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  Abstract

Skyline is an important proposal for expressing user 

preferences. Based on multi-core computation, we propose a 

new algorithm that improves parallel skyline query algorithm 

(PSQ), by reducing the memory space cost, and efficiently 

increasing the speed-up of computation. 
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1. Introduction

Skyline query is an efficient data analysis tool for helping 

users make intelligent decisions over complex data in different 

and often conflicting criteria. The skyline query is suitable for 

multi-core architecture since a large number of comparisons 

between data points can be performed independently. Multi-

core systems run multiple tasks at the same time. Each task 

will be executed by a separate core in parallel, thus, boosting 

the performance [9]. 

So far, several algorithms for parallel skyline query have been 

developed for example; Parallel Skyline (PSkyline) [8] and 

Parallel Skyline Query algorithm (PSQ) [11].  

As an overview, this paper proposes an Enhanced Parallel 

Skyline Query algorithm using low memory space, called E-

PSQ, which is applied to shared memory architecture in order 

to efficiently speed up the computation. The remainder of this 

paper is organized as follows: Section 2 discusses the previous 

works that are related to ours; Section 3 analyzes the problem 

of parallel skyline algorithm (PSQ), as well as gives its 

corresponding solution and proposes a new algorithm that 

enhances PSQ; Section 4 shows experimental results, and 

Section 5 draws conclusions.  

2. Related works

Sungwoo Park et al. [3] proposed a Parallel Skyline algorithm 

(PSkyline), based on the divide-and-conquer strategy [2]. It 

uses no index structures and divides a dataset linearly into 

smaller blocks of the same size, and computes local skyline 

points of each block by using a sequential skyline query 

algorithm, then merges local skyline points sequentially. 

PSkyline achieved a speedup approximately proportional to 

the number of cores. Compared to BBS [4], PSQ ran faster 

than sequential BBS and parallel BBS. 

Meng-Zong Liou et al. [4] proposed a Parallel Skyline Query 

algorithm for multi-core architecture (PSQ), which have been 

applied to shared memory architecture. It sorts the given 

dataset in descending order for each coordinate component 

separately, and finds out a terminating point [6] for 

eliminating redundant computations of skyline query[7] and 

[10]. The performance of PSQ algorithm has been compared 

to the PSkyline algorithm with eight cores by considering 

runtime and speed-up factors. The experimental results 

showed that the PSQ algorithm runs faster than the PSkyline 

algorithm when the dimensionality of the dataset is high or the 

number of data points is large. 

3. Algorithms

3.1. Existing Parallel Skyline Query Algorithm (PSQ) 

problem 

In PSQ Algorithm, the main problem is that the whole Dataset 

is scanned in memory space; and this issue increases the 
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utilization cost of memory space. This problem is described in 

three parts of this algorithm, as follows: 

First, in order to sort each attribute separately, the whole 

Dataset is scanned in memory space. 

parallel for i := 1 to d do 

iS Sort D in non-ascending order according to the i-th 

dimension 

end parallel 

Second, the test ))()(( trankprankif ii  concerns the

comparison of all the tuples p except the terminating tuple t, 

belonging to Dataset D, where )( pranki denotes the rank of 

tuple p on i-th attribute, )(tranki denotes the rank of 

terminating tuple on i-th attribute. Indeed, not all tuples are 

concerned by this test. The tuples concerned by this test are 

only the ones that have rank not greater than rank of 

terminating tuple. Given number of tuples in each attribute (n), 

d-Dataset(D), number of cores processor (p). If each core

processor manipulates one attribute, then, the number of

computation per core processor is n comparisons, n

communications with local memory space to read all tuples.

For all cores processors, we have pn memory cases. Its

complexity space is )( pnO  . For example,  n = 

1,000,000, with eight cores and d = 6. We need very large 

physical memory space to compute skyline tuples with these 

given data, but, the suitable memory is very expensive. This 

algorithm could encounter bottleneck because of memory 

space, if there is not enough memory space. 

Third, with whole Dataset in memory space, CheckSkyline 

procedure checks the dominance relationship between skyline 

tuples candidates so that it outputs the final skyline tuples 

progressively. 

In Conclusion, this algorithm uses a high memory cost that 

could lead to bottleneck of system because of lack of memory 

space. 

3.2. The proposed solution 

In this work, we focused on second part of PSQ to reduce 

memory space. At this step, all points are not concerned by 

this test. Knowing terminating point and its rank, our principle 

is to create a small structure data as new dataset that will 

contain only interested points or candidate’s skyline from each 

attribute separately, and then, eliminate all duplicates tuples. 

This structure will be used in the rest of algorithm, and then, 

the memory space cost will be reduced. This new dataset is 

denoted as ND (Algorithm 1). 

Algorithm 1. Created small structure data as new dataset 

1 parallel for i := 1 to d do 

2 Determine ranktt 

3 end parallel 

4 k = 0 

5 ND[0] = tt 

6 parallel for i := 1 to d do 

7 for j := 1 to ranktt 

8 k = k + 1 

9 
ijk SDND         // ijSD , Sorted Dataset 

10 end parallel 
11 for i := 1 to k do 

12 remove all duplicate tuples from ND 

13 end for 

We illustrate our proposed solution with a concrete example. 

Consider a team of baseball players from Chicago White Sox 

in American League described in Table 1. There are 20 

baseball players. Each player’s performance is recorded by 

four attributes; these attributes are average (G), on base 

percentage (OBP), slugging percentage (SLG), At Bats 

(AVG). These attributes can be used to evaluate the 

performance of a baseball player, and interpreted as a 4-

Dimensional point. 

Table 1: Example of baseball Players of Chicago White Sox 

No Players AVG OBP SLG G 

1. Bill 0.828 0.34 0.488 73 

2. Bob 0.701 0.33 0.467 69 

3. Edey 0.662 0.3 0.3 65 

4. Ken 0.69 0.344 0.356 71 

5. Eve 0.301 0.485 0.564 80 

6. Fiston 0.243 0.451 0.587 75 

7. Gregoire 0.223 0.415 0.521 145 

8. Hercule 0.265 0.485 0.487 50 

9. Ignacio 0.285 0.432 0.654 60 

10. John 0.276 0.428 0.432 65 

11. Anne 0.297 0.471 0.614 75 

12. Bin 0.314 0.453 0.578 108 

13. Chris 0.309 0.447 0.556 112 

14. Dom 0.256 0.46 0.533 132 

15. Elie 0.303 0.487 0.566 82 
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16. Fabrice 0.245 0.453 0.589 77 

17. Georges 0.225 0.417 0.523 147 

18. Harris 0.267 0.487 0.489 52 

19. Isaac 0.287 0.434 0.656 61 

20. Jason 0.278 0.43 0.434 67 

After computing our module, the new Dataset has 16 tuples, 

less than the first Dataset with 20 tuples (Fig.1). For a large 

amount of dataset, the number of tuples will be more reduced 

in order to keep only the interested tuples, which will be used 

during the running of an algorithm. Therefore, we gain in the 

use of low memory space, and communication cost between 

core processor and memory space. 

Fig.1. Execution result of our proposed solution 

3.3. Proposed Algorithm: Enhanced parallel skyline 

query (E-PSQ) 

Table 2: Frequently Used Symbols 

Symbol Meaning 

D Dataset 

iSD i-th Sorted Dataset per attribute

ND New Dataset from dataset D 

d Dimension of dataset 

q,t,p Tuple 

Tt Terminating tuple 

Ranktt Rank of Terminating tuple 

K New size of dataset 

rSA r-th Subset of tuples per attribute

Algorithm 2. Enhanced Parallel skyline query algorithm (E-PSQ) 

Input: A list of tuples D 

Output: The skyline tuples of D 

1 parallel for i := 1 to d do 

2 iS Sort D in ascending or descending 

order according to the
thi dimension 

3 end parallel 

4 tt Determine a terminating tuple 

5 parallel for i := 1 to d do 

6 Determine ranktt 

7 end parallel 

8 k = 0 

9 ND[0] = tt 

10 parallel for i := 1 to d do 

11 for j := 1 to ranktt 

12 k = k + 1 

13 
ijk SND 

14 end for 
15 end parallel 

16 for i := 1 to k do 

17 remove all duplicate tuples 

18 end for 
19 parallel for each NDt do

20 for i := 1 to d do 

21 if     ttranktrank ii 
22 find r 

with     djtranktrank jr  1min

23 insert t into rSA
24 break 
25 end for 

26 end parallel 

27 for i := 1 to d do 

28 parallel for each iSAp do 

29 CheckSkyline(i, t) 

30 end parallel 
31 end for 

Algorithm 3. Checking final skyline tuples 

CheckSkyline(i,t) 

1 
for each iSAq with    trankqranki  do

2 
if(q is not marked as a non-skyline point) 

3 
if(q dominates t) 

4 
t is marked as non-skyline point 

5 
Break 

6 
end for 

7 
if(t is not marked as a non-skyline point) 

8 
t is marked as a skyline point 

9 
Output t 

4. Experimental Results

4.1. Experimental Environment 
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We measure the performance of the proposed parallel 

algorithm called E-PSQ on a machine running OpenMP under 

C++ Visual Studio 2010 on Windows 7. The machine has 

AMD A8-5545M APU with Radeon(tm) HD Graphics (4 

CPUs), ~1.7GHz, CPU-Z version 1.74.0.x64, Memory: 

4096MB RAM. 

To evaluate the proposed parallel indexing schemes, we used 

Matlab version 2014, and generated Hypercube data graphics.  

As for the performance metrics, we measure execution time 

and speedup by varying successively dimension of Dataset (d), 

size of Dataset (n) and number of cores (nthr). 

4.2. Results of experimentation 

Related to our experiment, we ran our proposed program and 

PSQ on real dataset, Baseball players, and then, we compared 

their results. For each experiment, the test was ten at a time, 

and its discussion was based on average value. 

A. Effect of varying dimensions

In this experiment, we test the effect of algorithms on varying 

dimensions with fixed-size of dataset (n = 100) and number of 

cores (c = 4) in order to output the Execution Time.  

On hypercube model (Fig. 2), the convergence of the two lines 

represents the difference of Execution time between 

computation with PSQ and E-PSQ, in case of dimensionality; 

this difference is denoted as t ( psqepsq ttt  , where

psqt is execution time with PSQ algorithm, and psqet  is 

execution time with E-PSQ algorithm). 

From this hypercube, we describe three cases, as follows: 

1. If 0t , it means that the computation with E-PSQ has a

higher Execution time than PSQ. In this case, it’s not

advantageous to compute with E-PSQ.

2. If 0t , it means that both the computations with E-PSQ

and PSQ have same Execution time.

3. If 0t , it means that the computation with E-PSQ has

lesser Execution time than with PSQ. In this case, it’s

better to compute with E-PSQ; and then, our algorithm run

very fast.

By looking back to Fig. 2, t decreases slightly. We observe 

that for 14d , t is larger than with 14d ; Hence, it’s

better to compute with E-PSQ for 14d .

Shows how E-PSQ runs faster than PSQ. 
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Fig.2. Varying Dimensions 

B. Effect of varying size

In this experiment, we test the effect of algorithm on varying 

number of tuples with fixed dimension (d) and number of 

cores (c = 4) in order to output the Execution Time.  

On Fig. 3, we observe two cases: 

1. For 60n , the Execution time is very small, less than

0.15 sec., for both computations with PSQ and E-PSQ; but,

E-PSQ has execution time less than PSQ, although their

difference time is small.

2. For 70n , the Execution time increases highly, for both

computations with PSQ and E-PSQ; but, this time with E-

PSQ, is less than with PSQ. This means that E-PSQ is

better than PSQ, and E-PSQ runs faster than PSQ.

The execution time of E-PSQ decreases slighter than that of 

PSQ when most of tuples of given Dataset are not dominated; 

in other case, the execution time decreases largely. 

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201605.153158 156

2016 International Journal of Computer Science Issues



20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

Size of Dataset (n) 

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

HYPERCUBE DATA SET (d = 8)

 

PSQ

E-PSQ

Fig.3. Varying size of Dataset 

C. Effect of Number of cores

In this experiment, we test the effect of algorithm on varying 

number of cores with fixed dimension (d), fixed-size of 

Dataset (n) and number of cores (c = 4), in order to output the 

Execution Time. 

On Fig.4, the divergence of the two lines represents the 

difference of speedup between computation with PSQ and E-

PSQ; this difference is denoted as 

sp ( psqpsqe spspsp   , where psqsp  is 

execution time with PSQ algorithm, psqesp   is execution 

time with E-PSQ algorithm).  

We observe that for 3c , sp increases slightly; while

for 3c , sp increases largely. It means that a large number

of cores lead to increases largely the speedup of our algorithm. 
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Fig.4. Varying of speedup related to number of cores 

5. Conclusion

In this paper, based on multi-core system, we have presented 

Enhanced Parallel Skyline Queries (E-PSQ), a new approach 

to reduce the Dataset with only tuples that can be managed 

throughout running of PSQ algorithm, in order to retrieve 

skyline tuples. To this, we created a new Dataset from Dataset 

by keeping only interested tuples that can be analyzed to 

retrieve skyline set. This method has some advantages for 

instance, to get a large memory space for managing big data 

without increasing physical memory, to reduce the 

communication cost between core processors and memory 

space and to speed up the computation. As shown by our 

experimental evaluation, Enhanced PSQ was very efficient 

and ran faster than PSQ, with a low memory space cost. 
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