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Abstract 
Soft-decision decoding is a very important NP-hard problem for 

developers of communication systems. In this work we propose 

two new dual domain soft decision decoders that use compact 

Genetic Algorithm (cGA) with larger tournament size: the first 

algorithm investigates tournament selection with larger size using 

mutation, and the second employs higher selection pressure with 

randomly generated individuals. The obtained results are 

compared to known previous works and show the effectiveness 

of using larger tournament size in dual domain soft decision 

decoding problem. Behind performances analysis, a complexity 

study is done which shows that both proposed decoders are not 

very complex in comparison with the standard compact Genetic 

Algorithm based decoder (cGAD). 

Keywords:   compact Genetic Algorithm, dual domain Soft 

decision-decoding, higher selection pressure, mutation, 

optimization, tournament size, updating step size. 

1. Introduction

In digital communication, one of the major problems is 

how to deliver the message of the source to the destination 

as faithfully as possible. Error correcting codes are a 

method among others, used to insure reliable transmission, 

by removing errors due to channel noise. Indeed, error 

correcting codes are used to improve the reliability of the 

transmitted data over communication channels susceptible 

to noise.  During data transmission, error-correcting codes 

are used twice: for coding and decoding. Coding 

techniques create code words in the emission by adding 

redundant information to the initial message, and decoding 

methods try to find in the reception the nearest code word 

to the received message (Figure 1). 

Fig. 1 Simplified model of communication systems 

 Decoding algorithms are divided in two categories:  hard 

decision and soft decision. Hard decision decoding works 

with the binary form of the received word. Soft decision 

one works directly on the received symbols [10]. Soft-

decision decoding is an NP-hard problem and has been 

approached in different ways. 

Artificial intelligence techniques were recently introduced 

to solve this problem. Among the different methods used, 

Genetic Algorithms (GAs) [14] have taken a big interest in 

decoding problems like many other scientific areas, and 

was used in many optimization problems. To our 

knowledge, Maini et al. were the first to introduce GAs in 

the soft-decision decoding of linear bloc codes [16]. 

Cardoso et al have also published an influential work on 

hard-decision decoding of linear bloc codes using GAs [8]. 

Belkasmi's team proposed in 2012 [2] a new decoder 
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based on GAs which deals with the dual code unlike other 

genetic decoders that use the code itself. To find the 

optimum solution, the standard GAs has a high processing 

overhead for generations and manipulations of populations. 

It also needs to store all the population's individuals in 

memory, and the lack of simplest way to initialize 

different operators and stopping criterions make it 

impractical to solve real-time optimization problems. 

Recently, a number of algorithms, called Probabilistic 

Model Building Genetic Algorithms (PMBGAs); or 

Estimation of Distribution Algorithms (EDAs) have been 

developed to replace the GA's population and crossover 

operator with a probabilistic representation and generation 

method [4] [11] [19] [17] [13]. The EDAs are divided into 

three categories based on the interdependencies between 

the variables of solutions [15]: the no dependencies model, 

the bivariate dependencies model and the multiple 

dependencies model. 

The compact Genetic Algorithm (cGA) [13], is one of the 

simplest algorithms of the first category, it generates 

offspring population according to an estimated 

probabilistic model of parent population instead of using 

traditional genetic operations. It only needs a small amount 

of memory which makes it useful for memory-constrained 

applications. Shakeel first introduced this algorithm for 

soft-decision decoding using the code itself [18]: his 

decoder uses the generator matrix of the code; this fact 

makes the decoding very complicated for high rate codes. 

We later used this algorithm for dual domain soft-decision 

decoding of linear codes [3], this decoder  is  less  complex  

than Shakeel decoder for codes with a high rate (n-k<<n), 

where n is the code length and k its dimension. 

In this work, we propose two new dual domain soft 

decision decoders that investigates tournament with larger 

size in the compact Genetic Algorithm using mutation and 

higher selection pressure, and then, study their 

performance, compare them with others known decoders 

and study their complexity. This paper is organized as 

follows: section 2 gives a description of the standard 

compact Genetic Algorithm, presents the tournament with 

larger size and how we can introduce it in the standard 

compact Genetic Algorithm. Section 3 develops the new 

Dual Domain Soft-Decision Decoders based on larger 

tournament size using mutation and higher selection 

pressure. Performance analysis is presented in section 4, 

and the complexity one is presented in the section 5. The 

paper concludes with a summary of the results in Section 6. 

2. cGA with larger tournament size 

2.1 The compact Genetic Algorithm 

Harik et al presented in 1998 [13] the Compact Genetic 

Algorithm which is one of the simplest EDAs. Instead of 

dealing with natural operators of GAs, this algorithm uses 

a probability vector (p). During the processes of 

optimization, binary solutions are randomly generated 

from p at each generation, after that, they compete based 

on their fitness values. p is then updated based on these 

solutions until reaching the convergence state known when 

all positions of p became binary (0 or 1). This state of 

convergence represents the final solution of the 

optimization problem. The cGA represents the population 

as a probability vector over a set of solutions and 

operationally mimics the order-one behavior of the simple 

GA with the uniform crossover. The cGA has an 

advantage of using a small amount of memory, and then, 

may be quite useful in memory-constrained applications. 

Algorithm 1 describes the pseudo-code of the cGA. 

 

Algorithm 1: Pseudo code of the compact Genetic 

Algorithm 

Require l the length of p; 

Require 1/λ: The updating step size. 

1. Initialize the probability vector p which length is l 

for m := 1 to l do p[m] := 0:5 

end for 

2. Generate two individuals from p 

a := generate(p); 

b := generate(p); 

3. Let them compete 

winner; loser := compete(a; b); 

4. Update p towards the better one 

for m := 1 to l do 

    if winner[m] ≠ loser[m]  then 

       if winner[m] == 1 then  p[m] := p[m] + 1=1/λ 

       else   p[m] := p[m] - 1=1/λ 

       end if 

    end if 

end for 

5. Check if the vector p has converged 

for m := 1 to l do 

    if p[m] > 0 and p[m] < 1 then  return to step 2; 

    end if 

end for 

6. The probability vector p represents the final solution. 

2.2 Larger tournament size using mutation 

2.2.1 Mutation operator 

Mutation is an operator referring in nature to an "accident" 

that changes DNA and adds a new allele which does not 

exist before. In GAs, its concept is quite simple: a gene is 

chosen randomly and its allele is changed. In the case of 
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binary strings, which we are interested on in this work, 

mutation can be made by complementing the chosen bit. 

Alone, the mutation does not generally advances the 

search for a solution, but it insures the evolution of 

population and avoids the development of a uniform one. 

 

2.2.2 Using mutation to generate individuals 

This version of cGA differs from the standard version at 

the level of competition's vectors generation. Instead of 

using only two vectors a and b, this version uses a number 

of vectors defined according to a parameter s. We generate 

randomly two binary vectors a and b from p, we mutate b 

in such way of generating (s-1) other vectors. We select 

the best according to the objective function between b and 

(s-1) resultant vectors of the mutation, then we let it 

compete with the vector a. This version of the compact 

Genetic Algorithm is going to replace stages 2, 3, and 4 of 

the standard version by the stages given in Algorithm 2. 

 

Algorithm 2: Modification of the cGA to implements s 

vectors of competition using mutation. 

1. Generate two individuals from p 

a := generate(p); 

b := generate(p); 

2. Mutate b to generate (s -  1) binary vectors 

3. Determine the vector with the best value of fitness 

among b and (s - 1) other vectors and to name it N; 

4. Compete(a;N ) 

winner; loser := compete(a;N ); 

5. Update p towards the winner. 

2.3 Larger tournament size using randomly generated 

vectors with Higher Selection Pressure 

The selection operator helps to give more copies to better 

individuals. But it does not always help to keep the better 

genes, because the evaluation is done in the context of the 

individual altogether. Selection pressure controls the 

selection of individuals from one population to the next. It 

gives individuals of higher quality, higher probability of 

being used to create the next generation, and so the 

algorithm will focus on promising regions in the search 

space. In other words, higher selection pressure may play 

the role of memory to store best candidates' solution seen 

during the search progress. It can be insured with the cGA 

by introducing elitism [1], or by using tournament 

selection with increased size [13]. 

Harik et al introduced the simulation of higher selection 

pressure by increasing the tournament size in [13], instead 

of mimicking the pair-wise tournament selection in the 

standard version of cGA. Tournament with size s is 

implemented with the cGA by: 

Generating s individuals from the probability vector and 

find out the best one; 

Let the best individual compete with the others s-1 

individuals, updating the probability vector along the way. 

In order to simulate higher selection pressure, steps 2 to 4 

of the cGA's pseudo-code (Algorithm 1) have to be 

replaced by the ones shown in Algorithm 3. 

Elitism strategy is also a method to implement higher 

selection pressure. It is one of the operational 

characteristics of Genetic Algorithms (GA) that provides a 

reduction of genetic drift by insuring that the best 

candidate solution is allowed to contribute to the next 

generation. That is, the best chromosome is transferred to 

the next generation without alteration. This one gets the 

full chance to compete with the other candidates of the 

next generation.  C. A. Wook and R. S. Ramakrishna 

introduced two elitism-based cGAs: the persistent-elitist 

cGA and the non persistent-elitist one [1]. 

 

Algorithm 3:  Modification  of the cGA using s vectors of 

competition 

Require: l the lenght of p 

Require:1/λ, The updating step size 

1. Generate s individuals from the probability vector p, and 

store them in S : 

for i := 1 to s do  S[i] := generate(p); 

 end for 

2. Rearrange S so that S[1] is the fittest individual ; 

3. Let S[1] compete with the others individuals : 

for j := 1 to s do 

winner; loser := compete(S[1]; S [j ]); 

update p (step 4 of the cGA)    

end for 

3. Decoding algorithms using larger 

tournament size 

The two versions of cGA decoders presented in this work 

try to solve the dual domain soft-decision decoding of 

linear error correcting codes. Dual domain Soft-decision 

decoding is firstly modeled as an optimization problem 

and then a description of the two decoding algorithms is 

given. 

3.1 Dual domain Soft-decision decoding as an 

optimization problem 

The maximum-likelihood soft-decision decoding problem 

of linear block codes is an NP-hard problem [7], and can 

be stated as follows: Given the received vector r and the 

parity-check matrix H, let S = w*H
T
 be the syndrome of w, 
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where w is the hard decision of r, H
T
 is the transpose of 

matrix H, and E(S) be the set of all errors patterns whose 

syndrome is S, find the E ϵ E(S) which minimizes 

correlation discrepancy: 

 

 𝑭𝒓 𝑬 =  (𝑬𝒋|𝒓𝒋|)
𝒏
𝒋=𝟏 =    𝒓𝒋  

𝒏
𝒋=𝟏,𝑬𝒋=𝟏  (1) 

 

Where n is the code length. The optimization problem (1) 

has n error variables, out of which only (n-k) are 

independent, where k is the code dimension. Using the 

algebraic structure of the code, the remaining k variables 

can be expressed as a function of these (n-k) variables. 

An individual is a set of k bits. Let E' be an individual, S1 

be a (n-k)-tuple such that S1 = E' x A where A is a sub 

matrix of H', and S2 be a (n - k)-tuple such that S2 = S + 

S1. We form the E error pattern such that E= (E', E") 

where E' is the chosen individual and E" = S2. Then w + E 

is a code word. The fitness function is the correlation 

discrepancy between the permuted received word and the 

estimated error (E) such indicated in (1). 

Until now, just few numbers of researches treat the soft-

decision decoding as an optimization problem because it is 

identified as a NP-hard problem [7], and also because 

optimization techniques generally solve a large problems 

once when the soft-decision decoding occurs repeatedly in 

communication systems. 

3.2 Description of decoders 

Let C denotes, binary linear block code of length n, 

dimension k and minimum Hamming distance d, defined 

over the Galois field of order 2 (GF (2)). Let H be its 

parity check matrix, and (ri), 1 ≤ i ≤ n be the received 

sequence over a communication channel with noise 

variance σ
2
 = N0/2, where N0 is noise power spectral 

density. We assume that codewords are modulated by a 

BPSK modulator and transmitted over an AWGN channel. 

Once the message received, the demodulator makes hard-

decisions wi, i = 1, ..., n : 

 

𝑤𝑖 =  
1, 𝑖𝑓  𝑟𝑖  ≥ 0
0, 𝑖𝑓  𝑟𝑖  < 0

           (2) 

The receiver then calculates the syndrome w x H
T
 and 

accepts w as the most likely transmitted codeword if the 

syndrome w x H
T
 = 0. If the syndrome w x H

T
 ≠ 0, the 

soft-decision decoding process begins as described in 

algorithms 4 and 5 : the first one implements higher 

selection pressure with randomly generated vectors cGAD-

HSP, and the second one uses mutation to have 

tournament with larger size cGAD-M. 

 

Algorithm 4:  cGAD-HSP 

Require: k, The length of p 

Require: 1/λ, The updating step size 

Step 1: Sorting the values of sequence r in decreasing order 

of reliability |ri|. Further, permute the coordinates of r to 

ensure that the last (n - k) positions of r are the least reliable 

linearly independent positions. Call this vector r’ and let π 

be the permutation related to this vector (r’= π(r)). Apply 

the permutation π to H to get a new check matrix H’= π (H) 

= [AIn -k]. 

 Step 2: Map r’ onto probability vector p; p ϵ R
k
. The 

probability vector p defines the starting point for the 

genetic Search over the k-dimensional vector space F
k
2. It is 

expected that this search would terminate (converge) at a 

vertex of the k-dimensional hypercube. An obvious starting 

point is the center point of the search space, i.e. p = (0:5)
k
. 

However, the search time and complexity can be greatly 

reduced if the search is initiated from a point close to the 

solution vector.  

The following steps describe a method that uses soft 

information of the received vector to determine a starting 

point close to the optimum solution : 

1. z is the vector formed by the k first components of  r’; 

2. Normalize z using 
|𝑧|

𝑚𝑎𝑥 |𝑧|
so that 0 ≤ z ≤ 1 ; 

3. Since we are looking for the error pattern, we map the 

normalized values of z to the probability vector p 

using the transformation : 

 

pi = 1 - zi ; i = 1; 2;…; k                             (3) 

 

Step 3: Generate s binary random vectors and store them in 

S; S[j] ϵ F
k
2 following probabilities: 

 

                 P (S[j] = 1) = p;       

P (S[j ] = 0) = 1 -  p                                     (4) 

 

 An uniform random number generator U (0; 1) can be used 

to generate these vectors as follows: 

 

𝑆[𝑖][𝑗]  =  
1, 𝑖𝑓 𝑈 0,1 ≤ 𝑝𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                       (5) 

 

Step 4: Rearrange S so that S[1] is the fittest individual. 

This step evaluates the fitness values of each individual 

S[j] using the objective function (1), and then rearrange S 

so that S[1] will be the fittest one. 

Step 5: Let S[1] compete with the (s - 1) others individuals 

updating the probability vector along the way. Clearly, the 

best individual wins all the competitions. The update 

strategy is done following rules: 
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 If S[1][i + 1] = 1 and S[j][i + 1] = 0, 

 then pi+1 = pi + 1/λ 

 If S[1][i + 1] = 0 and S[j][i + 1] = 1,  

then pi+1 = pi - 1/λ 

 If S[1][i + 1] = S[j][i + 1],  

then pi+1 = pi 

 The updating step size 1/λ is a user defined 

parameter which is directly related to the 

performance of the decoder [3]. 

Step 6: Convergence attained? Here the algorithm checks 

if all pi are equal to 0 or 1. If not, it goes to step 3, but if 

yes, the converged p gives the final solution for the 

objective function (1). 

Step 7: Encode p and apply inverse permutation of π. 

 

 

Algorithm 5:  cGAD-M 

Require: k, The length of p 

Require: 1/λ, The updating step size 

Step 1: The same as Step 1 in algorithm 4 

Step 2: The same as Step 2 in algorithm 4 

Step 3: Produce a pair of binary random vectors a and b. 

The pair of vectors is produced with the following 

probability:            

                         P (ai ; bi = 1) = pi ; 

P (ai ; bi= 0) = 1 - pi                                             (6) 

 

An uniform random number generator U (0; 1) can be used 

to generate these vectors as function (5) where ai and bi will 

be calculated the same as S[i][j]. Once a and b created, we 

mute b to create (s - 1) binary random vectors. This group 

of vectors belongs to F
k
2. 

Step 4: Estimate the objective function Fr (1). This stage 

estimates the fitness values of the vector b and (s - 1) 

generated vectors by using the objective function (1). Once 

the vector with the best value of fitness is determined, we 

note it N and we let it compete with a. The vector with the 

best fitness (between a and N) is identified as the winner 

whereas the vector with the worst one is identified as the 

loser. 

Step 5: Update of the probability vector p. The vector of 

probability is updated towards the winner using the 

previous rules (step5 of algorithm 4). The size of updating 

step 1/λ is a parameter defined by the user. It directly 

affects the performances of the decoder. 

Step 6: Convergence attained? Here the algorithm checks 

if all pi are equal to 0 or 1. If not, it goes to step 3, but if 

yes, the converged p gives the final solution for the 

objective function (1). 

Step 7: Encode p and apply inverse permutation π. 

4. Performance analysis 

In order to show the effectiveness of the new decoders in 

Dual Domain Soft-Decision Decoding, we carry out 

intensive simulations. For transmission we used an AWGN 

channel with a BPSK modulation. The simulations were 

made with default simulation's parameters outlined in 

Table 1 and the default cGA parameters in Table 2. The 

performance is given in terms of bit error rate (BER) as a 

function of Signal to Noise Ratio (SNR). 

Table 1: Simulations Parameters 

Simulation parameter Value 

Channel AWGN 

Modulation BPSK 

Minimum number of transmitted blocks 1000 

Minimum number of residual bit errors 200 

Default code BCH(63,45,7) 

Table 2: cGA Parameters 

cGA parameter Value 

λ 500 

s 13 

Mutation rate (pm) 0.04 

4.1 The gain of larger tournament size in Dual 

Domain Soft-Decision Decoding 

In order to show that tournament with larger size improves 

the decoding performance, in term of performance, we 

chose binary Golay
1
 (23, 12) code and Figure 2 shows the 

results. From this Figure we can see that the cGAD with 

higher selection pressure using randomly generated 

individuals (cGA-HSP) presents best performances than 

the one using mutation (cGA-M). At BER value equal to 

5.10
-5

 cGA-HSP offers a gain of 0.6 dB, when cGA-M 

gives the same performance as the standard cGAD 

presented by the green curve (s=2). 

                                                           
1
Golay codes : A family of perfect linear error-correcting     

             block codes. 
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Fig. 2 The gain of larger tournament size on performance for Golay 
(23,12) code. 

We compare afterwards the decoder based on standard 

compact Genetic Algorithm that uses only two 

competition's vectors (s=2), and the proposed decoders.  

For BCH
1
 (63,45,7), As we can see in the Figure 3, the 

new decoders outperform the standard one (a gain of  0.9 

dB at BER value 4,5.10
-5

 for cGA-M and a gain of 1.2 dB 

at 2.10
-5

 for cGA-HSP) which proves the efficiency of  the 

proposed Decoders. 

The simulations of the BCH(127,64,21) code show that 

both decoders cGA-HSP and cGA-M are slightly better 

than the standard cGAD as illustrated in Figure 4. 

We do the same thing for the code QR
2
 (71,36) and as 

expected, both versions improve the decoding performance. 

The Figure 5 shows that cGA-HSP gives a gain of 1 dB at 

4.10
-5

, where cGA-M gives a gain of about 1.3 dB at 7.10
-5

. 

For the binary form of the code RS
3
 (15,7,9), the cGA-M 

has a gain of 0.4 dB in comparison with cGAD, where 

cGA-HSP outperforms cGAD by a gain of 0.8 dB  at BER 

value of 6.10
-5

, the listed results are shown in Figure 6. 

 

 

                                                           
1
 BCH codes : Abbreviation of " Bose-Chaudhuri- 

          Hochquenghem " code. A family of cyclic    

          error correcting codes. 
2
 QR codes :  Abbreviation of " Quadratic Residue"  

         codes. A type of cyclic codes. 
3
 RS codes:  An Abbreviation of "Reed Solomon" codes.  

       A family of codes that belongs to the class  

       of non- binary cyclic error-correcting codes. 

 

Fig. 3 The gain of larger tournament size on performance for 

BCH(63,45,7) code. 

 

Fig. 4 The gain of larger tournament size on performance for 

BCH(127,64,21) code. 

4.2 The effect of tournament size 

After showing the impact of selection with increased size 

on the improvement of the cGA decoder's performance, we 

illustrate in Figures 7 and 8 the effect of tournament size 

(s). 

As shown in Figure 7, the size of tournament has a 

considerable effect on the cGA-HSP decoder's 

performance. Applied to the BCH(63,45,7) code, a 

tournament of size s = 3 gives approximately the same 

performance as the standard cGAD. The performances get 

better along the augmentation of s value until s = 13: with 
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tournament of size 13 the gain is about 1.2 dB at 2.10
-5

. 

Simulating tournament of size equal to s = 20 reduces 

them. The degradation caused by a bigger tournament size 

can be interpreted by a premature convergence toward 

local optimum. So we should use the tournament size 

carefully so as to get the better performances of a given 

code. 

 

Fig. 5 The gain of larger tournament size on performance for QR(71,36) 

code. 

 

Fig. 6 The gain of larger tournament size on performance for the binary 
form of RS (15,7,9) code. 

Figure 8 shows that also for the cGA-M decoder; the 

tournament size has an effect in improving the decoding 

performance like the cGA-HSP. When increasing the 

tournament size to s = 3, we reach approximately a gain of 

0.7dB at SNR=4.10
-5

. Comparative performance is 

obtained when tournament size is set to s = 5 and s = 8. 

The gain in BER is elevated to 1dB when s = 13. 

 

Fig. 7 The effect of tournament size with cGA-HSP on BCH code 

(63,45,7). 

 

Fig. 8 The effect of tournament size with cGA-M on BCH(63,45,7) code. 

4.3 The effect of the updating step size 

The updating step size 1/λ is a user defined parameter 

which is directly related to the performance of the decoder. 

This part shows the impact of increasing or decreasing this 

parameter. Figure 9 gives an illustration about the effect of 

decreasing the 1/λ parameter applied to BCH(63,45,7) 

code. We can notice that the performance of our decoder 

get better when decreasing the size until reaching the value 

1/λ = 0.002, after that such a stabilization is remarked even 

if the size of 1/λ is decreased.  

Figure 10 shows also that with s = 20, the performances 

get better when decreasing the updating step size. 
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Fig. 9 The effect of the updating step size for cGA-HSP on BCH 
(63,45,7) code for s = 13. 

 

Fig. 10 The effect of the updating step size for cGA-HSP on BCH 

(63,45,7) code for s = 20. 

The comparison of the updating step size decrease applied 

for tournament size s = 13 and s = 20 is made in Figure 11. 

It shows that for s = 13, the decrease of the parameter 1/λ 

does not impact the performance after the value 1/λ =0.002. 

In contrast, for tournament size s = 20 the same value of 

1/λ improves the performances: for SNR= 4.10
-5

 a gain of 

0.5dB is noticed between s = 13 and s = 20 for 1/λ= 0.0005. 

From this Result we can say that the updating step size has 

also a big effect, in addition to tournament size, on the 

improvement of the decoder performance. When the 

tournament size get bigger, the 1/λ parameter should be the 

smallest possible to have the best performance of the 

decoder. 

 

Fig. 11 The effect of the updating step size on the performance's 

improvement to BCH(63,45,7) code for the cGAD-HSP decoder. 

4.4 The effect of mutation rate 

In this part, we study the effect of the mutation rate into 

decoding performance of cGA-M, for a fixed tournament 

selection and updating step size (s = 13, λ =500). As 

shown in the Figure 12, when increasing the mutation rate 

from pm = 0.001 to pm = 0.01, we reach a gain of 0.8 dB 

at 3.10
-5

. After that, even if we increase to pm = 0.04 we 

don't realize any gain. 

 

Fig. 12 The effect of mutation rate in cGA-M on BCH(63,45,7) code for 
s=13. 

4.5 Comparison of the new decoders with other 

works 

After showing the improvement of decoding performance 

using larger tournament size, and studying the effect of 
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tournament size, the updating step size and the mutation 

rate, we compare now our new decoders with previous 

ones such as Chase-2 algorithm [9], OSD-1 [12], and 

DDGA [2] decoders in term of performance.  

Figure 13 shows the result of the performance's 

comparison for the code BCH(63,45,7). As we can see 

there, the standard cGAD presents the worst performance. 

cGA-M is better than Chase-2 decoder, and the standard 

cGAD. cGA-HSP is better than Chase-2, and OSD-1 

decoders, its performance is equivalent than DDGA 

decoder. These results show that this new decoders 

effectively improve the decoding performance and so, the 

presented algorithms can be efficient for other 

optimization problems. 

 

Fig. 13 Comparison of cGA-HSP and cGA-M with other decoders for 

BCH(63,45,7) code. 

5.  Complexity analysis 

After showing that the new decoder based on Higher 

Selection Pressure (cGA-HSP) gives the best performances 

in comparison with the standard cGA based decoder 

(cGAD) and the mutation based one (cGA-M), we will 

compare the three decoders in term of their complexities. 

For this purpose, we will start by counting the number of 

iterations required by each decoder to reach the 

convergence then we will calculate the analytic complexity 

for them. 

5.1 The average number of iterations to reach 

convergence 

Table 3 shows the necessary average number of iterations 

to reach convergence for the three decoders: cGAD, cGA-

HSP and cGA-M. As we can see there, cGAD and cGA-M 

has an average number of iterations necessary to 

convergence (Ni) around 20000, where cGA-HSP needs 

just around 2500 iterations. Having into account that s=13, 

if we try to calculate the average number of updates 

occurred during every decoding process (steps 5 of 

algorithms 4 and 5), we find that cGAD and cGA-M do 

around 20000 ones since any of these algorithms do just 

one update per iteration. cGA-HSP updates the probability 

vector (s - 1) times at each iteration, so the average 

number of updates for cGA-HSP is (12*2500) around 

30000 updates. So we can conclude from this analysis that 

cGA-HSP is little more complex in term of the number of 

updates than cGAD and cGA-M. 

5.2 The analytic complexity of the new decoders 

Table 4 gives the analytic complexity of the three decoders: 

cGA, cGA-M, and cGA-HSP. It shows that the proposed 

decoders have the same complexity if we neglect the 

tournament size s, given that s is very small in comparison 

with the average number of iterations to reach 

convergence (Ni). 

Table 3: The average number of iterations to reach convergence for the 

case of BCH(63,45,7). 

SNR 

Average Number Of Iterations 

cGAD cGAD-HSP cGAD-M 

1 21166 2677*12 22144 

3 19953 2576*12 17778 

5 20401 2696*12 17230 

Table 4: The analytic complexity of the new decoders 

Decoder Complexiy 

cGAD O(Ni.k(n-k)) 

cGA-HSP O(Ni.s.k(n-k)) 

cGA-M O(Ni.s.k(n-k)) 

6. Conclusion 

In this paper, we presented two new dual domain soft 

decision decoders that use cGA with larger tournament 

size: the first algorithm investigates tournament selection 

with larger size using mutation, and the second employs 

higher selection pressure with randomly generated 

individuals. A study of the new decoders has been done 

and showed that the introduction of mutation and higher 

selection pressure improves the performance of the 

decoding. The obtained results are compared to known 

previous works and show the superiority of the proposed 
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decoders over other existing one. Also a complexity study 

has been done where it shows that the algorithms used for 

decoding are not very complex in comparison with the 

standard compact Genetic Algorithm based decoder 

(cGAD). 
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