag-2D-FFT-∆ features on the XM2VTS database the LMS
system matches full face recognition accuracies. This pro-
vides a significant real world advantage for faster state of the
art recognition solutions that uses limited training data and
smaller ROI. Overall LMS effectively encodes long range
video dynamics that provides improvement over conventional
VQ, improving VQ trained with dynamic delta features.
LMS has been applied to VQ, HMM, GMM and arguably can
be used with DNNs to further improve biometric temporal
modelling. LMS is therefore a credible biometric detection
tool given only lip movement with a considerable degree of
semi-constrained robustness.
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