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Abstract—Single image blind deblurring has been 
intensively studied since Fergus et al.’s variational Bayes 
method in 2006. It is now commonly believed that the blur-
kernel estimation accuracy is highly dependent on the 
pursed salient edge information from the blurred image, 
which stimulates numerous l0-approximating blind 
deblurring methods via kinds of techniques and tricks. This 
paper, however, focuses on the four recent daring attempts 
which are all based on the simple and direct l0-norm. A 
systematic com- parative analysis is made towards those 
methods, clarifying their similarities and differences, and 
providing a benchmark evaluation on both the deblurring 
quality and computational efficiency. Results have 
demonstrated that the l0-norm alone is far enough to 
achieve top blind deblurring performance. Instead, details 
are to be paid with fairly more attention as working on the 
problem formulation as well as the algorithmic deduction. 
Inspired by the success of the bi-l0-l2-norm regularization, 
an attempt has been made to boost a recently proposed 
normalized sparsity-based blind deblurring method via 
simply borrowing core ideas behind the bi-l0-l2-norm 
regularization. Experimental results show that the boosting 
approach has leaded to a significant improvement in terms 
of both accuracy and efficiency. Finally, several possible 
extensions are discussed towards the bi-l0-l2-norm 
regularization.  

Keywords-blind deblurring; camera shake removal; 
variational Bayes; l0-norm minimization; split Bregman; half-
quadratic 

1. Introduction
Blind image deblurring is a highly ill-conditioned and

cha- llengeable low-level vision task, the core problem of 
which is the accurate and robust estimation of blur-
kernels. Since Fergus et al.’s influential variational Bayes 
method [1] in 2006, kinds of approaches have been 
proposed in the past decade [2-21, 32], and a detailed 
overview on the blind deblurring can be referred to Wang 
and Tao [22]. The focus in this paper is on the case of 
single image spatially-invariant blind deblurring, not only 

in that it could be used in a large number of potential 
applications due to the explosion of consumer digital 
photography, but also it serves as the basis for those more 
challengeable scenarios of multi-shot and spatially-variant 
blind deblurring.  

    Owing to the notorious ill-posedness of blur-kernel 
estimation, proper regularization terms or prior 
assumptions should be imposed so as to achieve 
reasonable estimates for the sharp image and the blur-
kernel. Roughly speaking, most blur-kernel estimation 
approaches are rooted in the Bayesian framework, 
including two common inference principles: Maximum a 
Pos-teriori (MAP), e.g., [2-4, 9-13, 16-21, 32], and 
Variational Bayes (VB), e.g., [1, 5-8]. Note that in [14, 
15], the MAP and VB principles are even combined in a 
sequential manner. It is also interesting to note that, most 
blind deblurring approaches concentrate intensively on 
the prior modeling of sharp images and the algorithmic 
deduction; as for the blur-kernels, they are either free of 
prior or imposed by a naive lq-norm-based prior 
(0 2)q  .  In the subsequent, VB and MAP approaches 
are briefly reviewed, with an emphasis on the choice of 
priors for the images.  

    VB Methods. Fergus et al. [1] use a mixture-of-
Gaussians (MoG) prior to model the image, with hyper-
parameters in the prior learned in advance; and in the 
experiments, they empirically find that the MAP 
formulation with the same image and kernel priors 
completely fails. Inspired by Fergus et al.’s se-minal 
work, Levin et al. [5] provide a more profound analysis 
on blind deblurring, following which a simpler VB 
posteriori inference scheme is deduced [6]. Recently, a 
new blind motion deblurring method is proposed by 
Babacan et al. [7], imposing a general sparseness-
inspired prior on the image and claiming that the non-
informative Jeffreys prior is found more powerful than 
other options in practice, e.g., MoG [1, 6]. This finding is 
consistent with the theoretical analysis in [8], suggesting 
that the Jeffreys prior is optimal to a certain degree. 
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However, we should note that Babacan et al.’s empirical 
analysis does not build on the provided code by Levin et 
al. [6]. Actually, with a completely fair comparison1 we 
have found that Levin et al. [6] outperforms Babacan et 
al. [7] in terms of the blur-kernel estimation accuracy.  

    MAP Methods. Compared with the VB principle, 
MAP is practiced more commonly. The reason lies in that, 
(i) it is more intuitive; (ii) it allows a simpler problem
formulation; (iii) it is more flexible for imposing the
regularization terms; and (iv) it typically leads to more
efficient numerical implementation. Of course, many
approaches of this type also exploit sparse image priors.
Nevertheless, in order to achieve comparative or higher
precision of blur-kernel estimation than the VB methods,
MAP commonly approximates the l0-norm using sorts of
techniques for dominant edge prediction as core clues to
kernel estimation, either explicitly or implicitly. The
explicit approximation includes the lp-norm-based image
priors (0<p<<1) [16, 17], the reweighted l2-norm-based
prior [18], the unnatural l0-norm-based sparse prior [2], 
the normalized sparsity-based sparse prior [19], and the 
log-operator-based sparse prior [20], i.e., logarithm of the 
Jeffreys prior in VB [7, 8]. As for those implicit ones [9-
15], they usually include an additional step of 
texture/noise removal utilizing the smoothing and shock 
filters after performing an l2-based image estimation. As a 
matter of fact, [14, 15] have also incorporated the VB 
approach [6] to further improve the kernel estimation 
accuracy.   

 Following the discussion above, it is easily concluded 
that current leading blind deblurring approaches heavily 
depend on the l0-approximating image priors. The present 
paper, however, concentrates on the daring attempts by 
direct use of the l0-norm for blind image deblurring. 
Specifically, we make a systematic comparative analysis 
on the four recently reported papers [2, 3, 32, 4], clarify 
their similarities and differences in both problem 
formulation and algorithmic implementation, and give a 
benchmark evaluation on both the blind deblurring quality 
and computational efficiency. The experimental results 
show that the l0-norm-based image prior alone is far 
enough to achieve superior blind deblurring performance. 
And, details are to be paid with fairly more attention when 
working on the problem formulation as well as the 
algorithmic deduction. Inspired by the success of the bi-
l0-l2-norm regularization, an attempt has been made to 
boost a recently proposed normalized sparsity-based blind 
deblurring method via simply borrowing core ideas 
behind the bi-l0-l2-norm regularization. Experimental 
results show that the boosting approach has leaded to a 
significant improvement in terms of both accuracy and 
efficiency.  

1 With the benchmark dataset in [5], the comparison in terms of the 
accuracy of blur-kernel estimation is made based on the same non-blind 
deconvolution algorithm in [23], using the Matlab codes provided 
respectively by Levin et al. [6] and Babacan et al. [7].  

2. State-of-the-art l0-norm-based Single
Image Blind Deblurring
Following the terminology of existing approaches [1-

22, 32], the blurred image y  is modeled by the spatially-
invariant con- volution, mathematically formulated as 

,  y k x n  (1) 

where x  is the clear image, k  is the blur-kernel,  stands 
for a convolution operator, and n  is assumed to be an 
additive white Gaussian noise. The task of blind image 
deblurring is generally divided into two independent 
stages, i.e., estimation of the blur-kernel k  and then a non-
blind deconvolution of the clear image x  given the found 
k . The inherent reason is that image priors exploited in 
the two stages are not necessarily the same.  

    To the best of our knowledge, state-of-the-art l0-norm-
based natural image blind deblurring methods include [2, 
3, 32, 4], all of which are based on the MAP. A basic 
formulation for the MAP estimates of x  and k  can be 
presented as 

   2
2

,
min  || || ( ) + ( ),     x  x k  k

x k
k x y x kQ Q   (2) 

where ,  ,    x k  are positive tuning parameters, and 
( ),Q x x    ( )Q k k  are the regularization terms reflecting 

our priors on x    and .k  We note that, in [2, 3, 32, 4] the 
positivity and unit sum constraints on the kernel k are also 
considered as minimizing (2) with respect to k.  

2.1. Unnatural l0-norm-based approach [2] 

     The specific objective in [2] for estimating the blur-
kernel from the blurred image is  

 

2

2 2 |( ) | 2
2 2

,
min  || || min(1, ) + || || ,m

m       x kx k
x k

k x y    (3) 

where   is a positive small parameter, x  and k  are the 
vec-torized versions of x  and ,k  respectively, and 

( );  h v    with ,h v   being the matrix versions of 
the first-order differ-ence operators ,h vD D  in the 
horizontal and vertical directions. With the half-quadratic 
regularization strategy [24], the authors [2] prove that (3) 
is equivalent to  
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where 0| |mz  is a number to the zero power, and in 
implemen- tation  is chosen as a decreasing sequence. 
Then, (4) can be solved by applying the block coordinate 
descent method.  

    Actually, using the penalty decomposition (PD) 
method for l0-norm minimization [25], we have 
alternative interpretation on Equation (4); that is, with 
PD the minimizers of (4) can be obtained by solving the 
following l0-norm-based objective  

  2 2
02 2

,
min  || || || || + || || ,     x kx k

x k
k x y   (5) 

where 0|| ||  denotes the l0-norm. Readers may refer to 
[25] for more details on the PD method. Notice that, as
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estimating the blur-kernel in [2], the fidelity term of (5) 
is represented in the derivative domain. We should note 
that [2] has been extended to the blind deblurring of text 
images more recently in [34].    

2.2. Reweighed l0-norm-based approach [3] 

    With the above alternative interpretation on the 
unnatural l0-norm-based blind deblurring approach [2], it 
becomes easier to formulate the reweighted l0-norm-
based deblurring method [3] whose final objective is  

  2 2
02 2

,
min  || || || || + || || ,T      x kx k

x k
k x y w (6) 

where 0.8exp( | | )  rw  and r is the vectorized version 
of the matrix r defined as 
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where ( )lN p  is an l l  window centered at pixel p. 
Note that, the motivation of incorporating the adaptive 
weight w  into (5) is that, not all the edges in the sharp 
image x  are helpful to the blur-kernel estimation [3]. 
Actually, Equation (7) is firstly proposed in [10] in order 
to remove some narrow strips which are to deteriorate the 
kernel estimation precision.  

    As in [2], it is easy to derive an analytical solution to k 
for (6). When it turns to minimizing (6) with respect to x, 
the authors [3] use the idea of alternating direction 
method of multipliers (ADMM), originating from the 
operator splitting and augmented Lagrangian (OSAL) 
method. Specifically, a constrained minimization 
problem is solved to estimate x as this  

 0
,

min  || || ,   s.t.   ,  .T    xx
x k

k x yw     (8) 

In addition, the continuation technique is applied to  x  
in implementation, i.e., it is decreasing as iterating. Also, 
the fidelity term of (6) is represented in the derivative 
domain as estimating both the blur-kernel and the sharp 
image. 

2.3. Bi-l0-l2-norm regularization-based approach [4] 

This approach follows a similar rationale to [2] and [3], 
but aims for pursing a better sharp image, which 
naturally leads to more accurate kernel estimation and 
therefore more successful blind deblurring. Specifically, 
a bi-l0-l2-norm regularization is imposed on both the 
sharp image and the blur-kernel, with the  regularization 
terms in (2) respectively defined as  

  2
0 2( )  || || + || || ,

 x xx

x x x  Q  (9) 

  2
0 2( )  || || + || || ,

 k kk

k k kQ  (10) 

where  and  x k  are positive tuning parameter 2 . 

2 The proposed l0-l2-norm regularization on x  or k  is somewhat akin 
to the elastic net regularization [26], which combines the l2- and the l1-
norms in the ridge and LASSO regression [27]. However, the interest 

Equation (9) corresponds to the l0-l2-norm-based image 
regularization, and Equation (10) corresponds to a similar 
regularization that serves the blur-kernel.  

    The rationale underlying (9) is the desire to get a 
recovered image with the salient edges from the original 
image, which govern the main blurring effect, as well as 
to force smoothness along prominent edges and inside 
homogenous regions. Such a sharp image is more reliable 
for recovering the true support of the desired motion 
blur-kernel than those alternative ones with unpleasant 
staircase artifacts. As for Equation (10), as the size of 
blur-kernel is large enough, it accounts for the sparseness 
property of typical blur-kernels, especially for the motion 
blur. The l0-part reduces those possibly moderate or 
strong isolated points in the blur-kernel, and just as 
practiced in [2, 3, 9, 10], the l2-part suppresses the 
possibly weak components. 

    As for the numerical implementation, the authors [4] 
apply the OSAL or ADMM approach to solve the l0-l2-
minimization problem with respect to x  and k , 
respectively. The specific  optimization problems to be 
solved are  

2 2
02 2

,
min || ||  (|| || || || ) ,  s.t.  .

    
w x

Kx y w x w x  x

xx  (11) 

2 2
02 2,

min || ||  (|| || || || ),  s.t.  . 
    

g k
Xk y g k g k   k

kk  (12) 

where ,K X
 
denote respectively the BCCB (block-

circulant with circulant blocks) convolution matrix 
corresponding to k  and x , and y  is the vectorized 
representation of y . Notice from (12) that, as estimating 
the blur-kernel k the fidelity term is represented in the 
derivative image domain, the same as [2]. Additionally, 
the continuation strategy is applied to both the 
regularization parameters  x  and k  while with different 
continuation factors.  

We should make it clear here that, the applied 
continuation scheme in both [4] and [3] can be seen as a 
component of prior modeling for blind deblurring. But, 
there is no any explanation   on the continuation in [3]. In 
fact, the essence of continuation on the image 
regularization parameter αx is to restore more and more 
accurate edge structures in a progressive manner, i.e., 
from the dominant to the faint. To make it clearer, if αx is 
set too small throughout all the iterations, the 
regularization effect would be so minor that very limited 
edges could be pursed as a core clue to blur-kernel 
estimation, therefore leading to poor quality estimated 
kernels; on the contrast, if αx is set too large, we will get 
a very cartooned image which generally has fairly less 
accurate edges while accompanied by unpleasant 
staircase artifacts in the homogeneous areas, hence 
reducing the kernel estimation precision. To alleviate this 
problem, a rational way is then to impose a decreasing 
sequence on αx . A counterpart analysis can be made on 

here is specifically in l0 and not l1, as it has been demonstrated both 
theoretically [5, 8, 28] and em-pirically [1] that a cost function (2) with 
an l1-norm-based image prior leads to a trivial and therefore a useless 
solution. 
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αk , too. It is interesting to note that the decreasing ԑ in (4) 
appears to play the role of continuation, but actually it 
does not. On one hand, when we look at (3) the 
decreasing ԑ urges the image prior to approximate the l0-
norm; on the other hand, it is just a component of the PD 
approach when we look at (5).  

2.4. Incremental sparse approximation-based approach 
[32] 

    The core idea of [32] is to estimate the blur-kernel first 
from only the strongest edges in the image and then 
gradually refine this estimate by allowing for weaker and 
weaker edges. From the discussion above on the 
continuation scheme, we observe that the underlying 
ideas among [32, 3, 4] are similar to each other in some 
sense. And, it is now not hard to get why [32] is called 
the incremental sparse approximation-based approach.  

TABLE 1. Comparative Summary of l0-norm-based Methods  
[2, 3, 32, 4] 

Technical component [2] [3] [32] [4]

l0-image prior  √ √ √ √ 
l2-image prior × × × √

l0-kernel prior × × × √

l2-kernel prior √ √ × √

Continuation - αx × √ √ √

Continuation - αk × × × √

Additional trick for priors3 × √ × ×

Numerical scheme PD ADMM PG ADMM 
FFT √ √ × √

Derivative image fidelity √ × √ ×

Derivative kernel fidelity √ √ √ √ 
Multi-scale  √ √ √ √ 

    In spite of the similarity in idea, the optimization 
problem in [32] does not build on (2) directly. Instead, a 
constrained one given as follows is proposed    

 

21
22,

0 

min  || ||

s.t.    || || ,

 

x
x k

x

k x y


 (13) 

where x  is the vector formed by the gradient 
magnitude of  x  at each pixel. Except for the problem 
formulation, another major contribution in [32] is use of 
the projected gradient (PG) method for alternatively 
estimating x and k. We just take x for example 
considering the limited paper space. The PG method 
seeks a solution of x  by iterative updates of the form  

 ( ( , )), x x x x x kP F X   (14) 

where 2
2( , ) || || / 2,  x k k x yF   0 { ||| || }, x xX  x  

 x is a step size, and ( )tP X  is the Euclidean projection of 
t onto X  which can be computed in linear time via 
selection algorithms [33]. In order to perform the 

3 E.g., Equation (7). 

incremental sparse approximation, a strictly increasing 
sequence is applied to  x  as iterating, i.e., applying the 
continuation strategy. In addition, the same as [3] 

( , )F x k  is represented in the derivative domain as 
estimating both the kernel and the image. 

   A note should be made that, one has to pay more 
attention to the choice of step size as operating the PG 
method. In [32], the respective step size for updating x
and  k  is selected using the backtracking line search 
from an initial guess, however, which is not physically 
intuitive at all.  

3. Comparative Studies
3.1. Algorithmic comparison 

   Table 1 presents a comparative summary of the four l0-
norm-based blind deblurring approaches [2, 3, 32, 4]. It 
is clear that besides the l0-norm-based image prior, 
another two common implementation details in the four 
methods are the derivative representation of the fidelity 
term as estimating the blur-kernel and the multi-scale 
strategy4 applied to the core algorithm of  each method. 
We also see that except [2], other three methods all apply 
the continuation strategy to the image prior, which is 
empirically explained in [32] and [4] and demonstrated 
critical to the success of blind deblurring. A major 
distinction between [4] and [2, 3, 32] is that, the l2-norm-
based image prior and the l0-norm-based kernel prior 
(also with continuation) are used in [4], too. The 
experiment results in Section 3 make us believe that this 
distinction is playing a fairly important role in achiev-ing 
superior blind deblurring performance. One more point is 
noted that it is very beneficial to make use of the fast 
Fourier transform (FFT) as deducing the numerical 
algorithm, e.g., [2, 3, 4].   

Image01 Image02

Image03 Image04

Kernel01 Kernel02 Kernel03 Kernel04 Kernel05 Kernel06 Kernel07 Kernel08

Figure 1. The ground truth images and motion blur-kernels from the 
benchmark image dataset proposed by Levin et al. [5].

4  The multi-scale scheme has been widely utilized in existing blind 
deblurring literature, e.g., [1-21, 32]. 
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Figure 2. The cumulative histogram of SSD error ratios corresponding to 
blind deblurring approaches [2], [10]+[2], [3], [32], and [4]. The success 
percentage, i.e., SSD error ratio below 3, for each approach is: 59% [1], 
81% [10]+[2], 78% [3], 75% [32], 97% [4]. 

3.2. Experimental comparison 

   This subsection makes an empirical comparative 
analysis on the four blind deblurring methods [2, 3, 32, 4]. 
Note that, [3] does not make their Matlab code online as 
claimed in the paper. But, the codes of methods [2, 32, 4] 
are available. In this case, it is better to compare different 
algorithms with the settings as specified in [3]. The 
deblurred images, the score of evaluation metric, and the 
computation time of [3] can be then cited directly in the 
present paper. For a fair comparison, we run the codes of 
[2, 32, 4] directly 5  to estimate blur-kernels, without 
altering any parameter settings; with estimated kernels, 
the same non-blind deconvolution method [23] is then 
used to generate final deblurred images for [2, 32, 4]. 
Note that, the non-blind deblurring method in [3] uses the 
same prior as in [23], i.e., the anisotropic discrete total 
variation. 

   Specifically, the evaluation is conducted on the 
benchmark image dataset proposed by Levin et al. in [5], 
downloaded from the author’s homepage6 . The dataset 
contains 32 real blurred images corresponding to 4 natural 
images of size 255×255 and 8 different motion blur-
kernels with sizes ranging from 13×13 to 27×27, as 
provided in Figure 1. The SSD metric (Sum of Squared 
Difference) defined in [5] is used to quantify the error 
between the final non-blind deblurred image and the 
original image. Then, the same as [5, 3] the SSD error 
ratio between the images deblurred respectively utilizing 
the estimated kernel (its size is the same as the true one) 
and the true kernel is exploited as the final evaluation 
measure. The underlying idea [6] is to normalize for the 
fact that harder kernels achieve a larger reconstruction 
error even when estimated correctly.       

5 We should note that when we refer to [2] later in the experiments, we 
actually consider two versions of the executable C++ codes - the one 
reported in [2], and a combination of [2] and [10] which the authors 
released later on, due to its better performance. Both versions were 
taken from the author’s webpage: http://www.cse.cuhk.edu.hk/ 
leojia/deblurring.htm. 
6

www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Cod
e.zip.

TABLE 2. Comparison of Running Time (in Seconds) 
Blurred Images [2] [10]+[2

] 
[3]7 [32] [4]8

Image01-Kernel01 0.912 1.158 43.07 44.36 3.765 
Image01-Kernel02 0.928 1.196 35.13 33.96 3.692 
Image01-Kernel03 0.956 1.150 44.74 25.98 3.802 
Image01-Kernel04 0.974 1.182 39.98 70.49 3.835 
Image01-Kernel05 0.955 1.165 34.24 21.07 3.798 
Image01-Kernel06 0.924 1.168 53.35 36.01 3.847 
Image01-Kernel07 0.945 1.178 44.98 46.91 3.753 
Image01-Kernel08 0.917 1.157 44.93 47.03 3.741 

   Figure 2 provides the cumulative histogram of the SSD 
deconvolution error ratios across 32 test images for each 
algorithm. Following [5] and [3], the r’th bin in the figure 
counts the percentage of 32 blurred images achieving an 
error ratio below r [2]. For instance, the bar in Figure 2 
corresponding to the bin 3 indicates the percentage of test 
images with SSD error ratios below 3. For each bin, the 
higher the bar, the better the deblurring performance. As 
pointed out by Levin et al. [6], deblurred images are 
visually plausible in general if their SSD error ratios are 
below 3, and in this case the blind deblurring is 
considered successful. The histogram provided in Figure 
2 shows that the bi-l0-l2-norm-based blind deblurring 
method [4] achieves much higher success percentage, i.e., 
97%. However, those of [32], [3], [2], and [10]+[2] are 
respectively 75%, 78%, 59% and 81%, demonstrating the 
superior performance of the more recent bi-l0-l2-norm 
regularization. We also see that [4] performs better than 
[32], [3], [2], and [10]+[2] throughout all the bins. It is 
interesting to note that [32], [3], and [10]+[2] have 
achieved similar success percentages, i.e., SSD error 
ratios below 3, while [3] is slightly better than [10]+[2] in 
other bins. Then, we can conjecture that the incorporation 
of [10] into [2] has played a similar role to the weight (7) 
in [3], which is used to select more important sharp edges 
as clues to blur-kernel estimation. And, we believe that 
[10] + [2] will work better if additionally exploiting the
continuation scheme. 

 Table 2 also provides a comparison of running time for 
the 8 blurred images corresponding to Image01. The 
codes of [32], [3], and [4] are in Matlab, and those of [2] 
and [10]+[2] are in C++. It is seen that [2] and [10]+[2] 
are most efficient among several methods. It is also found 
that [4] is more efficient than [3, 32] which are of similar 
computational complexity. Hence, we now come to a 
conclusion that [4] has achieved a very good compromise 
between deblurring quality and running speed.     

7  The running time is directly cited from the paper [3], which is 
obtained on a computer with a Xeon CPU (2.53GHz) and 12GB 
memory, running Windows 7 (64 bit version).  
8 The running time of [4] and [32] is obtained on a portable computer 
with an Intel i7-4600M CPU (2.90GHz) and 8GB memory, also 
running Windows 7 (64 bit version). 
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4. Tikhonov Boosting Normalized Sparsity
Regularization for Single Image Blind
Deblurring

 Inspired by the success of bi-l0-l2-norm regularization, 
it is natural to ask such a question that what we can 
benefit from it in the practice of blind deblurring, 
motivated by which, in this section we propose to boost a 
recent normalized sparsity (NS) [19]-based blind 
deblurring method via simply borrowing core ideas 
behind the bi-l0-l2-norm regularization. The main reason 
that we work on [19] is, the newly introduced NS-based 
image prior in [19] is claimed to favor sharp images over 
blurry ones, therefore better adapting blind deblurring 
than existing image regularizations [23, 24, 35, 30], 
while it is empirically proved  much inferior to state-of-
the-art blind deblurring methods [6, 4] in terms of 
deblurring quality despite its modeling advantage. For 
the clearness, we first briefly introduce the NS-based 
blind deblurring method [19], and then formulate our 
new Tikhonov boosting approach along with the 
numerical algorithm as well as empirical results on the 
benchmark data set [5].  

4.1. NS-based blind deblurring via ISTA and IRLS [19] 

   With notations used in this paper, the minimizing 
objective function in [19] is posed as    
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It should be noted that, the fidelity term of (15) is 
represented in the derivative domain as estimating both 
the image and the kernel. The image regularizer is called 
the normalized sparsity (NS). As empirically shown in 
[19], for a sharp image this NS-based prior produces a 
lower cost than that for its blurry image, which is just 
what we desire in blind deblurring. To the best of our 
knowledge, NS is the one and only sparsity measure in 
the literature claimed satisfying the above property [19]. 
However, after numerous simulations it is found that the 
above property does not always hold for all the natural 
images. 

   As for solving (15), the authors of [19] respectively 
exploit the iterative soft-thresholding algorithm (ISTA) 
and iteratively reweighted least squares (IRLS) method 
to estimate the image and the kernel. In specific, 
provided the current estimates ix  and ki, the new 
gradient image 1ix  is estimated by      

    1 2ISTA ( , || || , , , ),i i i i t N x k x x     (16) 

where t and N respectively denote the threshold 
parameter and the maximum iterations involved in ISTA. 
Note that, they are  often specified by hand. As for the 
new blur-kernel 1ik , it is approximately updated by 
solving the following minimization function via 
conjugate gradient (CG), i.e.,  
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where j
ik  is the j-th item of ik , and   is a very small 

constant. Then, 1ik is projected onto the nonnegative 
and normalization constraint set. In practice, the authors 
perform 200 alternating updates of the gradient image 
and the blur-kernel. Besides, the multi-scale strategy is 
also applied for dealing with large-scale kernels.   

4.2. Tikhonov boosting NS-based blind deblurring via 
ADMM  

   In this subsection, we are to demonstrate that the 
normalized sparsity alone is far enough for achieving top 
blind deblurring performance, just similar to the naive 
use of the l0-norm. And a fairly simple and 
straightforward remedy is the combination of the NS and 
the Tikhonov regularization as well as applying the 
continuation to the combined regularizer. The rationale is 
inherently the same as that of the bi-l0-l2-norm 
regularization. Thus, given current estimates of the image 
and the blur-kernel, i.e., ix  and ik , the next estimates 
can be obtained by solving  
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where ,c cx k  are fixed continuation factors, set 
respectively as 2 / 3  and 4 / 5  throughout the paper, and 
0 1i I   . We call (18) the Tikhonov boosting NS-
based blind deblurring method.  

   Now, we come to the issue of algorithmic derivation for 
(18). Here we still use the ADMM scheme considering its 
simplicity and efficiency. For the sake of completeness, 
we are providing a detailed description of the overall 
algorithm in the following. We are to show that the new 
algorithm will lead to a significant improvement in terms 
of both accuracy and efficiency.  

   First of all, we solve the following minimization 
problem for 1ix  
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We let = ,x z  having an equivalent constrained 
optimization problem as   
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Applying the augmented Lagrangian scheme,  we obtain 
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where 0 0
00 0, ,  0 1,l L    x x z 0 lx  is a Lagrange 

multiplier for the constraint z x  and updated by 
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and x  is an augmented Lagrangian penalty parameter, 
which is specified universally as 100 throughout the paper. 
With some directly algebraic operations,  1 1,l l

i i
 z x  can be 

easily calculated by solving (21), i.e.,   

2

1
 || ||sgn( ) max( ( )),l l

l
i

l l l
i i iabs 

  
      xz x x   x x x

x x x
(23)

 
 

1
2

1
2

* *

* *

1
( )

( ) ,

i

i

l
i ii c

l l
i ic









   

 

x K K

K y z

x

x

x

xx

x

x

 

   
(24) 

where *
iK  is the conjugate transpose of iK  and 0x  is set 

as 0. The final 1 1,  i i z x  are then estimated as 
1 1,  .L L

i ii i  z z x x  

   Subsequently, similar to [4] and [19] we solve the 
following optimization problem for 1ik  in the derivative 
image domain   
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We let = ,k s  and have an equivalent constrained 
optimization problem as   
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In a similar way, we apply the augmented Lagrangian 
scheme and have   
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where k  is the augmented Lagrangian penalty parameter 
fixed universally as 61 10  throughout the paper, jx  is 
the Lagrange multiplier for the constraint =k s  and 
updated by 
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and 0 0
00 0, ,  0 1.j J    k k s 0 Then, 1 1,j j

i i
 s k can be 

easily calculated by solving (27) as follows 

 1
2Hard

21 1 ,  ( ) ,j j j
i i


 

   s k  k

k kk (29) 

1 *
1 1 2

1*
1 2

1( ( ) ( ) ( ) )

( ( ) ( )),

i

i

j
d i d i di c

j j
d i d d ic







  

 

    

  

k X X I

X y s

k

k

k

kk

k

k



   
(30) 

where { ,  },d h v  ,d d  y y  and 1( )i dX  represents 
the convolution matrix corresponding to the image 
gradient 1( )i dx i.e., 1 1( )i d id   x x . With the
calculated 1j

i
k , it should be further projected onto the 

constraint set  1{ 0, || || 1}  k kC  considering the 
properties of nonnegativity and normalization for a typical 
blur-kernel. The final 1 1,  i i s k  can be estimated as 

1 1,  .J J
i ii i  s s k k  

   We should note that, it is conceptually quite easy to 
compute (23) and (29) because of their pixel-wise 
operations. Besides, (24) and (30) can be also calculated 

very efficiently by use of the fast Fourier transform (FFT) 
as we have assumed that both iK  and 1( )i dX  are BCCB 
matrices. In order to account for large-scale blur-kernels, 
we also exploit a multi-scale strategy and uniformly set 4 
scales for all the blurry images throughout the paper. 
Other parameters involved in (18) are also provided here: 

50,  1.5,  0.15,  1.5,  100        x x k k , just for 
the clearness. As for I, J, L, they are set as 10. Moreover, 
the same as previous section, we use the non-blind 
deconvolution algorithm [3] for the final image  
deblurring. 

TABLE 3. Ssd Error Rations of [19] and the Proposed Method 
Assuming True Sizes of Blur-kernels

Proposed Image01 Image02 Image03 Image04
Kernel01 1.30 2.82 1.14 2.55 
Kernel02 1.20 1.83 1.11 2.57 
Kernel03 1.26 2.30 0.99 1.35 
Kernel04 1.04 1.50 1.58 2.64 
Kernel05 1.14 2.93 1.36 1.66 
Kernel06 1.48 1.87 2.05 4.39 
Kernel07 1.66 2.11 2.49 2.44 
Kernel08 0.97 1.68 1.09 0.93 

[19] Image01 Image02 Image03 Image04
Kernel01 1.53 5.48 1.12 2.98 
Kernel02 1.13 1.43 1.06 2.60 
Kernel03 1.65 1.74 1.26 2.70 
Kernel04 3.72 2.60 0.97 1.41 
Kernel05 1.45 1.51 1.48 2.92 
Kernel06 2.62 10.5 2.57 7.36 
Kernel07 1.47 2.04 1.10 2.33 
Kernel08 4.50 8.82 0.99 3.70 

4.3. Performance analysis and validation 

   In this subsection, we make a comparative analysis 
towards [19] and the proposed Tikhonov-boosting 
method. The first set of experiments are conducted 
assuming that we have original sizes of blur-kernels in 
the benchmark dataset. Table 3 shows SSD error ratios of 
32 test images for the two methods, and we also plot the 
cumulative histograms of SSD error ratios for [4] [19], 
and the proposed method in Figure 3. Note that, we make 
use of the provided MATLAB codes by the authors of 
[19] for estimating blur-kernels (The involved parameters
are adjusted for the best performance). It is clear that our
boosting method has achieved much more accurate
estimation than [19]. In the meanwhile, seen from Figure
3 that our boosting approach has reached comparable
performance to the previous state-of-the-art method [4]
in some sense. To further test the robustness of [19] and
the proposed approach, we conduct a second group of
experiments where we assume that all the blur-kernels
are of size 31×31. The SSD error ratios of the two
methods are listed in Table 4, from which we conclude
that the boosting method is more robust than [19] whose
success percentage is just 56% while ours is 91%. Of
course, in this case our boosting method also achieves
better performance than [19] as for other bins. In the
meanwhile, it is worth noting that our boosting approach
is of almost the same computational efficiency as [4].
However,  [19] is of much higher cost and dependent on
the input sizes of blur-kernels. As for Image01, Table 5
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shows the running time of [19] and our method as the 
sizes of eight blur-kernels are assumed known. Note that, 
the proposed method can be made real-time by integral 
use of parallel implementation and GPU (Graphics 
Processing Unit) acceleration in the future  [36]-[42]. 
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Figure 3. The cumulative histograms of SSD error ratios corresponding 
to [19],  [4], and the proposed method in the case of knowing true blur-
kernel sizes. The success percentage, i.e., SSD error ratio below 3, for 
each method is: 78% [19], 97% [4], 97% (Proposed). 

TABLE 4. Ssd Error Ratios of [19] and the Proposed Method Assuming 
Sizes of All the Blur-kernels are 31×31 

Proposed Image01 Image02 Image03 Image04
Kernel01 1.22 3.35 1.20 2.44 
Kernel02 1.15 1.74 1.13 2.74 
Kernel03 1.10 2.46 1.00 1.37 
Kernel04 1.04 1.50 1.58 2.64 
Kernel05 1.16 2.97 1.39 1.78 
Kernel06 1.58 2.44 1.63 2.73 
Kernel07 1.52 5.72 2.29 2.41 
Kernel08 0.99 2.53 1.05 1.05 

[19] Image01 Image02 Image03 Image04
Kernel01 2.09 6.98 1.24 4.08 
Kernel02 1.66 2.31 1.27 5.11 
Kernel03 2.99 3.20 2.08 63.5 
Kernel04 1.00 1.36 0.97 1.35 
Kernel05 2.78 3.18 2.03 6.80 
Kernel06 3.89 46.8 3.41 6.38 
Kernel07 1.43 21.7 1.69 5.29 
Kernel08 0.87 1.44 0.95 0.93 

TABLE 5. Running Time (in Seconds) of [19] (First Row) and Proposed 
Method (Second Row) as for Image01 Blurred by Different Kernels 

01 02 03 04 05 06 07 08 
51.65 50.59 52.60 110.5 36.62 88.65 93.47 101.4 
3.786 3.655 3.848 3.896 3.778 3.889 3.788 3.789 

5. Discussions and Conclusions
Single Fergus et al.’s influential variational Bayes

approach [1] on camera shake removal, blind deblurring 
has been intensively studied in the past decade. It is 
interesting to note that the image priors in most current 
methods essentially attempt to approximate the l0-norm 
by various techniques and tricks, implying that unnatural 
image priors are more preferred than the common natural 

ones. In a distinct perspective, this paper con-centrates on 
four daring attempts which use the naive l0-norm for 
blind image deblurring [2, 3, 32, 4]. A detailed 
comparative analysis is made towards the four 
approaches, clarifying their similarities as well as 
differences, and providing a benchmark evaluation using 
Levin et al.’s blurred image dataset [5]. The experimental 
results show that the l0-norm alone is far enough to 
achieve top blind deblurring performance. Actually, 
details have to be paid with fairly more attention as 
working on the problem formulation and the algorithmic 
deduction for the l0-norm-based blind deblurring. 
Inspired by the success of the bi-l0-l2-norm regularization, 
we have also tried to boost a recent  normalized sparsity-
based blind deblurring method via simply borrowing core 
ideas behind the bi-l0-l2-norm regularization. The 
experimental results show that the boosting approach has 
leaded to a significant improvement in terms of both 
accuracy and efficiency.  

    Considering the superior performance of the bi-l0-l2-
norm regularization in blind deblurring [4], we would 
like to discuss its possible extensions to several other 
imaging problems. A natural extension is to apply the 
regularization to non-uniform blind deblurring, just in a 
similar spirit to [2]. The second work is to apply it for 
blind video deblurring. We should note that essentially 
natural image priors are the key components for 
successful non-blind video deblurring, e.g., [29]. 
However, we doubt whether it is still the case as for the 
blind scenario. The last research to be carried out is to 
apply the bi-l0-l2-norm regularization for blind super-
resolution (SR). Surprisingly, despite the similarity 
between blind deblurring and blind SR, it seems there 
exists a big gap between the two highly related problems. 
Particularly, the attention given to the nonparame- tric 
blind SR is very faint, while the counterpart blind deblur- 
ring problem is very popular and extensively treated. To 
the best of our knowledge, [11, 31] are the only two 
methods for nonparametric blind SR. And it is interesting 
that the work in [11] has presented a nonparametric 
kernel estimation approach for both blind SR and blind 
deblurring in a unified framework. However, it is 
restricting its treatment to the single-mode blur-kernels. 
In addition, [11] does not originate from a rigorous 
optimization principle, but rather builds on the detection 
and prediction of step edges as an important clue to the 
blur-kernel estimation, just similar to [10]. Because of 
the more rigorous problem formulation in [4], we 
strongly expect that a more advanced non-parametric 
blind SR approach can be developed based on [4].  
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