
Need of Autonomic Management SaaS Application
Nadir K.Salih

1
, Tianyi Zang

2

Department of Electrical and Computer Engineering, Engineering Collage, Karary University, Sudan
1

School of Computer Science and Engineering, Harbin Institute of Technology, China
2

ABSTRACT-Technology Building a SaaS with existing technology is hard new software technology, useful for both

business and education purposes Business can be easily adopted in several domains, such as Healthcare, education

and OA (Office Automation). SaaS application gave many aspects of business management. For that it became

available and using in many domains. It will be needed to realize customer’s requirements from design to runtime.

Wherefore the modeling issue is very important for SaaS application. We will follow model driven architecture for

mapping from source of model to the target of the model. In this paper we described new model for SaaS application

to simplify management. By benefit from meta-model and type graph we dynamically generated instances to our

model. And showed two cases study first bank system to show the need of autonomic management for SaaS

application and the other SaaSHER to describe the new model for SaaS application.

Keywords, meta-model, type graph, autonomic management, SaaS application

I. INTRODUCTION

 To develop any application we should use model

driven development technique. That it defined many

concepts. Like abstract class is a class that cannot be

instantiated, it exists extensively for inheritance and it

must be inherited [1][2]. Meta-modelling, is the

analysis, construction and development of the frames,

rules, constraints, models and theories applicable and

useful for modelling a predefined class of problems

[3][4]. According to the Meta-Object Facility (MOF)

standard, a meta-model is a model that defines the

language for expressing a model [5][6][7]. Meta-model

is model’s model that serves for explanation and

definition of relationships among the various

components of the applied model itself [8][10].

 Multi-graph is a graph with multiple edges

between the same vertices. Formally G(V,E,F): a multi-

graph is a set of vertices V along a set of edges E , and

a function F mapping from E to V. The function F

shows which vertices are connected by which edge

[9].The SaaS Application needs to develop for satisfy

users. The important contribution of this paper is to

show autonomic management is very important to SaaS

application. And we have defined the benefit from

meta-model and type graph to dynamically generate

instances for SaaS application.

 In the next section, we will discuss related work.

Afterwards, in Section III we describe the general

description for SaaS Model, and how it can be applied

to cloud applications. In Section IV we formally

describe the formal problem description. This is

followed by Section V, where we described different

approached to Solution Techniques. Subsequently, in

Section VI we highlight to autonomic management.

Finally, Section VII contains our conclusions.

II. RELATED WORK

 As we understand SaaS application is new model for

business process. In [11] they defined Multi-layered

customization framework supporting continuous testing

and recoverability. In [12][29] author they Executing of

configurable and multitenant SaaS application. In [13]

they depend on Multi-tenancy is increased utilization of

hardware resources and improved ease of maintenance.

In [14] they solved the problem of orchestrating SaaS

business processes based on BPEL. The authors in

[15][16] they focused on tenant-aware meta-data

management and Open multi-tenant architectural

blueprint based on a real world scenario. In [17][18] by

Hybrid approach they solved placement of tenants and

Innovative multi-layered customization framework.

Authors in [19] they used COP achieves a higher

customization flexibility. In[20][21][22][28] they

Support SaaS providers in managing the variability of

SaaS applications and their requirements, Calculations

of resource requirements for multi-tenants with applied

constraints in a shared application instance, and reduce

its complexity by decoupling its management through

different application layers. SaaS reference architecture

must support at design time as well as at runtime this

opinion defined in [23]. By three architectural patterns

that support variability in multi-tenant SaaS

environments in [24] they Customizable SaaS. In

[25][26][30] the authors they depicts the design space

and represents the common and variant parts of SaaS

architectures, and Templates and derived fixed and

tenant-specific parts of a solution. That is almost recent

researches in SaaS application they didn’t mention or

define methods to autonomically management SaaS.

For that we show the necessity of autonomic

management for SaaS application to improve the

business process.

III. GENERAL DESCRIBE MODEL

 As depict in figure1 our model for SaaS application

we have three levels Provider-Model, Tenant-Model,

and User-Model. Tenant-Model looks as instance of

meta-model and User-Model as instance of Tenant-

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 146

2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201605.146152&domain=pdf

Model. Any level has the same layers application but it

is different perspective from level to level.

 Fig1 SaaS application model

User Interface(UI): it is layer can be found in every

model level begin from Provider-model that show the

provider information about all tenants like define the

style of User Interface is difference from tenant to

tenant. In tenant level will be responsible from User

Interface of user model how it look like how controlling

it. In User-Model can put some features in User

Interface and change by user.

Business Process (BP): can category the activity

process is difference from level to level. For example

workflow process in provider-model will be difference

from tenant to tenant according on the requirements

changing. The same workflow process in tenant-model

will different from user to user if they have not typical

demands. In user model can put some optional activity

process for user for customization his process.

Services(S): service layer in provider-model will

describe services that can be introduced from provider

for tenants. Like analysis events and make reporting. In

tenant-model will deliver some services for user. For

user-model we can encourage user by setup some

services when he want.

Database (DB): this layer can define the access of data

and storage it in memory. We can put the access of data

for three levels depend on security issues. In addition

the data storage for any tenants can be managed by

provider-model. Tenant-model can tune and mining

user data. For user-model can put different organized

for various users type.

IV.FORMAL PROBLEM DESCRIPTION

To explain the Challenges in SaaS Systems

Management we use example of bank system as SaaS

application from IBM [27]. We will define our model

through it and show why we need autonomic

management for SaaS application. From the case

diagram we have three models Provider-model

(Administrator), tenant-model (bank), and user-model

(customer) as depict in figure2 below.

 Fig2 Case diagram of bank system

Provider-model:

 We have to describe: administrator for all tenants

On-board bank: include information for every bank (ID,

Name, and State (register, provision)) can delete or

update and show the details of any bank. In addition

provider administrator can add new bank. Manage bank

administrators: can change (delete, update) information

of bank administrator or add new administrator of bank.

View metering events: the system filter metering event

according to date and agent and subscriber to display

the details of operation like (add account, add customer)

In this level of Provider-model because we would

manage many tenants for that we need to Self-

configuration for GUI according to tenants

requirements it will help system to change dynamically

in runtime. For example: say we have two kinds of

tenants normal and VIP if the tenant have exceed limit

number of customers and transactions will be VIP

tenant for that the system will be monitor and analyze

for plan execution to show different GUI for every

tenant. Self-optimization need in bank system for

optimize QoS and tuning of resources can do self

servicing to delete or update tenant or self reporting to

display the operation for every tenant. For example can

monitor and analyze data show the result of risk that

can occur from debit or credit services in any time and

so monitor workflow (BP) it can be different from

tenant to tenant according to some policy. Self-healing

to monitoring the bank system for any fail or error can

occur to prevent it or solve problem. For example

monitoring the size of data memory for every tenant if

it will be reach critical case the system will make

indicator to show what will be happen. Self-protecting

is very important in SaaS application exactly if we use

multi-tenancy to share database and schema in bank

system. The system ensures every tenant could have

access to his data.

Tenant-Model

 Services can do by tenant (bank administrator for

all customers) Manage Account: can add or

modification customer’s account, have ID, type

(checking, savings), balance. Manage teller operation:

by account ID get all transaction (Check cashing,

depositing, transfers, wire transfers, Payment

collecting…etc). Manage bank customers: query

customers information views all customers, add new

customer Manage interest rate: find all rate, add new

rate. We need in Tenant-Model Self-configuration for

GUI to categorize customers in the same bank. The

style of GUI can be change dynamically according to

customer activity. For example the customer who is

having a lot of transaction through the bank will show

him additional services can give through the bank

according to his balance. We need Self-optimizing in

bank system in tenant-model need to optimize services

to serve a lot of customers by less costing from provider.

For example we can make self-service in customers

transaction and self-reporting to measure and qualify

the efficiency and resources using. We need Self-

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 147

2016 International Journal of Computer Science Issues

http://en.wikipedia.org/wiki/Cheque
http://en.wikipedia.org/wiki/Deposit_account
http://en.wikipedia.org/wiki/Electronic_funds_transfer
http://en.wikipedia.org/wiki/Wire_transfer

healing for any business process error in work flow if

the customer changes the ordering of steps. For

example the steps of Checking transaction apply by

steps of Savings this transaction will be add to Saving

transaction in total balance. Self-protecting any

customer need full security to his data

User-Model

 Users have to do a lot of process like Account

balance: can view account information (account-ID,

type, and total-balance) Account transaction: display all

transaction for Account by date and type like debit,

credit process. Loan requests: see the current interest

rate for bank define the product number and type

(cheap, state). And show the last loan request by date

and amount, status (approved, reject). In this level we

need to Self-configuration the system let the customer

to customize his style that he wants. Self-optimization

can make self-searching to see all option for

transactions that can appear for customers. Self-healing

the system can self correct the error of customer like

enter error data, make error in process credit or debit.

Self-protecting the system need to protect this level of

user model not let any unauthorized user can access the

system. From this description of this running example

we briefly obtain these Challenges in SaaS Systems

Management:

- Large-scale, heterogeneous distributed systems with

highly dynamic, complex multi-component

interactions.

- Large volumes of real-time high-dimensional data,

but also lots of missing information and uncertainty.

- Too much complexity, too few (skilled)

administrators.

For these three challenges we trusted SaaS application

need for self-managing for development and evolution

systems. In addition autonomic management will lead

to realize the feature of SaaS application by minimizing

costing and increasing performance.

Derivation model

 According to Meta-Object Facility the model will

be have three sequences Instance (Inst), Model (M), and

Meta-Model (MM). As we depict in figure3 we have

three models Provider Model (PM), Tenant Model(TM),

and User Model they corresponding SaaS application.

User model look like instance, tenant-model stand like

a model and provider model show the meta-model.

Fig3 MOF for SaaS application

To explain the sequence of MOF in our SaaS

application model we can take SaaSEHR application

as example see figure4.

Fig4 SaaSEHR application

 From provider we have the application and all

resources management, the application has functions

will achieve by tenant-model this level will be look as

administrator for all patient belong to unique hospital,

and in user-model have groups of patients every group

has the same services and typical characteristics for

application. We can describe the SaaSHER model in

hierarchy sequence as depict in figure5.

Provider model is UML meta-model Models the

language UML, i.e., defines concepts like classes,

attributes, associations, contains descriptions of

elements that can be used to describe the models on the

tenant model layer.

Tenant model is UML-model by using any UML

diagram, we instantiate the UML meta-model and

obtain a UML model it contains application-specific

models.

 User model Run-time Instances Real instances of the

models, contains concrete run-time instances. Note the

difference between instance specification and real

instance!

Fig5 hierarchy sequence of model

V. SOLUTION TECHNIQUES

 In system workflow we look for our model from

bottom to top. For example we have G1 is group of

patients belong to hospital H1 is high level care, G2 is

group of patients belong to hospital H2 is middle level

care, and G3 is group of patients belong to hospital H3

low level care. The activity processes for patient in

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 148

2016 International Journal of Computer Science Issues

SaaSEHR application can be depict in figure6 from

start to end.

 Fig6 Workflow model of SaaSEHR

If we begin with User-model we can take three

processes: Select hospital, the report of result, Payment.

 Meta-model of SaaSEHR define Domain Specific

Languages (DSLs) see the figure8. From our system

workflow we obtain meta-model include the class and

independencies of SaaSEHR application as depict in

figure7 bellow. It contains meta-classes, meta-

associations and cardinality constraints.

 Fig7 Meta-model of SaaSEHR

 There is a need for a systematic derivation of

instances of meta-models. Each model must be an

instance of a “meta-model”, a meta-model being the

specification of a set of models. The instance of the

meta-model must conform to the cardinality constraints.

In addition, instances of meta-models may further be

restricted by the use of additional constraints specified

in the Object Constraint Language (OCL). The instance

of the meta-model must conform to the cardinality

constraints.

Fig8 Meta-model and DSL

 Meta-models define Domain Specific Languages

(DSLs). A DSL is a coordinated set of models. DDMM

is Domain Definition Meta-Model .Each model in our

system will be reference to other model. Tenant-model

will reference to Provider-model and user-model will

be reference to tenant-model as depict in figure9.

 Fig9 References models

Formal Description of Generation

 In our model of SaaS application as depict in

figure10 we generate tenant-model instance from

provider model according to class, association from

source to target to show mandatory, optional, XOR, and

OR rules, and constraints to remark the associations is

require or exclude. A meta-model can be considered as

a class diagram on the meta-level, i.e. it contains meta-

classes, meta-associations and cardinality constraints.

Instances of meta-models may further be restricted by

the use of additional constraints specified in the Object

Constraint Language (OCL).Typed graph

transformations with inheritance will be the basis for

the formal background for instance generating graph

grammars. From object oriented modeling we have

concert and abstract type that depend on inheritance,

like we can describe type graph have node and edge

from source node the edge will reach the target. For that

type graph with inheritance will be show asset of nodes

belong to node source. An instance of a meta-model is a

concrete model that conforms to its meta-model.

 Fig10 Generating Instances

Definition 1 (Type graph with inheritance) A type

graph with inheritance is a triple TGI = (TG, I, A)

define a type graph TG = (TGV ,TGE , STG, TTG) (with a

set TGV of nodes, a set TGE of edges, source and target

functions STG, TTG : TGE → TGV), an acyclic

inheritance relation I ⊆ TGV × TGV , and a set A ⊆

TGV , called abstract nodes. For each x ∈ TGV , the

inheritance clan is defined by clan I (x) = {y ∈ TGV |

(y, x) ∈ I
*∗}, where I

*
 ∗ is the reflexive-transitive

closure of I .In type graph have inheritance in node type

and edge type depend on source and target to show the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 149

2016 International Journal of Computer Science Issues

function this called as clan morphism have the same

feature.

Definition 2 (Clan morphism figure 12) LetTGI = (TG,

I, A) with TG = (TGV ,TGE , STG, TTG) be a type graph

with inheritance. A clan-morphism ctp : G → TGI from

a graph G = (GV , GE , SG, TG) to TGI is a pair ctp =

(ctpV : GV → TGV , ctpE: GE → TGE) such that for all e

∈ GE the following holds:

• ctpV ◦ SG(e) ∈ clanI (STG ◦ ctpE (e)) and

• ctpV ◦ TG(e) ∈ clanI (TTG ◦ ctpE (e)).

 (G, ctp) is called a clan-typed graph.

 In graph grammars it have rule for transformation in

application this rule have left-hand side and right side

left is called as source graph and copy of replace left

hand by right hand side lead to the target. For

controlling transformation used negative application

condition NAC(x).

Definition 3 (Application condition) A negative

application condition is of the form NAC(x), where x: L

→ X is an Injective morphism. A morphism m: L→G

satisfies NAC(x) if there does not exist an injective

morphism p : X → G with p ◦ x = m:

An atomic application condition is of the form P(x, ∨i

∈I xi) where x: L → X and xi : X → Ci with i ∈ I are

injective morphisms. A morphism m: L → G satisfies

P(x,∨i∈I xi) if for all injective morphisms p: X → G

with p◦x = m there does exist an i ∈ I and an injective

morphism qi :Ci → G with qi ◦ xi = p:

Definition 4 (Rules) A rule typed over a type graph

TGI = (TG, I, Abs) with inheritance is given by p = (L l

←K r→ R, Ap), where L, K, R are clan-typed graphs, l

and r are type-preserving injective graph morphisms,

ctp−1 R (Abs) ⊆ r (KV), and Ap is a set of application

conditions of the form NAC(x) or P(x,∨i∈I xi) as

defined in Def. 3.

Definition 5 (Rule matching and application) Given a

rule p as in Definition 4 and a clan-typed graph (G,

ctpG), then m is a match of p in G if

• m is an injective morphism of the left-hand side

L of the rule p = (L l← K r→ R, Ap) as defined in

Definition 4 in the graph G;

• tK (x1) = tK (x2) for tK = ctpG◦ m ◦ l and x1, x2 ∈

KV with r (x1) = r (x2);

• m satisfies all simple negative application

conditions and all atomic application conditions in Ap.

Given a match m, a direct derivation (G, ctpG) p⇒,m (H,
ctpH) exists if there is a span of

graph morphisms G←D→H and a co-match m∗ : R→H

of p in H where (1) and (2) are pushouts in the category

of Graphs TG .

Given a rule set R, (G, ctpG)∗⇒ R (H, ctpH) is a finite

sequence of an arbitrary number of direct derivations by

rules of R. A derivation (G, ctpG) ∗⇒ R (H, ctpH)

terminates, if ∃r ∈ R : (H, ctpH) ⇒r (H , ctpH).

 As we mention tenant-model is instance of

provider-model and user-model is instance of tenant-

model. We want to generate instance from meta-model

like generate tenant-model from provider-model and

generate user-model instance from tenant-model in a

systematic way. We can generating instances by three

layers layer1 classes have some abstract and other is

concrete class have inheritance feature.layer2 see

instance drive from associations from source to target to

show mandatory, optional, XOR, and OR rules. Layer3

constraints to remark the associations are require or

exclude. From our model if we take the provider-model

in layer1 we must determine all concrete classes’

inheritance as we see in SaaSEHR model the carelevel

class has inheritance to lowcare, midcare, and highcare

as depict bellow in figure13 here we can generate new

instances because we have option classes this feature

will generate different instance for different a kind of

hospitals according to carelevel. For tenant-model can

generate instances for different persons see figure11

 Fig11 Inheritance class

L
x L

m

p
qi

G

Ci
X

g

L K R

(1)
m* m

G D H

l

k

r

f

(2)

L

G

X

m

x

p

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 150

2016 International Journal of Computer Science Issues

Layer2 instances can generate from

association that have rules lead to various instances

from meta-model show multiplicity value

mv(Ei)=(min,max) ∈ M to each edge Ei such that

min;max ∈ Z ⋀ min ≥ 0;max > 0.

 Mandatory relationship: A f-arc E = (TE,HE)

such that |H(E)|= 1 ⋀ label(E) = [1…1]

 Optional relationship: A f-arc E = (TE,HE)

such that |H(E)| = 1 ⋀ label(E) = [0…1]

 Alternative relationship (XOR): A f-arc E =

(TE,HE) such that |H(E)| = q = q > 1 ⋀ label(E) = [1…1]

 “Addition” relationship (OR)A f-arc E = (TE,HE)

such that |H(E)| = q = q > 1 ⋀ label(E) = [1…q].

 For Association we can show in type graph which

edge is mandatory will be include in every instance like

edge between area and hospital because every area must

have hospital. By option edge can create different

instance like the patient can select hospital according on

levelcare. In alternative edge can generate various

instances because in a time must use only way from

multi like the payment of patient can be from bank,

cash, and insurance. In addition OR edge instance can

be variable because two choice can select in time or can

select only one like in tenant-model if we want to talk

about process for employees just the instance will

describe processes of a employee person work in

hospital, however if we have processes joint between

employees and patients here the instance in tenant-

model will describe processes for all persons in hospital.

 Layer3 the constraint for nodes first is require

constraint A f-arc E = (TE,HE) such that |H(E)| = q = q

≥1 ⋀ label(E) = [q…q] The semantic meaning of a

require edge is that the node in the tail set imposes the

constraint of selecting all nodes in the head set. The

semantic meaning of a mutex edge is that it is not

possible to select more than one of the edge in the tail

set at the same time A f-arc E = (TE;HE) such that T(E)

= Root ⋀ |H(E)|= q / q > 1 ⋀ label(E) = [0…1].

 In this layer require constraint can define instance

by require node In example in tenant-model if the

hospital just used payment from bank that lead to

require account in bank for patient. For mutex

constraint generates instance will different because the

selecting will be for only one edge from two or many.

Like in patient payment workflow we have two kind’s

workflow with insurance or without it. You couldn’t

take both workflows in same time.

VII. CONCLUSIONS

 The track record of success is accelerating the rate

of adoption and expanding the range of applications

that are being converted to the SaaS delivery model. It

is also dramatically changing the competitive landscape

of viable SaaS providers. In this paper our novelty is

show new describe for SaaS application model. And by

used meta-model and type graph autnomicaly generated

instances. In addition the classification of SaaS model

in three levels it will be easy in future to management

SaaS application in autonomic way.

ACKNOWLEDGEMENT

 This work has been developed with the support

under the project with number: 2012AA02A604, 863

Program key projects in China: The Technology and the

System Development for Smart Acquirement of

Personal Healthcare Information. And so the Key

Project of NSF in China: Methodology of Value-

oriented Software Services: Theory, Method and

Application with number: 61033005.

.

REFERENCES

[1] T. Zang, R Calinescu, M. Kwiatkowska.

Metamodel-driven SOA forcollaborative e-science

application. International Journal of Computer Systems

Science & Engineering,2011.

[2] D. Fogli, L.P.Provenza. A meta-design approach to

the development of e-government services. Journal of

Visual Languages and Computing,2012,pp. 47–62.

[3] C. Atkinson, T. Kühne. Model-Driven Development:

A Metamodeling Foundation. IEEE SOFTWARE,2003.

[4] T. Lemattre, B. Denis, J-M. Faure. Using a meta-

model to build operational architectures of automation

systems for critical processes. IEEE ,ETFA. 2011.

[5] X. Zhang, K. He, J Wang, J. Liu, C. Wang, H. Lu.

On-Demand Service-Oriented MDA Approach for SaaS

and Enterprise Mashup Application Development.

International Conference on Cloud Computing and

Service Computing.IEEE,2012.

[6] D. Berardi , D. Calvanese, G. De Giacomo.

Reasoning on UML class diagrams. Artificial

Intelligence. Elsevier. 2005.

[7] E. Brottier, F. Fleurey, J. Steel, B.Baudry, Y. Le

Traon. Metamodel-based Test Generation for Model

Transformations: an Algorithm and a Tool.

International Symposium on Software Reliability

Engineering, IEEE, 2006.

[8] L.Pedro, L. Lucio, D.Buchs . Modeling Languages

System Prototype and Verification Using Metamodel-

Based Transformations. Published by the IEEE

Computer Society,2007.

[9] H. Wu, R. Monahan, J. F. Power. Exploiting

attributed type graphs to generate meta-model instances

using an SMT solver. IEEE, 2013.

[10] A. Cicchetti, D. Di Ruscio, D.S. Kolovos, and A.

Pierantonio. A test-driven approach for metamodel

development. European Community’s 7th Framework

Programme. 2007.

[11] Wei. Tsai, Q.Shao, Y. Huang, X. Bai. Towards a

Scalable and Robust Multi-tenancy SaaS. Second Asia-

Pacific Symposium on Internetware. ACM, 2010.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 151

2016 International Journal of Computer Science Issues

[12] S. Kang, Sungwon Kang, S. Hur. A Design of the

Conceptual Architecture for a Multitenant SaaS

Application Platform.IEEE, 2011.

[13] C. Bezemer, A. Zaidman. Multi-Tenant SaaS

Applications: Maintenance Dream or Nightmare,

Report TUD-SERG,2010.

[14] Y. Shi, S. Luan, Q. Li, H. Wang. A Flexible

Business Process Customization Framework for

SaaS.IEEE, 2009.

[15] O. Schiller, B. Schiller, A. Brodt, B. Mitschang.

Native Support of Multi-tenancy in RDBMS for

Software as a Service. Proceedings of the 14th

International Conference on Extending Database

Technology ACM,2011, pp.117-128.

[16] Irene S. Harris, Z. Ahmed. An Open Multi-Tenant

Architecture to Leverage SMEs. European Journal of

Scientific Research. Vol.65 No.4, pp. 601-610, 2011.

[17] E. Yang, Y. Zhang, L. Wu, Y. Liu, S. Liu. A

Hybrid Approach to Placement of Tenants for Service-

based Multi-tenant SaaS Application. Asia -Pacific

Services Computing Conference. IEEE, 2011.

[18] W.Tek Tsai, Q. Shao, W. Li. OIC: Ontology-based

Intelligent Customization Framework for SaaS.

International Conference on Service-Oriented

Computing and Applications (SOCA) IEEE,2010.

[19] E. Truyen, N. Cardozo,S. Walraven, J. Vallejos,

Bainomugisha, S. Gunther, T. Hondt, W. Joosen.

Context-oriented Programming for Customizable SaaS

Applications. Proceedings of the 27th Annual

Symposium on Applied Computing ACM, 2011, pp.

418-425.

[20] Ralph Mietzner, Andreas Metzger, Frank Leymann,

Klaus Pohl. Variability Modeling to Support

Customization and Deployment of Multi-Tenant-Aware

Software as a Service Applications. ICSE’09 Workshop,

IEEE, 2009, 18-25

[21] T. Kwok, A. Mohindra. Resource Calculations

with Constraints and Placement of Tenants and

Instances for Multi-tenant SaaS Applications. Springer,

2008, pp. 633–648.

[22] Ali Ghaddar, Dalila Tamzalit, Ali Assaf.

Decoupling variability management in multi-tenant

SaaS applications. International Symposium on Service

Oriented System Engineering, IEEE.2011.

[23] Julia Schroeter, Sebastian Cech, Sebastian Götz,

Claas Wilke, Uwe Aßmann. Towards Modeling a

Variable Architecture for Multi-Tenant SaaS-

Applications. Sixth International Workshop on

Variability Modeling of Software-Intensive

Systems.ACM, 2012.

[24] Jaap Kabbedijk, Slinger Jansen. Variability in

Multi-tenant Environments: Architectural Design

Patterns from Industry, Springer, 2011.

[25] K. Öztürk, B. Tekinerdogan, Feature Modeling of

Software as a Service Domain to Support Application

Architecture Design. International Conference on

Software Engineering Advances. IARIA, 2011.

[26] Hyun Jung La, Soo Dong Kim. A Systematic

Process for Developing High Quality SaaS Cloud

Services. Springer, 2009.

[27]IBM, bank system.

https://www6.software.ibm.com/developerworks/offers/

techbriefings/cc4dreplays/session2_dcarew.pdf.

[28] Nadir K Salih, Tianyi Zang. Autonomic

Management for Applicability and Peformence in SaaS

Model. International conference on parallel and

distributed processing techniques and applications

(PDPTA'14), held in July 21-24 Las Vegas,USA.- 2014

[29] Nadir K Salih, Tianyi Zang. Modeling and Self-

Configuring SaaS Application. International conference

on software engineering research and practice

(SERP14), held in July 21-24 Las Vegas,USA.- 2014.

[30] Nadir K Salih, Tianyi Zang. Variable service

process by feature meta-model for SaaS Application.

IEEE International Conference in Green and Ubiquitous

Technology, IEEE, 2012, pp102 – 105.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 5, September 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201605.146152 152

2016 International Journal of Computer Science Issues

https://www6.software.ibm.com/developerworks/offers/techbriefings/cc4dreplays/session2_dcarew.pdf
https://www6.software.ibm.com/developerworks/offers/techbriefings/cc4dreplays/session2_dcarew.pdf

