
Adynamic deploymentmethod ofmicro service oriented to SLA

Zhen-Ling Ji1 and Yong Liu2

1 Information Engineering College, Henan University of Science and Technology,
Luoyang, 471023, China

2 Information Engineering College, Henan University of Science and Technology,
Luoyang, 471023, China

Abstract
In order to solve the problem of frequent dynamic deployment of
micro service in cloud computing environment under different
load conditions, a dynamic deployment method of micro service
oriented to SLA is proposed. A dynamic description model of
micro-service is built, endow the micro service and its
dependencies with dependency weight, and offer a dynamic
update mechanism of the dependency weight ,then deploy a
corresponding number of multilayer dependencies according to
the dependent weights when need to deployment the micro
service. Finally, it compared and analyzed the actual effect, the
results show that this method can effectively reduce the times of
micro-services dynamic deployment and guarantee the minimum
violation rate of service-level objectives.
Keywords: cloud computing, microservice, dynamic deployment,
SLA, dependency, service level agreement.

1. Introduction

In recent years, with the development of cloud computing
and the rapid expansion of web applications, it is need to
change the web application development and deployment
model urgent to accelerate the application of continuous
integration and delivery, and reduce the costs of web
application on the development and maintenance
continuously[1]. The concept of micro-service architecture
was proposed in this background[2-6]. At present, most of
the web application is still the monolithic architecture, that
is, regards all the web application as a entirety to develop
and deploy.In this architecture, the application does not
have the error isolation and on-demand scalability,
companies have to run the application and maintenance of
increased investment, according to statistics more than
90% of the enterprise budget for system maintenance
[7].With the large-scale deployment and the increasing
complexity of web applications ,its architecture model
transformed into micro-service architecture gradually to
enhance the fault tolerance, scalability and on-demand
deployment capabilities.However, we will face the
following problems at the same time: the dependence of
micro-services on different runtime environments, the
dependency between micro-services and how to guarantee
the timely response of user requests.

Different micro-services can be developed by different
technology stack, and the run-time environment is
generally not the same. Micro services are usually
packaged in the docker image, and distributed through the
docker mirror to Adapt to different run-time
environments[11]. The cloud infrastructure provider
provides and assigns computing resources to the web
application owner and signs a service level agreement
(SLA) that includes one or more service level objectives.
This level of service goal is the application performance
that the application owner must assure to the application
user, such as "web application response time can not be
higher than 100ms", "web application throughput not less
than 200 requests / s" and so on. IaaS providers should
improve resource utilization and reduce unnecessary waste
of resources while allocating sufficient resources to meet
the service level objectives of the web application.In order
to meet the service level agreement while enabling
resource utilization to maximize,how to dynamically
deploy micro services must be considered in the cloud
computing environment.

Front-end micro-services and back-end micro-services are
two types of micro-services. The back-end is a multi-level
structure, different levels of micro-services have
dependency relationships, and an upper micro-services
may dependent on multiple lower-level micro-
services.Micro-services are generally difficult to meet the
needs of users under different load requirements with the
number of micro-services after the initial deployment. In
general, there is a problem that the request is difficult to
get a timely response with a high load state and the
utilization rate of resources can not be effectively utilized
with a low load state. In order to solve this problem, we
must deploy the micro-services dynamically with the load
at runtime.At present, there are few researches on the
dynamic deployment of micro-services. The literature[13]
implemented an automated deployment of micro services
by defining a model of the monitoring infrastructure that
provides an interface between the user and the cloud
management system.The literature[14] presents an
approach for the incremental integration of microservices
that allows the application developers to specify and

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 8

2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201606.814&domain=pdf


design microservice integration, and provide mechanisms
with which to automatically obtain the implementation
code for business logic and interoperation among
microservices along with deployment and architectural
reconfiguration scripts specific to the cloud environment in
which the microservice will be deployed. Although the
above two methods can deploy micro-services
dynamically, but they just deploy a single micro-service
without considering its dependencies, then the
dependencies will become the bottleneck of the response,
and it will lead to frequent deployment problem.However,
dynamically increasing or decreasing the number of micro-
services will take some time, and affect other activities on
the nodes, the frequent deployment of micro-services will
lead to increased cloud load and application performance
degradation, so that the service level agreement will not be
completed.

To solve the problem, this paper proposes a method for
dynamic deployment of micro service oriented to SLA by
analyzing the distribution of resources in micro-service
clusters. This method gives the dependence weight
between the micro service and the dependent micro service
by constructing the micro service dynamic deployment
description model, and updates the weight dynamically
based on the response time of the dependent micro-
service.When the dependency weight reaches a certain
threshold, the bottleneck point of the response is found by
analyzing the dependency tree of the micro service, then
calculate the number of deployments required of the
bottleneck point and the multilayered micro services.The
dynamic deployment method proposed in this paper can
guarantee the lowest violation rate of the service level
agreement, and can effectively reduce the times of
dynamic deployment of micro-services.

2. Dynamic deployment method

In order to achieve the purpose of deploying multi-tier
dependencies automatically when deploying micro-
services,In this paper, the dynamic deployment model
oriented to SLA of micro-services is designed on the basis
of the above papers, which consists of deployment server
and deployment client composition, as shown in Figure 1.

D
ep

loym
ent 

Server
Serv

er 
C

luster

server

Docker

operating system

Micro service

Docker

Micro service Micro service

Dependency 
management module

Dispatch center

Monitoring center

Docker repository of 
micro-services

Deployment ExecutorSLA Manager

Load monitoring 
module

Weight Manager

D
eploym

ent 
C

lient

Fig. 1 Dynamic deployment architecture

Deployment server:
1) Monitoring center: For detecting load module
acquisition node load information collection, summary,
analysis of the current cluster load state, and provide the
basis for node selection before deployment.
2) Dependency management module: Responsible for
analyzing and finding out the bottleneck points of the
request of the micro service dependency tree, as well as all
the dependent quantities needed to calculate the dynamic
deployment according to the weight of each micro service
during the dynamic deployment.
3) Dispatch center: Work with dependent management
module and monitoring center before deploying and
responsible for the deployment of nodes.
4) Docker repository of micro-services It is used to store
all the micro services for web applications. The micro
service and its runtime environment are packaged together
into a docker image, and the docker mirror will be
uploaded to the docker repository of micro-services after
the test. The advantage of packaging a mirror in a docker
container is: a) It simplifies the installation process of the
micro service, simply copy the image to a docker running
environment on the machine and use a unified command to
complete the installation and operation of a single micro
service. b) Docker container as the intermediate layer of
the micro service operation, ensure the consistency of the
micro service operation environment, reduce the risk of the
application can not run due to the operation environment
of the development test and deployment phase.

Deploy client:
1) Deployment executor: According to the dispatch center
issued the deployment instructions and server node
communication, complete the micro service installation,
destruction, operation and migration and other tasks.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 9

2016 International Journal of Computer Science Issues



2) SLA Manager: In charge of managing the response time
information of the micro service, including the average
response time of the request and the service response time
of the SLA.
3) Load monitoring module: Responsible for monitoring
the load status of all server nodes, including CPU usage,
memory usage, hard disk usage and network bandwidth
usage, and report to the deployment of server monitoring
center.
4) Weight Manager: Responsible for forecasting and
record the weights between the micro service, when the
instantaneous weight exceeds the threshold value will
depend on the weight information submitted to the server,
to distribute the pressure on the management module of
the server.

The dynamic deployment of the micro service is triggered
by the change of the micro service response time. In this
paper, we design the automatic deployment process
according to the dynamic deployment architecture, as
shown in figure 2.

Monitor the response 
time of micro services

Whether the 
threshold is 
exceeded

The response time is 
changed

Predictive dependent 
weight

yes

Calculate the number 
of multi-level 

dependencies by weight

Complete a round of 
dynamic deployment

no

Deploy the micro 
service and its multi-
layer dependencies

Fig. 2 flow chart of micro service dynamic deployment

The specific steps are as follows:
1) SLA manager collects the response time of the micro
service and judges whether it exceeds the threshold value.
The response time information will be passed to the weight
manager in order to calculate the current dependency if the
response time exceeds the threshold value.

2) According to the historical data and the current response
time to predict the weight, the weight manager reports the
response time and the predict results to the server's
dependency management module.
3) The dependency management module analyzes the
entire dependence tree, analyzes the bottleneck points of
the response in the dependent tree according to the
dependent weight information, and then calculates the
number of the micro services which directly and indirectly
depends on the bottleneck point and informs the dispatch
center of the dynamic deployment response.
4) According to the deployment requirements, the dispatch
center requests the monitoring center to acquire the node
information in the server cluster and select the appropriate
node from the server cluster to issue the deployment
instructions to the deployment executor.
5) The deployment executor downloads the specified
micro-service image from the micro-service image
repository according to the deployment instructions, copies
the micro service image to the designated server node and
starts the micro service.

From the micro-service architecture and dynamic
deployment process, it can be seen that the dynamic
deployment needs to select the appropriate server nodes
according to the basic properties of the micro-services and
the hardware parameters of the server before
implementation, and it is necessary to maintain
dependency weights between micro services to trigger
dynamic deployment at runtime. This paper abstracts the
deployment description model of micro-service,
encapsulates the basic attributes, physical constraints,
dependencies and deployment configurations of the micro-
services, and selects and maintains the dependent weights
and dependencies among the micro-services . The model
structure is shown in figure 3.

Deployment

-port : unsigned short

MicroService

-name
-version

Dependency

-weight

Limit

-minMemory
-minSpace
-minBandWidth

1

1

1

*

1

1

1 1

Fig. 3 micro-service deployment description model

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 10

2016 International Journal of Computer Science Issues



The micro-service including name, version, constraint
information (Limit), the deployment of information
(Deployment) and the dependent set; constraints
information (Limit) refers to the deployment of micro-
services hardware constraints, such as minimum memory,
minimum disk space , Minimum bandwidth, etc .;
Dependency (Dependency) refers to the micro-service
dependent on other micro-services, including micro-
service information and rely on the weight (weight);
Deployment Information (Deployment) refers to the
deployment of micro-service-related parameters, such as
outbound services When using the port number.Taking a
certain crawler system as an example, this micro-service
includes MS-Control, MS-Grab, MS-Extract, MS-
ResultCollect, where MS-ResultCollect depends on MS-
Extract, MS-Extract depends on MS-Grab, and MS-Grab
relies on MS-Control. MS-Extract corresponding
deployment description model example shown in Figure 4.
1. {

2. “name”:”MS-Extract”,
3. “version”:”1.0”,
4. “limit”:{
5. “minMemory”:”40MB”,
6. “minSpace”:”27MB”,
7. “minBandWidth”:”500KB/s”
8. },

9. “dependencies”:[
10. {

11. “microService”:{
12. “name”:”MS-Grab”,
13. “version”:”1.0”
14. },

15. “weight”:1
16. }

17. ],

18. ”deployment”:{
19. “port”:8081

20. }

21. }

Fig. 4 deployment description model example

In the micro-service dynamic deployment descriptive
model, the dependency weight is used to represent the
upper-level dependence on the underlying micro-services,
and the dependent weights of the micro-services are
changed as the basis for dynamic deployment. However, in
order to prevent the micro-service in a short period of time
response time is too long and lead to micro-services
frequently initiated dynamic deployment of the
phenomenon occurs, this paper introduces the concept of
instantaneous weight, used to express the current short-
term reliance on weight. When the response time of the
micro-service is increased, the instantaneous dependency

weight is appropriately increased, whereas the
instantaneous dependent weight is appropriately reduced.
When the instantaneous dependent weight reaches the
threshold preset by the administrator, the dynamic
deployment of the micro-service is triggered and the
micro-service deployment right is updated value. The flow
shown in Figure 5.

Deploy micro service and 
its dependencies

Whether the 
threshold is 
exceeded

yes

no

Update the weight of 
micro services which were 

deployed

Monitor response time

Calculate the 
instantaneous dependent 

weights

Calculate the number of 
dependencies

Fig. 5 update process of the dependent weight

The size of the threshold will affect the dynamic
deployment of the system agility, it can be adjusted by the
type and nature of the application. If the threshold is too
large, the system will not be able to self-adjust in a timely
manner so that web applications can not respond to user
requests in a long time; if the threshold is too small, it may
lead to frequent self-adjustment of the system and increase
the burden on the cloud environment And a waste of
resources.

The dependence weight is related to the response time of
the lower layer micro-service when the upper layer
accesses the lower layer micro-service. When the response
time increases, the dependency weights between the micro
services are increased to trigger the dynamic deployment,
and the load is distributed to reduce the response time.
Because the artificial neural network has a strong ability of
fitting [15], this paper uses the three-layer BP artificial
neural network to forecast the dependence weight. The
response time is taken as input, and the dependent weight
is output.Since the input and output have only one
parameter, the input-output relational function is
simplified to

Y=f(WX-θ) (1)

θ is a threshold value and is initialized to a random

number close to zero. f(•) is the S function. The principle
of the neural network algorithm is to find the appropriate
weight coefficient W to produce the expected Yd for the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 11

2016 International Journal of Computer Science Issues



sample X and to adjust the weight W according to the
deviation between the expected output and the actual
output until the deviation e is within the acceptable range.
In order to facilitate data processing and speed up the
convergence, the tesponse time and dependency weights
should be normalized at first, the normalized formula is

minmax

minX
X'




 (2)

min is the minimum value in the sample and max is the
maximum value in the sample.
Then the network training through the sample, assume
that the actual output at time t is
Then the expected output and the actual output deviation is

e=Yd-Y(t) (4)
After correction is

W(t+1)=W(t)+e•η•X (5)

η is the learning rate, 0 <η≤1.

ε is the minimum allowable deviation . The actual output
is considered to be approximate to the desired output when

e < ε . At this time, the weight coefficient W can be
obtained after the network training is completed.
Otherwise, the next round of training will be continued.

When the response time of the micro-service is changed, it
can be predicted by trained neural network, and then the
corresponding weight of the response time can be obtained
by processing the prediction result by inverse
normalization. The dependence of micro-services from top
to bottom can be seen as a dependency tree, the path
between parent and child nodes is dependent weight, the
number of deployments per microservice in the
dependency tree is the product of the path from that node
to the root node, it is denoted by

WML=W1•W2•…•Wn (6)

3. Results and Analysis

In this paper, the deployment client is implemented on the
OpenStack platform. The order management module of a
mall application is deployed to the cloud platform, and the
response time of front-end micro-services and the number
of deployed micro-services are collected under different
loads. Thus proving the effectiveness of the deployment
method. In the experiment, 10 virtual machines are used to
simulate the cluster of servers, which are configured as
single core CPU, 1G memory, 20G hard disk and
CentOS6.5 operating system. The dependencies of web
application order management module are shown in figure
6.

Figure 6 order management micro service dependency graph

Using the curl-loader simulation to generate the load after
the first deployment of the micro-service, and record the
response time of web applications under different loads
and the number of micro services that make up the web
application, as shown in Table 1.

Table :1 micro-service automated elastic telescoping deployment of
experimental data

Load (times / minute) 1000 5000 10000 5000 1000
Average response time(ms) 42 47 45 44 43
Totals of microservices 14 21 28 21 14
Consumption time (s) - 10 12 9 7

The dynamic deployment of micro-services was triggered
when the load from 1000 / min gradually increased to
10,000 times / min, the number of micro-services deployed
gradually increased, while the average front-end micro-
service response time remained unchanged. As the same,
the dynamic deployment of micro-services was triggered
when the load from 10000 times / min and gradually
reduced to 1000 times / min, the number of micro-services
deployed to reduce the corresponding front-end micro-
service average response time remained basically stable.

The experimental data shows that the deployment system
can automatically adjust the number of micro-services in a
short period of time to meet the current load demand and
the front-end micro-service response time will not change
significantly when the load changes to a certain extent.

Figure 7-8 depicts the results of an evaluation of the
dynamic deployment method of the same experimental
configuration in literature13, literature14, and this paper.
The dynamic deployment method of the literatures 13 and
14 does not consider the dependence of the micro services.
When the load increases, the response time of the
uppermost micro-service increases, and the number of the
top-level micro-services was dynamically increased in
order to ensure the timely response of user requests.
However, the number of micro services underneath did not
increase. In the micro-service dependency tree, the
response bottleneck begins to move to the underlying
micro-service, the deployment system again increases the
number of lower-level micro services, and so on, frequent
deployments will be triggered. Conversely, the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 12

2016 International Journal of Computer Science Issues



deployment system is still reduce the number of the micro
services frequently. The performance of the entire web
application is reduced due to frequent deployment, and the
violation rate of the service level agreement is increasing.
In this paper, when the load changes, the instantaneous
dependence weight is first changed, and the bottleneck
point of the response is found by analyzing the dependence
tree of the micro service when the instantaneous
dependence weight reaches the threshold. Then calculate
the bottleneck and the number of the following
dependencies based on the dependent weight. Finally, the
deployment of the bottleneck point micro-services at the
same time the deployment of the corresponding number of
dependent micro-services, which reduces the times of
dynamic deployment of micro-services, and to ensure that
the SLA violation rate is lowest

Fig. 7 The times of dynamic deployment triggers under different
deployment methods

Fig. 8 Violation rate of SLA under different deployment methods

4. Conclusions

This paper studies the dynamic deployment of micro
services under cloud environment, and proposes a dynamic
deployment method of micro services oriented to SLA,
which can effectively reduce the times of dynamic
deployment of micro-services, not only guarantee the SLA,
but also reduce the resource consumption and reduce the
operating costs . However, the automated deployment of
micro-services still has a lot of work to do, and it needs to
be improved in future work, such as micro-service
migration, fault detection and automatic repair.

References
[1] Guha R, Al-Dabass D. Impact of web 2.0 and cloud

computing platform on software
engineering[C]//Electronic System Design (ISED),
2010 International Symposium on. IEEE, 2010: 213-
218.

[2] Armbrust M, Fox A, Griffith R, et al. A view of
cloud computing[J]. Communications of the ACM,
2010, 53(4): 50-58.

[3] Namiot D, Sneps-Sneppe M. On micro-services
architecture[J]. International Journal of Open
Information Technologies, 2014, 2(9).

[4] Kang H, Le M, Tao S. Container and Microservice
Driven Design for Cloud Infrastructure
DevOps[C]//Cloud Engineering (IC2E), 2016 IEEE
International Conference on. IEEE, 2016: 202-211.

[5] Villamizar M, Ochoa L, Castro H, et al.
Infrastructure Cost Comparison of Running Web
Applications in the Cloud Using AWS Lambda and
Monolithic and Microservice
Architectures[C]//Cluster, Cloud and Grid
Computing (CCGrid), 2016 16th IEEE/ACM
International Symposium on. IEEE, 2016: 179-182.

[6] Lewis J, Fowler M. Microservices: a definition of
this new architectural term[J]. 2014.

[7] Koskinen J. Software maintenance costs[J].
Jyväskylä: University of Jyväskylä, 2010.

[8] Newman S. Building Microservices[M]. " O'Reilly
Media, Inc.", 2015.

[9] Fowler M, Lewis J. Microservices a definition of this
new architectural term[J]. URL: http://martinfowler.
com/articles/microservices. html [accessed: 2016-02-
12], 2014.

[10] Guo D, Wang W, Zeng G, et al. Microservices
Architecture Based Cloudware Deployment Platform
for Service Computing[C]//2016 IEEE Symposium
on Service-Oriented System Engineering (SOSE).
IEEE, 2016: 358-363.

[11] Merkel, D.: Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal 2 (2014)

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 13

2016 International Journal of Computer Science Issues



[12] Wu L, Buyya R. Service Level Agreement (SLA) in
utility computing systems[J]. IGI Global, 2012.

[13] Ciuffoletti A. Automated deployment of a
microservice-based monitoring infrastructure[J].
Procedia Computer Science, 2015, 68: 163-172.

[14] Zúñiga-Prieto M, Insfran E, Abrahao S, et al.
Incremental Integration of Microservices in Cloud
Applications[J]. 2016.

[15] Farrell T J, Wilson B C, Patterson M S. The use of a
neural network to determine tissue optical properties
from spatially resolved diffuse reflectance
measurements[J]. Physics in medicine and biology,
1992, 37(12): 2281.

Zhen-Ling Ji male, born in 1990, is a master candidate in
computer software and theory at the Information Engineering
College, Henan University of Science and Technology, Luoyang,
China. His research direction is cloud computing and computer
architecture.

Yong Liu .male, born in 1966, professor. He is a graduate tutor,
mainly engaged in cloud computing and software architecture
direction of the study.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201606.814 14

2016 International Journal of Computer Science Issues




