
Improved Decoding of linear Block Codes using compact Genetic

Algorithms with larger tournament size

Ahlam Berkani1 , Ahmed Azouaoui2, Mostafa Belkasmi3 and Bouchaib Aylaj4

1 Mohammed V-Rabat University, SIME labo, ENSIAS

Rabat, Morocco

2 FS - El Jadida, Chouaib Doukkali University

El Jadida, Morocco

3 Mohammed V-Rabat University, SIME labo, ENSIAS

Rabat, Morocco

4 FS - El Jadida, Chouaib Doukkali University

El Jadida, Morocco

Abstract
Soft-decision decoding is a very important NP-hard problem for

developers of communication systems. In this work we propose

two new dual domain soft decision decoders that use compact

Genetic Algorithm (cGA) with larger tournament size: the first

algorithm investigates tournament selection with larger size using

mutation, and the second employs higher selection pressure with

randomly generated individuals. The obtained results are

compared to known previous works and show the effectiveness

of using larger tournament size in dual domain soft decision

decoding problem. Behind performances analysis, a complexity

study is done which shows that both proposed decoders are not

very complex in comparison with the standard compact Genetic

Algorithm based decoder (cGAD).

Keywords: compact Genetic Algorithm, dual domain Soft

decision-decoding, higher selection pressure, mutation,

optimization, tournament size, updating step size.

1. Introduction

In digital communication, one of the major problems is

how to deliver the message of the source to the destination

as faithfully as possible. Error correcting codes are a

method among others, used to insure reliable transmission,

by removing errors due to channel noise. Indeed, error

correcting codes are used to improve the reliability of the

transmitted data over communication channels susceptible

to noise. During data transmission, error-correcting codes

are used twice: for coding and decoding. Coding

techniques create code words in the emission by adding

redundant information to the initial message, and decoding

methods try to find in the reception the nearest code word

to the received message (Figure 1).

Fig. 1 Simplified model of communication systems

 Decoding algorithms are divided in two categories: hard

decision and soft decision. Hard decision decoding works

with the binary form of the received word. Soft decision

one works directly on the received symbols [10]. Soft-

decision decoding is an NP-hard problem and has been

approached in different ways.

Artificial intelligence techniques were recently introduced

to solve this problem. Among the different methods used,

Genetic Algorithms (GAs) [14] have taken a big interest in

decoding problems like many other scientific areas, and

was used in many optimization problems. To our

knowledge, Maini et al. were the first to introduce GAs in

the soft-decision decoding of linear bloc codes [16].

Cardoso et al have also published an influential work on

hard-decision decoding of linear bloc codes using GAs [8].

Belkasmi's team proposed in 2012 [2] a new decoder

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 15

2017 International Journal of Computer Science Issues

mailto:ahlam.berkani@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.20943/01201701.1524&domain=pdf

based on GAs which deals with the dual code unlike other

genetic decoders that use the code itself. To find the

optimum solution, the standard GAs has a high processing

overhead for generations and manipulations of populations.

It also needs to store all the population's individuals in

memory, and the lack of simplest way to initialize

different operators and stopping criterions make it

impractical to solve real-time optimization problems.

Recently, a number of algorithms, called Probabilistic

Model Building Genetic Algorithms (PMBGAs); or

Estimation of Distribution Algorithms (EDAs) have been

developed to replace the GA's population and crossover

operator with a probabilistic representation and generation

method [4] [11] [19] [17] [13]. The EDAs are divided into

three categories based on the interdependencies between

the variables of solutions [15]: the no dependencies model,

the bivariate dependencies model and the multiple

dependencies model.

The compact Genetic Algorithm (cGA) [13], is one of the

simplest algorithms of the first category, it generates

offspring population according to an estimated

probabilistic model of parent population instead of using

traditional genetic operations. It only needs a small amount

of memory which makes it useful for memory-constrained

applications. Shakeel first introduced this algorithm for

soft-decision decoding using the code itself [18]: his

decoder uses the generator matrix of the code; this fact

makes the decoding very complicated for high rate codes.

We later used this algorithm for dual domain soft-decision

decoding of linear codes [3], this decoder is less complex

than Shakeel decoder for codes with a high rate (n-k<<n),

where n is the code length and k its dimension.

In this work, we propose two new dual domain soft

decision decoders that investigates tournament with larger

size in the compact Genetic Algorithm using mutation and

higher selection pressure, and then, study their

performance, compare them with others known decoders

and study their complexity. This paper is organized as

follows: section 2 gives a description of the standard

compact Genetic Algorithm, presents the tournament with

larger size and how we can introduce it in the standard

compact Genetic Algorithm. Section 3 develops the new

Dual Domain Soft-Decision Decoders based on larger

tournament size using mutation and higher selection

pressure. Performance analysis is presented in section 4,

and the complexity one is presented in the section 5. The

paper concludes with a summary of the results in Section 6.

2. cGA with larger tournament size

2.1 The compact Genetic Algorithm

Harik et al presented in 1998 [13] the Compact Genetic

Algorithm which is one of the simplest EDAs. Instead of

dealing with natural operators of GAs, this algorithm uses

a probability vector (p). During the processes of

optimization, binary solutions are randomly generated

from p at each generation, after that, they compete based

on their fitness values. p is then updated based on these

solutions until reaching the convergence state known when

all positions of p became binary (0 or 1). This state of

convergence represents the final solution of the

optimization problem. The cGA represents the population

as a probability vector over a set of solutions and

operationally mimics the order-one behavior of the simple

GA with the uniform crossover. The cGA has an

advantage of using a small amount of memory, and then,

may be quite useful in memory-constrained applications.

Algorithm 1 describes the pseudo-code of the cGA.

Algorithm 1: Pseudo code of the compact Genetic

Algorithm

Require l the length of p;

Require 1/λ: The updating step size.

1. Initialize the probability vector p which length is l

for m := 1 to l do p[m] := 0:5

end for

2. Generate two individuals from p

a := generate(p);

b := generate(p);

3. Let them compete

winner; loser := compete(a; b);

4. Update p towards the better one

for m := 1 to l do

 if winner[m] ≠ loser[m] then

 if winner[m] == 1 then p[m] := p[m] + 1=1/λ

 else p[m] := p[m] - 1=1/λ

 end if

 end if

end for

5. Check if the vector p has converged

for m := 1 to l do

 if p[m] > 0 and p[m] < 1 then return to step 2;

 end if

end for

6. The probability vector p represents the final solution.

2.2 Larger tournament size using mutation

2.2.1 Mutation operator

Mutation is an operator referring in nature to an "accident"

that changes DNA and adds a new allele which does not

exist before. In GAs, its concept is quite simple: a gene is

chosen randomly and its allele is changed. In the case of

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 16

2017 International Journal of Computer Science Issues

binary strings, which we are interested on in this work,

mutation can be made by complementing the chosen bit.

Alone, the mutation does not generally advances the

search for a solution, but it insures the evolution of

population and avoids the development of a uniform one.

2.2.2 Using mutation to generate individuals

This version of cGA differs from the standard version at

the level of competition's vectors generation. Instead of

using only two vectors a and b, this version uses a number

of vectors defined according to a parameter s. We generate

randomly two binary vectors a and b from p, we mutate b

in such way of generating (s-1) other vectors. We select

the best according to the objective function between b and

(s-1) resultant vectors of the mutation, then we let it

compete with the vector a. This version of the compact

Genetic Algorithm is going to replace stages 2, 3, and 4 of

the standard version by the stages given in Algorithm 2.

Algorithm 2: Modification of the cGA to implements s

vectors of competition using mutation.

1. Generate two individuals from p

a := generate(p);

b := generate(p);

2. Mutate b to generate (s - 1) binary vectors

3. Determine the vector with the best value of fitness

among b and (s - 1) other vectors and to name it N;

4. Compete(a;N)

winner; loser := compete(a;N);

5. Update p towards the winner.

2.3 Larger tournament size using randomly generated

vectors with Higher Selection Pressure

The selection operator helps to give more copies to better

individuals. But it does not always help to keep the better

genes, because the evaluation is done in the context of the

individual altogether. Selection pressure controls the

selection of individuals from one population to the next. It

gives individuals of higher quality, higher probability of

being used to create the next generation, and so the

algorithm will focus on promising regions in the search

space. In other words, higher selection pressure may play

the role of memory to store best candidates' solution seen

during the search progress. It can be insured with the cGA

by introducing elitism [1], or by using tournament

selection with increased size [13].

Harik et al introduced the simulation of higher selection

pressure by increasing the tournament size in [13], instead

of mimicking the pair-wise tournament selection in the

standard version of cGA. Tournament with size s is

implemented with the cGA by:

Generating s individuals from the probability vector and

find out the best one;

Let the best individual compete with the others s-1

individuals, updating the probability vector along the way.

In order to simulate higher selection pressure, steps 2 to 4

of the cGA's pseudo-code (Algorithm 1) have to be

replaced by the ones shown in Algorithm 3.

Elitism strategy is also a method to implement higher

selection pressure. It is one of the operational

characteristics of Genetic Algorithms (GA) that provides a

reduction of genetic drift by insuring that the best

candidate solution is allowed to contribute to the next

generation. That is, the best chromosome is transferred to

the next generation without alteration. This one gets the

full chance to compete with the other candidates of the

next generation. C. A. Wook and R. S. Ramakrishna

introduced two elitism-based cGAs: the persistent-elitist

cGA and the non persistent-elitist one [1].

Algorithm 3: Modification of the cGA using s vectors of

competition

Require: l the lenght of p

Require:1/λ, The updating step size

1. Generate s individuals from the probability vector p, and

store them in S :

for i := 1 to s do S[i] := generate(p);

 end for

2. Rearrange S so that S[1] is the fittest individual ;

3. Let S[1] compete with the others individuals :

for j := 1 to s do

winner; loser := compete(S[1]; S [j]);

update p (step 4 of the cGA)

end for

3. Decoding algorithms using larger

tournament size

The two versions of cGA decoders presented in this work

try to solve the dual domain soft-decision decoding of

linear error correcting codes. Dual domain Soft-decision

decoding is firstly modeled as an optimization problem

and then a description of the two decoding algorithms is

given.

3.1 Dual domain Soft-decision decoding as an

optimization problem

The maximum-likelihood soft-decision decoding problem

of linear block codes is an NP-hard problem [7], and can

be stated as follows: Given the received vector r and the

parity-check matrix H, let S = w*H
T
 be the syndrome of w,

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 17

2017 International Journal of Computer Science Issues

where w is the hard decision of r, H
T
 is the transpose of

matrix H, and E(S) be the set of all errors patterns whose

syndrome is S, find the E ϵ E(S) which minimizes

correlation discrepancy:

 𝑭𝒓 𝑬 = (𝑬𝒋|𝒓𝒋|)
𝒏
𝒋=𝟏 = 𝒓𝒋

𝒏
𝒋=𝟏,𝑬𝒋=𝟏 (1)

Where n is the code length. The optimization problem (1)

has n error variables, out of which only (n-k) are

independent, where k is the code dimension. Using the

algebraic structure of the code, the remaining k variables

can be expressed as a function of these (n-k) variables.

An individual is a set of k bits. Let E' be an individual, S1

be a (n-k)-tuple such that S1 = E' x A where A is a sub

matrix of H', and S2 be a (n - k)-tuple such that S2 = S +

S1. We form the E error pattern such that E= (E', E")

where E' is the chosen individual and E" = S2. Then w + E

is a code word. The fitness function is the correlation

discrepancy between the permuted received word and the

estimated error (E) such indicated in (1).

Until now, just few numbers of researches treat the soft-

decision decoding as an optimization problem because it is

identified as a NP-hard problem [7], and also because

optimization techniques generally solve a large problems

once when the soft-decision decoding occurs repeatedly in

communication systems.

3.2 Description of decoders

Let C denotes, binary linear block code of length n,

dimension k and minimum Hamming distance d, defined

over the Galois field of order 2 (GF (2)). Let H be its

parity check matrix, and (ri), 1 ≤ i ≤ n be the received

sequence over a communication channel with noise

variance σ
2
 = N0/2, where N0 is noise power spectral

density. We assume that codewords are modulated by a

BPSK modulator and transmitted over an AWGN channel.

Once the message received, the demodulator makes hard-

decisions wi, i = 1, ..., n :

𝑤𝑖 =
1, 𝑖𝑓 𝑟𝑖 ≥ 0
0, 𝑖𝑓 𝑟𝑖 < 0

 (2)

The receiver then calculates the syndrome w x H
T
 and

accepts w as the most likely transmitted codeword if the

syndrome w x H
T
 = 0. If the syndrome w x H

T
 ≠ 0, the

soft-decision decoding process begins as described in

algorithms 4 and 5 : the first one implements higher

selection pressure with randomly generated vectors cGAD-

HSP, and the second one uses mutation to have

tournament with larger size cGAD-M.

Algorithm 4: cGAD-HSP

Require: k, The length of p

Require: 1/λ, The updating step size

Step 1: Sorting the values of sequence r in decreasing order

of reliability |ri|. Further, permute the coordinates of r to

ensure that the last (n - k) positions of r are the least reliable

linearly independent positions. Call this vector r’ and let π

be the permutation related to this vector (r’= π(r)). Apply

the permutation π to H to get a new check matrix H’= π (H)

= [AIn -k].

 Step 2: Map r’ onto probability vector p; p ϵ R
k
. The

probability vector p defines the starting point for the

genetic Search over the k-dimensional vector space F
k
2. It is

expected that this search would terminate (converge) at a

vertex of the k-dimensional hypercube. An obvious starting

point is the center point of the search space, i.e. p = (0:5)
k
.

However, the search time and complexity can be greatly

reduced if the search is initiated from a point close to the

solution vector.

The following steps describe a method that uses soft

information of the received vector to determine a starting

point close to the optimum solution :

1. z is the vector formed by the k first components of r’;

2. Normalize z using
|𝑧|

𝑚𝑎𝑥 |𝑧|
so that 0 ≤ z ≤ 1 ;

3. Since we are looking for the error pattern, we map the

normalized values of z to the probability vector p

using the transformation :

pi = 1 - zi ; i = 1; 2;…; k (3)

Step 3: Generate s binary random vectors and store them in

S; S[j] ϵ F
k
2 following probabilities:

 P (S[j] = 1) = p;

P (S[j] = 0) = 1 - p (4)

 An uniform random number generator U (0; 1) can be used

to generate these vectors as follows:

𝑆[𝑖][𝑗] =
1, 𝑖𝑓 𝑈 0,1 ≤ 𝑝𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

Step 4: Rearrange S so that S[1] is the fittest individual.

This step evaluates the fitness values of each individual

S[j] using the objective function (1), and then rearrange S

so that S[1] will be the fittest one.

Step 5: Let S[1] compete with the (s - 1) others individuals

updating the probability vector along the way. Clearly, the

best individual wins all the competitions. The update

strategy is done following rules:

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 18

2017 International Journal of Computer Science Issues

 If S[1][i + 1] = 1 and S[j][i + 1] = 0,

 then pi+1 = pi + 1/λ

 If S[1][i + 1] = 0 and S[j][i + 1] = 1,

then pi+1 = pi - 1/λ

 If S[1][i + 1] = S[j][i + 1],

then pi+1 = pi

 The updating step size 1/λ is a user defined

parameter which is directly related to the

performance of the decoder [3].

Step 6: Convergence attained? Here the algorithm checks

if all pi are equal to 0 or 1. If not, it goes to step 3, but if

yes, the converged p gives the final solution for the

objective function (1).

Step 7: Encode p and apply inverse permutation of π.

Algorithm 5: cGAD-M

Require: k, The length of p

Require: 1/λ, The updating step size

Step 1: The same as Step 1 in algorithm 4

Step 2: The same as Step 2 in algorithm 4

Step 3: Produce a pair of binary random vectors a and b.

The pair of vectors is produced with the following

probability:

 P (ai ; bi = 1) = pi ;

P (ai ; bi= 0) = 1 - pi (6)

An uniform random number generator U (0; 1) can be used

to generate these vectors as function (5) where ai and bi will

be calculated the same as S[i][j]. Once a and b created, we

mute b to create (s - 1) binary random vectors. This group

of vectors belongs to F
k
2.

Step 4: Estimate the objective function Fr (1). This stage

estimates the fitness values of the vector b and (s - 1)

generated vectors by using the objective function (1). Once

the vector with the best value of fitness is determined, we

note it N and we let it compete with a. The vector with the

best fitness (between a and N) is identified as the winner

whereas the vector with the worst one is identified as the

loser.

Step 5: Update of the probability vector p. The vector of

probability is updated towards the winner using the

previous rules (step5 of algorithm 4). The size of updating

step 1/λ is a parameter defined by the user. It directly

affects the performances of the decoder.

Step 6: Convergence attained? Here the algorithm checks

if all pi are equal to 0 or 1. If not, it goes to step 3, but if

yes, the converged p gives the final solution for the

objective function (1).

Step 7: Encode p and apply inverse permutation π.

4. Performance analysis

In order to show the effectiveness of the new decoders in

Dual Domain Soft-Decision Decoding, we carry out

intensive simulations. For transmission we used an AWGN

channel with a BPSK modulation. The simulations were

made with default simulation's parameters outlined in

Table 1 and the default cGA parameters in Table 2. The

performance is given in terms of bit error rate (BER) as a

function of Signal to Noise Ratio (SNR).

Table 1: Simulations Parameters

Simulation parameter Value

Channel AWGN

Modulation BPSK

Minimum number of transmitted blocks 1000

Minimum number of residual bit errors 200

Default code BCH(63,45,7)

Table 2: cGA Parameters

cGA parameter Value

λ 500

s 13

Mutation rate (pm) 0.04

4.1 The gain of larger tournament size in Dual

Domain Soft-Decision Decoding

In order to show that tournament with larger size improves

the decoding performance, in term of performance, we

chose binary Golay
1
 (23, 12) code and Figure 2 shows the

results. From this Figure we can see that the cGAD with

higher selection pressure using randomly generated

individuals (cGA-HSP) presents best performances than

the one using mutation (cGA-M). At BER value equal to

5.10
-5

 cGA-HSP offers a gain of 0.6 dB, when cGA-M

gives the same performance as the standard cGAD

presented by the green curve (s=2).

1
Golay codes : A family of perfect linear error-correcting

 block codes.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 19

2017 International Journal of Computer Science Issues

Fig. 2 The gain of larger tournament size on performance for Golay
(23,12) code.

We compare afterwards the decoder based on standard

compact Genetic Algorithm that uses only two

competition's vectors (s=2), and the proposed decoders.

For BCH
1
 (63,45,7), As we can see in the Figure 3, the

new decoders outperform the standard one (a gain of 0.9

dB at BER value 4,5.10
-5

 for cGA-M and a gain of 1.2 dB

at 2.10
-5

 for cGA-HSP) which proves the efficiency of the

proposed Decoders.

The simulations of the BCH(127,64,21) code show that

both decoders cGA-HSP and cGA-M are slightly better

than the standard cGAD as illustrated in Figure 4.

We do the same thing for the code QR
2
 (71,36) and as

expected, both versions improve the decoding performance.

The Figure 5 shows that cGA-HSP gives a gain of 1 dB at

4.10
-5

, where cGA-M gives a gain of about 1.3 dB at 7.10
-5

.

For the binary form of the code RS
3
 (15,7,9), the cGA-M

has a gain of 0.4 dB in comparison with cGAD, where

cGA-HSP outperforms cGAD by a gain of 0.8 dB at BER

value of 6.10
-5

, the listed results are shown in Figure 6.

1
 BCH codes : Abbreviation of " Bose-Chaudhuri-

 Hochquenghem " code. A family of cyclic

 error correcting codes.
2
 QR codes : Abbreviation of " Quadratic Residue"

 codes. A type of cyclic codes.
3
 RS codes: An Abbreviation of "Reed Solomon" codes.

 A family of codes that belongs to the class

 of non- binary cyclic error-correcting codes.

Fig. 3 The gain of larger tournament size on performance for

BCH(63,45,7) code.

Fig. 4 The gain of larger tournament size on performance for

BCH(127,64,21) code.

4.2 The effect of tournament size

After showing the impact of selection with increased size

on the improvement of the cGA decoder's performance, we

illustrate in Figures 7 and 8 the effect of tournament size

(s).

As shown in Figure 7, the size of tournament has a

considerable effect on the cGA-HSP decoder's

performance. Applied to the BCH(63,45,7) code, a

tournament of size s = 3 gives approximately the same

performance as the standard cGAD. The performances get

better along the augmentation of s value until s = 13: with

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 20

2017 International Journal of Computer Science Issues

tournament of size 13 the gain is about 1.2 dB at 2.10
-5

.

Simulating tournament of size equal to s = 20 reduces

them. The degradation caused by a bigger tournament size

can be interpreted by a premature convergence toward

local optimum. So we should use the tournament size

carefully so as to get the better performances of a given

code.

Fig. 5 The gain of larger tournament size on performance for QR(71,36)

code.

Fig. 6 The gain of larger tournament size on performance for the binary
form of RS (15,7,9) code.

Figure 8 shows that also for the cGA-M decoder; the

tournament size has an effect in improving the decoding

performance like the cGA-HSP. When increasing the

tournament size to s = 3, we reach approximately a gain of

0.7dB at SNR=4.10
-5

. Comparative performance is

obtained when tournament size is set to s = 5 and s = 8.

The gain in BER is elevated to 1dB when s = 13.

Fig. 7 The effect of tournament size with cGA-HSP on BCH code

(63,45,7).

Fig. 8 The effect of tournament size with cGA-M on BCH(63,45,7) code.

4.3 The effect of the updating step size

The updating step size 1/λ is a user defined parameter

which is directly related to the performance of the decoder.

This part shows the impact of increasing or decreasing this

parameter. Figure 9 gives an illustration about the effect of

decreasing the 1/λ parameter applied to BCH(63,45,7)

code. We can notice that the performance of our decoder

get better when decreasing the size until reaching the value

1/λ = 0.002, after that such a stabilization is remarked even

if the size of 1/λ is decreased.

Figure 10 shows also that with s = 20, the performances

get better when decreasing the updating step size.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 21

2017 International Journal of Computer Science Issues

Fig. 9 The effect of the updating step size for cGA-HSP on BCH
(63,45,7) code for s = 13.

Fig. 10 The effect of the updating step size for cGA-HSP on BCH

(63,45,7) code for s = 20.

The comparison of the updating step size decrease applied

for tournament size s = 13 and s = 20 is made in Figure 11.

It shows that for s = 13, the decrease of the parameter 1/λ

does not impact the performance after the value 1/λ =0.002.

In contrast, for tournament size s = 20 the same value of

1/λ improves the performances: for SNR= 4.10
-5

 a gain of

0.5dB is noticed between s = 13 and s = 20 for 1/λ= 0.0005.

From this Result we can say that the updating step size has

also a big effect, in addition to tournament size, on the

improvement of the decoder performance. When the

tournament size get bigger, the 1/λ parameter should be the

smallest possible to have the best performance of the

decoder.

Fig. 11 The effect of the updating step size on the performance's

improvement to BCH(63,45,7) code for the cGAD-HSP decoder.

4.4 The effect of mutation rate

In this part, we study the effect of the mutation rate into

decoding performance of cGA-M, for a fixed tournament

selection and updating step size (s = 13, λ =500). As

shown in the Figure 12, when increasing the mutation rate

from pm = 0.001 to pm = 0.01, we reach a gain of 0.8 dB

at 3.10
-5

. After that, even if we increase to pm = 0.04 we

don't realize any gain.

Fig. 12 The effect of mutation rate in cGA-M on BCH(63,45,7) code for
s=13.

4.5 Comparison of the new decoders with other

works

After showing the improvement of decoding performance

using larger tournament size, and studying the effect of

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 22

2017 International Journal of Computer Science Issues

tournament size, the updating step size and the mutation

rate, we compare now our new decoders with previous

ones such as Chase-2 algorithm [9], OSD-1 [12], and

DDGA [2] decoders in term of performance.

Figure 13 shows the result of the performance's

comparison for the code BCH(63,45,7). As we can see

there, the standard cGAD presents the worst performance.

cGA-M is better than Chase-2 decoder, and the standard

cGAD. cGA-HSP is better than Chase-2, and OSD-1

decoders, its performance is equivalent than DDGA

decoder. These results show that this new decoders

effectively improve the decoding performance and so, the

presented algorithms can be efficient for other

optimization problems.

Fig. 13 Comparison of cGA-HSP and cGA-M with other decoders for

BCH(63,45,7) code.

5. Complexity analysis

After showing that the new decoder based on Higher

Selection Pressure (cGA-HSP) gives the best performances

in comparison with the standard cGA based decoder

(cGAD) and the mutation based one (cGA-M), we will

compare the three decoders in term of their complexities.

For this purpose, we will start by counting the number of

iterations required by each decoder to reach the

convergence then we will calculate the analytic complexity

for them.

5.1 The average number of iterations to reach

convergence

Table 3 shows the necessary average number of iterations

to reach convergence for the three decoders: cGAD, cGA-

HSP and cGA-M. As we can see there, cGAD and cGA-M

has an average number of iterations necessary to

convergence (Ni) around 20000, where cGA-HSP needs

just around 2500 iterations. Having into account that s=13,

if we try to calculate the average number of updates

occurred during every decoding process (steps 5 of

algorithms 4 and 5), we find that cGAD and cGA-M do

around 20000 ones since any of these algorithms do just

one update per iteration. cGA-HSP updates the probability

vector (s - 1) times at each iteration, so the average

number of updates for cGA-HSP is (12*2500) around

30000 updates. So we can conclude from this analysis that

cGA-HSP is little more complex in term of the number of

updates than cGAD and cGA-M.

5.2 The analytic complexity of the new decoders

Table 4 gives the analytic complexity of the three decoders:

cGA, cGA-M, and cGA-HSP. It shows that the proposed

decoders have the same complexity if we neglect the

tournament size s, given that s is very small in comparison

with the average number of iterations to reach

convergence (Ni).

Table 3: The average number of iterations to reach convergence for the

case of BCH(63,45,7).

SNR

Average Number Of Iterations

cGAD cGAD-HSP cGAD-M

1 21166 2677*12 22144

3 19953 2576*12 17778

5 20401 2696*12 17230

Table 4: The analytic complexity of the new decoders

Decoder Complexiy

cGAD O(Ni.k(n-k))

cGA-HSP O(Ni.s.k(n-k))

cGA-M O(Ni.s.k(n-k))

6. Conclusion

In this paper, we presented two new dual domain soft

decision decoders that use cGA with larger tournament

size: the first algorithm investigates tournament selection

with larger size using mutation, and the second employs

higher selection pressure with randomly generated

individuals. A study of the new decoders has been done

and showed that the introduction of mutation and higher

selection pressure improves the performance of the

decoding. The obtained results are compared to known

previous works and show the superiority of the proposed

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 23

2017 International Journal of Computer Science Issues

decoders over other existing one. Also a complexity study

has been done where it shows that the algorithms used for

decoding are not very complex in comparison with the

standard compact Genetic Algorithm based decoder

(cGAD).

References
[1] Chang Wook Ahn and R. S. Ramakrishna, “Elitism-based

compact genetic algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 7, no. 4, pp. 367–385, Aug.

2003.

[2] Azouaoui, M. Belkasmi, and A. Farchane, “Efficient Dual

Domain Decoding of Linear Block Codes Using Genetic

Algorithms,” Journal of Electrical and Computer

Engineering, vol. 2012, pp. 1–12, 2012.

[3] Azouaoui, A., Berkani and M. Belkasmi, “An Efficient

Soft Decoder of Block Codes Based on Compact Genetic

Algorithm”, International Journal of Computer Science

Issues, Volume 9, Issue 5 September, 2012.

[4] S. Baluja, “Population-based incremental learning: A

method for integrating genetic search based function

optimization and competitive learning”, Carnegie Mellon

Univ., Pittsburgh, PA. Tech. Rep. CMU-CS-94-163, 1994.

[5] Berkani, A. Azouaoui, and M. Belkasmi, “Soft-decision

decoding by a compact genetic algorithm using higher

selection pressure,” 2015 International Conference on

Wireless Networks and Mobile Communications

(WINCOM), Oct. 2015.

[6] Berkani, A. Azouaoui, M. Belkasmi, and B. Aylaj,

“Compact Genetic Algorithms with larger tournament size

for soft-decision decoding,” 2015 15th International

Conference on Intelligent Systems Design and Applications

(ISDA), Dec. 2015.

[7] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the

inherent intractability of certain coding problems

(Corresp.),” IEEE Transactions on Information Theory, vol.

24, no. 3, pp. 384–386, May 1978.

[8] F. A. C. M. Cardoso and D. S. Arantes, “Genetic decoding

of linear block codes,” Proceedings of the 1999 Congress

on Evolutionary Computation-CEC99 (Cat. No.

99TH8406).

[9] D. Chase, “Class of algorithms for decoding block codes

with channel measurement information,” IEEE

Transactions on Information Theory, vol. 18, no. 1, pp.

170–182, Jan. 1972.

[10] G. C. Clark and J. B. Cain, “Error-Correction Coding for

Digital Communications,” 1981.

[11] J. S. De Bonet, C. Isbell and P. Viola, “MIMIC: Finding

optima by estimating probability densities”, Advances in

Neural Information Processing Systems, M. C. Mozer, M. I.

Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press,

vol. 9, 1997, 424.

[12] M. P. C. Fossorier and Shu Lin, “Soft-decision decoding of

linear block codes based on ordered statistics,” IEEE

Transactions on Information Theory, vol. 41, no. 5, pp.

1379–1396, 1995.

[13] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The

compact genetic algorithm,” IEEE Transactions on

Evolutionary Computation, vol. 3, no. 4, pp. 287–297,

1999.

[14] J. Holland, “Adaptation in Natural and Artificial Systems”,

The University of Michigan Press, Ann Arbor, Mich, USA,

1975.

[15] P. Larrañaga and J. A. Lozano, Eds., “Estimation of

Distribution Algorithms,” Genetic Algorithms and

Evolutionary Computation, 2002.

[16] H. Maini, K. Mehrotra, C. Mohan, and S. Ranka, “Soft

decision decoding of linear block codes using genetic

algorithms,” Proceedings of 1994 IEEE International

Symposium on Information Theory.

[17] H. Mühlenbein and G. Paaß, “From recombination of genes

to the estimation of distributions I. Binary parameters,”

Lecture Notes in Computer Science, pp. 178–187, 1996.

[18] Shakeel, “GA-based soft-decision decoding of block codes,”

2010 17th International Conference on

Telecommunications, 2010.

[19] G. Syswerda, “Simulated Crossover in Genetic Algorithms,”

Foundations of Genetic Algorithms, pp. 239–255, 1993.

Ahlam Berkani received her engineer diploma in
Telecommunications and networks from ENSAO (Ecole Nationale
des Sciences Appliquees d’Oujda), Morocco in 2010. Actually, she
is preparing her PhD since 2011 in Computer Science and
Engineering at Department of Computer Science ENSIAS (Ecole
Nationale Supérieure d’Informatique et d’Analyse des Systmes),
Rabat, Morocco. She got best paper awards in International
workshop on codes, cryptography and communication systems
(WCCCS) November 2013, Meknes, Morocco. She had 10
publications in national and international conferences and journals.
Her areas of interest are Information and Coding theory, and
Artificial Intelligence.

Ahmed Azouaoui first received his license in Computer Science
and Engineering in June-2001 and Master in Computer Science
and telecommunication from University of Mohammed V - Agdal,
Rabat, Morocco in 2003. He received his PHD in Computer
Science in 2014 and Engineering at Department of Computer
Science ENSIAS (Ecole Nationale Supérieure d’Informatique et
d’Analyse des Systèmes), Rabat, Morocco. Currently, he is An
Assistant professor at Faculty of sciences El Jadida, University
Chouaib Dokkaly His areas of interest are Information, Coding
Theory and Artificial Intelligence.

Pr. Mostafa Belkasmi is a professor at ENSIAS (Ecole Nationale
Supérieure d’Informatique et d’Analyse des Systèmes, Rabat);
head of Telecom and Embedded Systems Team at SIME Lab. He
had PhD at Toulouse University in 1991(France). His current
research interests include mobile and wireless communications,
interconnections for 3G and 4G, and Information and Coding
Theory.

Bouchaib Aylaj received his PDH in computer science in 2015 in
faculty of science El Jadida, Chouaib Doukkaly University. His
areas of interest are Information, Coding Theory and Artificial
Intelligence.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 1, January 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201701.1524 24

2017 International Journal of Computer Science Issues

