
Enhanced Parallel Skyline on Multi-core Architecture with

Low Memory Space Cost

Jean Pepe M. Buanga1, Simon Ntumba Badibanga2, Richard Kabamba Ilunga3

1 Yanshan University

Qinhuangdao, China

University of Kinshasa

Kinshasa, DRC

2 University of Kinshasa

Kinshasa, DRC

3 University of Kinshasa

Kinshasa, DRC

 Abstract

Skyline is an important proposal for expressing user

preferences. Based on multi-core computation, we propose a

new algorithm that improves parallel skyline query algorithm

(PSQ), by reducing the memory space cost, and efficiently

increasing the speed-up of computation.

Keywords: skyline query; multi-core processors; parallel

computing

1. Introduction

Skyline query is an efficient data analysis tool for helping

users make intelligent decisions over complex data in different

and often conflicting criteria. The skyline query is suitable for

multi-core architecture since a large number of comparisons

between data points can be performed independently. Multi-

core systems run multiple tasks at the same time. Each task

will be executed by a separate core in parallel, thus, boosting

the performance [9].

So far, several algorithms for parallel skyline query have been

developed for example; Parallel Skyline (PSkyline) [8] and

Parallel Skyline Query algorithm (PSQ) [11].

As an overview, this paper proposes an Enhanced Parallel

Skyline Query algorithm using low memory space, called E-

PSQ, which is applied to shared memory architecture in order

to efficiently speed up the computation. The remainder of this

paper is organized as follows: Section 2 discusses the previous

works that are related to ours; Section 3 analyzes the problem

of parallel skyline algorithm (PSQ), as well as gives its

corresponding solution and proposes a new algorithm that

enhances PSQ; Section 4 shows experimental results, and

Section 5 draws conclusions.

2. Related works

Sungwoo Park et al. [3] proposed a Parallel Skyline algorithm

(PSkyline), based on the divide-and-conquer strategy [2]. It

uses no index structures and divides a dataset linearly into

smaller blocks of the same size, and computes local skyline

points of each block by using a sequential skyline query

algorithm, then merges local skyline points sequentially.

PSkyline achieved a speedup approximately proportional to

the number of cores. Compared to BBS [4], PSQ ran faster

than sequential BBS and parallel BBS.

Meng-Zong Liou et al. [4] proposed a Parallel Skyline Query

algorithm for multi-core architecture (PSQ), which have been

applied to shared memory architecture. It sorts the given

dataset in descending order for each coordinate component

separately, and finds out a terminating point [6] for

eliminating redundant computations of skyline query[7] and

[10]. The performance of PSQ algorithm has been compared

to the PSkyline algorithm with eight cores by considering

runtime and speed-up factors. The experimental results

showed that the PSQ algorithm runs faster than the PSkyline

algorithm when the dimensionality of the dataset is high or the

number of data points is large.

3. Algorithms

3.1. Existing Parallel Skyline Query Algorithm (PSQ)

problem

In PSQ Algorithm, the main problem is that the whole Dataset

is scanned in memory space; and this issue increases the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 153

2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201605.153158&domain=pdf

utilization cost of memory space. This problem is described in

three parts of this algorithm, as follows:

First, in order to sort each attribute separately, the whole

Dataset is scanned in memory space.

parallel for i := 1 to d do

iS Sort D in non-ascending order according to the i-th

dimension

end parallel

Second, the test))()((trankprankif ii concerns the

comparison of all the tuples p except the terminating tuple t,

belonging to Dataset D, where)(pranki denotes the rank of

tuple p on i-th attribute,)(tranki denotes the rank of

terminating tuple on i-th attribute. Indeed, not all tuples are

concerned by this test. The tuples concerned by this test are

only the ones that have rank not greater than rank of

terminating tuple. Given number of tuples in each attribute (n),

d-Dataset(D), number of cores processor (p). If each core

processor manipulates one attribute, then, the number of

computation per core processor is n comparisons, n

communications with local memory space to read all tuples.

For all cores processors, we have pn memory cases. Its

complexity space is)(pnO . For example, n =

1,000,000, with eight cores and d = 6. We need very large

physical memory space to compute skyline tuples with these

given data, but, the suitable memory is very expensive. This

algorithm could encounter bottleneck because of memory

space, if there is not enough memory space.

Third, with whole Dataset in memory space, CheckSkyline

procedure checks the dominance relationship between skyline

tuples candidates so that it outputs the final skyline tuples

progressively.

In Conclusion, this algorithm uses a high memory cost that

could lead to bottleneck of system because of lack of memory

space.

3.2. The proposed solution

In this work, we focused on second part of PSQ to reduce

memory space. At this step, all points are not concerned by

this test. Knowing terminating point and its rank, our principle

is to create a small structure data as new dataset that will

contain only interested points or candidate’s skyline from each

attribute separately, and then, eliminate all duplicates tuples.

This structure will be used in the rest of algorithm, and then,

the memory space cost will be reduced. This new dataset is

denoted as ND (Algorithm 1).

Algorithm 1. Created small structure data as new dataset

1 parallel for i := 1 to d do

2 Determine ranktt

3 end parallel

4 k = 0

5 ND[0] = tt

6 parallel for i := 1 to d do

7 for j := 1 to ranktt

8 k = k + 1

9
ijk SDND // ijSD , Sorted Dataset

10 end parallel
11 for i := 1 to k do

12 remove all duplicate tuples from ND

13 end for

We illustrate our proposed solution with a concrete example.

Consider a team of baseball players from Chicago White Sox

in American League described in Table 1. There are 20

baseball players. Each player’s performance is recorded by

four attributes; these attributes are average (G), on base

percentage (OBP), slugging percentage (SLG), At Bats

(AVG). These attributes can be used to evaluate the

performance of a baseball player, and interpreted as a 4-

Dimensional point.

Table 1: Example of baseball Players of Chicago White Sox

No Players AVG OBP SLG G

1. Bill 0.828 0.34 0.488 73

2. Bob 0.701 0.33 0.467 69

3. Edey 0.662 0.3 0.3 65

4. Ken 0.69 0.344 0.356 71

5. Eve 0.301 0.485 0.564 80

6. Fiston 0.243 0.451 0.587 75

7. Gregoire 0.223 0.415 0.521 145

8. Hercule 0.265 0.485 0.487 50

9. Ignacio 0.285 0.432 0.654 60

10. John 0.276 0.428 0.432 65

11. Anne 0.297 0.471 0.614 75

12. Bin 0.314 0.453 0.578 108

13. Chris 0.309 0.447 0.556 112

14. Dom 0.256 0.46 0.533 132

15. Elie 0.303 0.487 0.566 82

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 154

2016 International Journal of Computer Science Issues

16. Fabrice 0.245 0.453 0.589 77

17. Georges 0.225 0.417 0.523 147

18. Harris 0.267 0.487 0.489 52

19. Isaac 0.287 0.434 0.656 61

20. Jason 0.278 0.43 0.434 67

After computing our module, the new Dataset has 16 tuples,

less than the first Dataset with 20 tuples (Fig.1). For a large

amount of dataset, the number of tuples will be more reduced

in order to keep only the interested tuples, which will be used

during the running of an algorithm. Therefore, we gain in the

use of low memory space, and communication cost between

core processor and memory space.

Fig.1. Execution result of our proposed solution

3.3. Proposed Algorithm: Enhanced parallel skyline

query (E-PSQ)

Table 2: Frequently Used Symbols

Symbol Meaning

D Dataset

iSD i-th Sorted Dataset per attribute

ND New Dataset from dataset D

d Dimension of dataset

q,t,p Tuple

Tt Terminating tuple

Ranktt Rank of Terminating tuple

K New size of dataset

rSA r-th Subset of tuples per attribute

Algorithm 2. Enhanced Parallel skyline query algorithm (E-PSQ)

Input: A list of tuples D

Output: The skyline tuples of D

1 parallel for i := 1 to d do

2 iS Sort D in ascending or descending

order according to the
thi dimension

3 end parallel

4 tt Determine a terminating tuple

5 parallel for i := 1 to d do

6 Determine ranktt

7 end parallel

8 k = 0

9 ND[0] = tt

10 parallel for i := 1 to d do

11 for j := 1 to ranktt

12 k = k + 1

13
ijk SND

14 end for
15 end parallel

16 for i := 1 to k do

17 remove all duplicate tuples

18 end for
19 parallel for each NDt do

20 for i := 1 to d do

21 if ttranktrank ii
22 find r

with djtranktrank jr 1min

23 insert t into rSA
24 break
25 end for

26 end parallel

27 for i := 1 to d do

28 parallel for each iSAp do

29 CheckSkyline(i, t)

30 end parallel
31 end for

Algorithm 3. Checking final skyline tuples

CheckSkyline(i,t)

1
for each iSAq with trankqranki do

2
if(q is not marked as a non-skyline point)

3
if(q dominates t)

4
t is marked as non-skyline point

5
Break

6
end for

7
if(t is not marked as a non-skyline point)

8
t is marked as a skyline point

9
Output t

4. Experimental Results

4.1. Experimental Environment

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 155

2016 International Journal of Computer Science Issues

We measure the performance of the proposed parallel

algorithm called E-PSQ on a machine running OpenMP under

C++ Visual Studio 2010 on Windows 7. The machine has

AMD A8-5545M APU with Radeon(tm) HD Graphics (4

CPUs), ~1.7GHz, CPU-Z version 1.74.0.x64, Memory:

4096MB RAM.

To evaluate the proposed parallel indexing schemes, we used

Matlab version 2014, and generated Hypercube data graphics.

As for the performance metrics, we measure execution time

and speedup by varying successively dimension of Dataset (d),

size of Dataset (n) and number of cores (nthr).

4.2. Results of experimentation

Related to our experiment, we ran our proposed program and

PSQ on real dataset, Baseball players, and then, we compared

their results. For each experiment, the test was ten at a time,

and its discussion was based on average value.

A. Effect of varying dimensions

In this experiment, we test the effect of algorithms on varying

dimensions with fixed-size of dataset (n = 100) and number of

cores (c = 4) in order to output the Execution Time.

On hypercube model (Fig. 2), the convergence of the two lines

represents the difference of Execution time between

computation with PSQ and E-PSQ, in case of dimensionality;

this difference is denoted as t (psqepsq ttt , where

psqt is execution time with PSQ algorithm, and psqet is

execution time with E-PSQ algorithm).

From this hypercube, we describe three cases, as follows:

1. If 0t , it means that the computation with E-PSQ has a

higher Execution time than PSQ. In this case, it’s not

advantageous to compute with E-PSQ.

2. If 0t , it means that both the computations with E-PSQ

and PSQ have same Execution time.

3. If 0t , it means that the computation with E-PSQ has

lesser Execution time than with PSQ. In this case, it’s

better to compute with E-PSQ; and then, our algorithm run

very fast.

By looking back to Fig. 2, t decreases slightly. We observe

that for 14d , t is larger than with 14d ; Hence, it’s

better to compute with E-PSQ for 14d .

Shows how E-PSQ runs faster than PSQ.

4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimension of Dataset (d)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

HYPERCUBE DATA SET (n = 100)

PSQ

E-PSQ

Fig.2. Varying Dimensions

B. Effect of varying size

In this experiment, we test the effect of algorithm on varying

number of tuples with fixed dimension (d) and number of

cores (c = 4) in order to output the Execution Time.

On Fig. 3, we observe two cases:

1. For 60n , the Execution time is very small, less than

0.15 sec., for both computations with PSQ and E-PSQ; but,

E-PSQ has execution time less than PSQ, although their

difference time is small.

2. For 70n , the Execution time increases highly, for both

computations with PSQ and E-PSQ; but, this time with E-

PSQ, is less than with PSQ. This means that E-PSQ is

better than PSQ, and E-PSQ runs faster than PSQ.

The execution time of E-PSQ decreases slighter than that of

PSQ when most of tuples of given Dataset are not dominated;

in other case, the execution time decreases largely.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 156

2016 International Journal of Computer Science Issues

20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

Size of Dataset (n)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

HYPERCUBE DATA SET (d = 8)

PSQ

E-PSQ

Fig.3. Varying size of Dataset

C. Effect of Number of cores

In this experiment, we test the effect of algorithm on varying

number of cores with fixed dimension (d), fixed-size of

Dataset (n) and number of cores (c = 4), in order to output the

Execution Time.

On Fig.4, the divergence of the two lines represents the

difference of speedup between computation with PSQ and E-

PSQ; this difference is denoted as

sp (psqpsqe spspsp , where psqsp is

execution time with PSQ algorithm, psqesp is execution

time with E-PSQ algorithm).

We observe that for 3c , sp increases slightly; while

for 3c , sp increases largely. It means that a large number

of cores lead to increases largely the speedup of our algorithm.

1 1.5 2 2.5 3 3.5 4
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Number of cores (c)

S
p
e
e
d
u
p

HYPERCUBE DATASET (d = 4,n = 100)

PSQ

E-PSQ

Fig.4. Varying of speedup related to number of cores

5. Conclusion

In this paper, based on multi-core system, we have presented

Enhanced Parallel Skyline Queries (E-PSQ), a new approach

to reduce the Dataset with only tuples that can be managed

throughout running of PSQ algorithm, in order to retrieve

skyline tuples. To this, we created a new Dataset from Dataset

by keeping only interested tuples that can be analyzed to

retrieve skyline set. This method has some advantages for

instance, to get a large memory space for managing big data

without increasing physical memory, to reduce the

communication cost between core processors and memory

space and to speed up the computation. As shown by our

experimental evaluation, Enhanced PSQ was very efficient

and ran faster than PSQ, with a low memory space cost.

6. References

[1] S. Borzsonyi et al., “The skyline operator”, Proc. 17th

International Conference on Data Engineering, 2001, pp

421–430.

[2] J. Chomicki et al., “Skyline with Presorting”, Proc. 19th

International Conference on Data Engineering, 2003, pp

717–719.

[3] D. Kossmann et al., “Shooting stars in the sky: an online

algorithm for skyline queries”, Proc.28th International

Conference on Very Large Data Bases, 2002, pp 275–

286.

[4] D. Papadias et al., “Progressive skyline computation in

database systems”, ACM Transactions on Database

Systems, vol. 30, Issue 1, 2005, pp 41–82.

[5] W.T. Balke et al., “Efficient Distributed Skylining for Web

Information Systems”, Proc. 9th International Conference

on Extending Database Technology, 2004, pp 256–273.

[6] E.Lo et al., “Progressive skylining over web-accessible

databases”, Data & Knowledge Engineering, vol. 57,

2006, pp. 122–147.

[7] N. Dalvi and D. Suciu, “Efficient query evaluation on

probabilistic databases”, The International Journal on

Very Large Data Bases, vol. 16, no. 4, 2007, pp. 523-544.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 157

2016 International Journal of Computer Science Issues

[8] S. Park et al., “Parallel Skyline Computation on Multi-core

Architectures”, IEEE International Conference on Data

Engineering, 2009, pp. 760 - 771.

[9] Fasiku A. I. et al., “Performance Evaluation of Multi-core

Processors”, International Journal of Engineering and

Technology, vol. 4, No. 1, January, 2014.

[10] B. Babcock and C. Olston, “Distributed Top-k

Monitoring”, Proc. ACM SIGMOD Int’l conference on

Management of data, 2003, pp. 28-39.

[11] M. Liou et al., “Parallel Skyline Queries on Multi-core

Systems”, Proc. Int’l Conference on Parallel and

Distributed Computing, Applications and Technologies,

2013, pp. 287-292.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.153158 158

2016 International Journal of Computer Science Issues

