
Recommender System in Big Data Environment
Udeh Tochukwu Livinus1, Rachid Chelouah2 and Houcine Senoussi3 

Quartz Laboratory, EISTI, 

Avenue du Parc, Cergy, 95000, France

Abstract 
Recommender systems are an Artificial Intelligence technology 

that has become an essential part of business for many industries 

and businesses. Recommender Systems (RSs) are software tools 

and techniques providing suggestions for items to be of use to a 

user. The system learns from a customer and recommends 

products that she will find most valuable from among the 

available products. They serve many types of E-commerce 

applications, from direct product recommendation for an 

individual to helping someone find a gift for a third party [10]. 

Recently the world of the web has become more social and more 

real-time. Facebook and Twitter [16] are perhaps the exemplars 

of a new generation of social, real-time web services and we 

believe these types of service provide a fertile ground for 

recommender systems research. In this research project, the 

researcher tries to provide a present an analysis of how 

recommender systems can be used in E-commerce today, 

companies, SMEs, and other social institutions to improve 

sales, maintain good customer relationship and loyalty, and saves 

customers sourcing time. Recommender Systems too can also be 

used to analyze Big Data, although there are some key challenges 

associated with Big Data analytics. The impact of data abundance 

extends well beyond business [15]. But the computer tools for 

gleaning knowledge and insights from the Internet era’s  vast 

trove of unstructured data are fast gaining ground. At the 

forefront are the rapidly advancing techniques of artificial 

intelligence like natural-language processing, pattern recognition 

and machine learning. The researcher hopes that these key 

problems with improved recommender systems in the future: 

hybrid data, predictable recommendations, scalability, and 

incorporation of content, such problems could be resolved. If 

recommender systems are able to surmount these challenges, they 

have the potential to become an essential component of doing 

business in Ecommerce 

Keywords: Recommender System, SparkR, Collaborative 

Filtering, K-Means, KNN, Content Based Method, Clustering 

Hadoop, MapReduce, Million Song Data. 

1. Introduction

Recommender systems or recommendation systems 

are a subclass of information filtering system that seek to 

predict the 'rating' or 'preference' that a user would give to 

an item. Recommender systems have become extremely 

common in recent years, and are applied in a variety of 

applications. The most popular ones are probably movies, 

music, news, books, research articles, search queries, 

social tags, and products in general. However, there are 

also recommender systems for experts, jokes, restaurants, 

financial services, life insurance, persons (online dating), 

and Twitter followers. The first Recommender System is 

widely recognized in the literature as Tapestry (Goldberg, 

Nichols, Oki, & Terry, 1992) which was an experimental 

mail system developed at the Xerox Research Centre in 

Palo Alto over 20 years ago. From this starting point, the 

literature discusses collaborative and  content-based 

filtering methods, with some modifications, for example 

with statistical elements also included. Rather than 

providing a static experience in which users search for and 

potentially buy products, recommender systems increase 

interaction to provide a richer experience. 

Recommender systems identify recommendations 

autonomously for individual users based on past purchases 

and searches, and on other users' behavior. Examples of 

such systems are a system based on music data grouping 

and user interests (Hung-Chen & Chen, 2014) which 

utilizes three approaches – Collaborative, Content-based 

and Statistical – to predict  recommendations for users. 

Another system based on Deep Content is proposed by 

Van den Oord et al (Van Den Oord, Dieleman, & 

Schrauwen, 2013) which utilizes deep convolutional neural 

networks and compares results to a more traditional “Bag- 

of-words” approach. Jayalakshmi et al (Jayalakshmi, 

Shruthi, Sneha, & Uttarika Ratnakar, 2014) combine 

collaborative and content-based filtering for their Hybrid 

Music Recommender System which they found performed 

better than either of the combined systems when used 

alone. 

This paper will use a similar approach in that there is a 

combination of collaborative filtering and content-based 

(MSD attributes) input to the system. However, the user 

input is unique in that it takes the user’s attributes into 

consideration in the collaborative filtering stage and we 

will try to explore the performance  of item based 

collaborative filtering and user based collaborative 

filtering. 

1.1 Related work 
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In this section we briefly present some of the research 

literature related to collaborative filtering, recommender 

systems, data mining and personalization. Tapestry is one 

of the earliest implementations of collaborative filtering- 

based recommender systems. This system relied  on the 

explicit opinions of people from a close-knit community, 

such as an office workgroup. However, recommender 

system for large communities cannot depend on each 

person knowing  the others. Later, several ratings-based 

automated recommender systems were developed. The 

GroupLens research system [3, 4] provides a 

pseudonymous collaborative filtering solution for Usenet 

news and movies. Ringo [5] and Video Recommender [6] 

are email and web-based systems that generate 

recommendations on music and movies respectively. A 

special issue of Communications of the ACM presents a 

number of different recommender systems other 

technologies have also been applied to recommender 

systems, including Bayesian networks, clustering, and 

Horting. Bayesian networks create a model based on  a 

training set with a decision tree at each node and edges 

representing user information. The model can be built off- 

line over a matter of hours or days. The resulting model is 

very small, very fast, and essentially as accurate as nearest 

neighbor methods [7]. Bayesian networks [8] may prove 

practical for  environments in which knowledge  of user 

preferences changes slowly with respect to the time needed 

to build the model but are not suitable for environments in 

which user preference models must be updated rapidly or 

frequently. 

Clustering techniques work by identifying groups of 

users who appear to have similar preferences. Once the 

clusters are created, predictions for an individual can be 

made by averaging the opinions of the other users in that 

cluster. Some clustering  techniques represent each user 

with partial participation in several clusters. The prediction 

is then an average across the clusters, weighted by degree 

of participation. Clustering techniques usually produce 

less-personal recommendations than other methods, and in 

some cases, the clusters have worse accuracy than nearest 

neighbor algorithms [7]. Once the clustering is complete, 

however, performance can be very good, since the size of 

the group that must be analyzed is much  smaller. 

Clustering techniques can also be applied as a “first step” 

for” for shrinking the candidate set in a nearest neighbor 

algorithm or for distributing nearest-neighbor computation 

across several recommender engines. While dividing the 

population into clusters may hurt the accuracy or 

recommendations to users near the fringes of their assigned 

cluster, pre-clustering may be a worthwhile trade-off 

between accuracy and throughput. Horting is a graph- 

based technique in which nodes are users, and edges 

between nodes indicate degree of similarity [9] between 

two users. Predictions are produced by walking the graph 

to nearby nodes and combining the opinions of the nearby 

users. Horting differs from nearest neighbor as the graph 

may be walked through other users who have not rated the 

item in question, thus exploring transitive relationships that 

nearest neighbor algorithms do not consider. In one study 

using synthetic data, Horting produced better predictions 

than a nearest neighbor algorithm. Schafer et al., present a 

detailed taxonomy and examples of recommender systems 

used in E-commerce and how they can provide one-to-one 

personalization and at the same can capture customer 

loyalty [10]. Although these systems have been successful 

in the past, their widespread use has exposed some of their 

limitations such as the problems of sparsity in the data set, 

problems associated with high dimensionality and so on. 

Sparsity problem in recommender system has been 

addressed in. The problems associated with high 

dimensionality in recommender systems have been 

discussed in, and application of dimensionality reduction 

techniques to address these  issues  has been invest. 

However, with the discovery  of data mining tools and 

knowledge [11] which inherently is associated with 

databases more robust approaches can be used to analyze 

large datasets and make recommendation more quick and 

easy. 

Our work explores the extent to which item-based 

recommenders, a new class of recommender algorithms, 

are able to solve these problems. 
 

1.2 Project description 
 

This project is designed in five sections. The first 

section describes the essence of the project and 

Introduction. Section two gives us an introduction of works 

about Recommender Systems with examples. Section three 

of this project is the Art state, followed by the data analysis 

of the researcher. The next section is the result of findings 

from the researcher and the last section of this project is 

the conclusion. 

The final part is the references as regards to the project 

conducted in similar domain. The Dataset for this study 

was extracted from Amazon database [1]. 
 
 
2 State of art 

 
A preprocessed dataset was downloaded from 

Amazon database which is in hdf5. In order to read the 

hdf5 files in which the songs and their attributes were 

stored it was necessary to download some software such as 

WinPython from Sourceforge (Dice Holdings Inc., 2014). 

WinPython is a portable Python distribution which allows 

building self-contained C extensions. If you want to deploy 

your  CPyMAD  build  to  other  machines,  this  is  the 
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distribution of choice. The software provides the necessary 

libraries for importing the data into MySQL and to access 

the hdf5 files via hdf5 ‘getters’. 

 
The libraries required were Numpy, Math and 

Pytables which were needed to operate the hdf5 getters 

code, which was downloaded from Github (GitHub Inc., 

2014). The Python libraries for connecting to  MySQL 

were in Numpy. 

 
The dataset is a large file so we took a subset of the data in 

order to make our analysis. 

 
Algorithms implemented 

 
A typical way to evaluate a prediction is to compute 

the deviation of the prediction from the true or actual value. 

This is the basis for the Mean Average Error (MAE) 

 

 
 

Where K is the set of all user-item pairings (i, j) for 

which we have a predicted rating r̂ij and a known rating rij 

which was not used to learn the recommendation model. 

Another popular measure is the Root Mean Square Error 

(RMSE). 

 
 

RMSE penalizes larger errors stronger than MAE and thus 

is suitable for situations where small prediction errors are 

not very important. 
 
 

2.1 Evaluation Top-n recommendations 
 

The items in the predicted top-N lists and the withheld 

items liked by the user (typically determined by a simple 

threshold on the actual rating) for all test users Utest can 

be aggregated into a so called confusion matrix depicted in 

table 2 (see Kohavi and Provost (1998)) which 

corresponds exactly to the outcomes of a classical 

statistical experiment. The confusion matrix shows how 

many of the items recommended in the top-N lists (column 

predicted positive; d +b) were withheld items and thus 

correct recommendations (cell d) and how many where 

potentially incorrect (cell b). 

 
The matrix also shows how many of the not recommended 

items (column predicted negative; a + c) should have 

actually been recommended since they represent withheld 

items   (cell   c).   From   the   confusion   matrix   several 

performance measures can be derived. For the data mining 

task of a recommender system the performance of an 

algorithm depends on its ability to learn significant 

patterns in the data set. Performance measures used  to 

evaluate these algorithms have their root in machine 

learning. A commonly used measure is accuracy, the 

fraction of correct recommendations to total possible 

recommendations. 

 
Table 1: Confusion Matrix 

 
Actual/Predicted Negative Positive 

Negative a b 

Positive c d 
 

 
The following statistical computation can be analyzed 

from the table above: Accuracy which is the systematic 

errors as follows: 

 

 
 

 
 

An accuracy of 100% means that the measured values 

are exactly the same as the given values. A common error 

measure is the mean absolute error (MAE, also  called 

mean absolute deviation or MAD) is also computed as 

follows: 

 

 
 

Where N = a+b+c+d is the total number of items which 

can be recommended and |εi| is the absolute error of each 

item. Since we deal with 0-1 data, |εi| can only be zero (in 

cells a and d in the confusion matrix) or one (in cells b and 

c). For evaluation recommender algorithms for rating data, 

the root mean square error is often used. For 0-1 data it 

reduces to the square root of MAE. Recommender systems 

help to find items of interest from the set of all available 

items. This can be seen as a retrieval task known from 

information retrieval. Therefore, standard  information 

retrieval performance measures are frequently used to 

evaluate recommender performance. Precision and recall 

are the best known measures used in information retrieval 

(Salton and McGill 1983; van Rijsbergen 1979). Precision 

or positive predictive value is defined as the proportion of 

the true positives against all the positive results (both true 

positives and false positives) 

(1) 

(2) 

(3) 

(4) 

(5) 
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Another  method  used  in  the  project  to  compare  two 

classifiers at different parameter settings is the Receiver 

Operating Characteristic (ROC). The method was 

developed for signal detection and goes back to the Swets 

model (van Rijsbergen 1979). The ROC-curve is a plot of 

the system’s probability of detection (also called sensitivity 

or true positive rate TPR which is equivalent to recall as 

defined in formula ( 13) by the probability of false 

alarm (also called false positive rate FPR or 1−specificity, 

where specificity = a / (a+b) ) with regard to model 

parameters. A possible way to compare the efficiency of 

two systems is by comparing the size of the area under 

the ROC-curve, where a bigger area indicates better 

performance. Sensitivity and specificity are statistical 

measures of the performance of a binary classification 

test, also known in statistics as classification function: 

 
• Sensitivity (also called the true positive rate, or 

the recall in some fields) measures the proportion of 

positives which are correctly identified as such (e.g., the 

percentage of sick people who are correctly identified as 

having the condition), and is complementary to the false 

negative rate. 

• Specificity (also called the true negative rate) 

measures the proportion of negatives which are correctly 

identified as such (e.g., the percentage of healthy people 

who are correctly identified as not having the condition), 

and is complementary to the false positive rate. 

 
For any test, there is usually a trade-off between the 

measures. These two statistical measures can be computed 

as follows:  

 

 

 
 

 

 
 

2.2 Recommenderlab infrastructure 

 

Recommenderlab is implemented using formal classes in 

the S4 class system. The Figure below shows the main 

classes and their relationships. The package uses the 

abstract ratingMatrix to provide a common interface for 

rating data. RatingMatrix implements many methods 

typically available for matrix-like objects. For example, 

dim(), dimnames(), colCounts(), rowCounts(), 

colMeans(), rowMeans(), colSums() and rowSums(). 

Additionally sample() can be used to sample from users 

(rows) and image() produces an image plot. 
 

 
 
 
 
 
 
 
 

Figure 1: Recommendation Algorithm Architecture 

Often the number of total useful recommendations needed 

for recall is unknown since the whole collection would 

have to be inspected. However, instead of the actual total 

useful recommendations often the total number of known 

useful recommendations is used. Precision and recall are 

conflicting properties, high precision means low recall and 

vice versa. To find an optimal trade-off between precision 

and recall a single-valued measure like the E-measure (van 

Rijsbergen 1979) can be used. The parameter α controls 

the trade-off between precision and recall. 

 

 
Popular single-valued measure is the F-measure. It is 

defined as the harmonic mean of precision and recall. 

 

 
 

It is a special case of the E-measure with α = .5 which 

places the same weight on both, precision and recall. In the 

recommender evaluation literature the F-measure is often 

referred to as the measure F1. 

 
Recommendation System Model 

 
In  order  to  develop  our  model,  we  need  the 

following packages: 

• recommenderlab - Create a list or data frame 

representation for various objects used in 

recommenderlab. These functions are used in addition to 

available coercion to allow for parameters like decode. 

• matrix – creates matrix from the given data frame. 

• registry – used for matching functions to be 

specified for key fields 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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• arules – item-matrix is defined in this package. This 

object is created by the call of “binaryRatingMatrix” and 

defining the data as ‘im’ which means item-matrix. 

• Proxy – used for distance and similarity measures. 

Provides an extensible framework for the efficient 

calculation of auto and cross – proximities. 

• ggplot2 – used for creating elegant and complex plots. 
 
 

3. Contributions 
 

With coercion, the matrix can be easily converted into 

a realRatingMatrix object which stores the data in sparse 

format. Here, you can see that our matrix is very large. 

That is 47402 X 42900 rating matrix of class 

‘realRatingMatrix’ with 47402 ratings. 

 
An important operation for rating matrices is to 

normalize the entries too, e.g., remove rating bias by 

subtracting the row mean from all ratings in the row. This 

can be easily done using normalize () function. 

 
We can represent the raw matrix and the normalized matrix 

with the image syntax. 

 

 
 

 
Figure 2: Raw ratings 

 

 
 

Figure 3: Normalized ratings 

 

 

Figure 4: Histogram of getRatings(r) 
 
 
 

 
 

Figure 5: Histogram of getRatings(normalized(r)) 
 

 
The songs rated on average are skewed to the right but 

when normalized, we have a two – tail distribution. Here is 

why normalization works. It adjusts for the bias of 

individual raters. For example, a user might rate or play 

more songs more often than another user who usually rates 

or play it less. The normalization will take care of that user 

bias. The Figure above shows that the distribution of 

ratings is closer to a normal distribution after row 

centering and Z-score normalization additionally reduces 

the variance further. 

 

 
 

 
Figure 6: Songs rated on average 
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It seems that people don’t play some music always 

and the long spike of the histogram shows that certain 

music was played more often than others. 

 
To evaluate recommender systems, we will split the data 

into training and test sets. We will use the training set to 

build our model. We will hold out some items from the test 

set, and then make predictions using the model. Then we 

will compare our predictions against the holdout. If we 

predicted correctly, it is a true positive. If we predicted 

incorrectly, it is a false positive. 

 
3.1 Evaluating and testing our model 

 
We implemented  four algorithms in this regard, that is 

Random, Popular Item, User-Based Collaborative Filtering, 

and Item-Based Collaborative Filtering. 

The run time of each algorithm implementation is also 

displayed. For instance UBCF took longer time compared 

to other algorithms implemented; while IBCF took the 

lesser time to execute. 

 

 
Figure 7: Comparison of ROC Curve for four algorithms 

used for the model 
 

 
Figure 8: Comparison of the Precision and Recall of the 

four algorithms 

 
Here, IBCF performed better than UBCF and all other 

algorithms. The algorithm which performed better lies in 

when and how are you generating recommendations. 

UBCF saves the whole matrix and then generates the 

recommendation at predict by finding the closest user. For 

large number of users-items, this becomes an issue. IBCF 

saves only k closest items in the matrix and doesn’t have to 

save everything. It is pre-calculated and predicts simply 

reads off the closest items. 

Predictably, RANDOM did better than UBCF perhaps 

surprisingly it seems, it’s hard for RANDOM and UBCF to 

beat POPULAR. All this means that the songs rated high 

are usually liked by everyone and are safe 

recommendations. This might be different for other 

datasets. 

In the ROC plot, we can see that UBCF did worse compare 

to other algorithm. The two best evaluation models are 

RANDOM and POPULAR; this may also be different from 

other dataset. 

 
3.2 Clustering 

 
The k-Means cluster was initially performed with 

5 clusters and the songs predicted are shown in 

the table below: 

 
Table 2: Predicted songs in R with k = 5 

 
Cluster Songs Artist name 

0 Funk you up The Sequence 

1 My own fault Maria Taylor 

2 Trial Damien Jurado 

3 Not the only one Bonny Raitt 
 
Table  3:  K-means  clusters  and  predicted songs with k =5 

 

Cluster Songs Artist Name 

0 Broken Silence Better  Luck  next 

time 

1 Do You Hear What I Hear Suzy Bogguss 

2 Your Little Hand Gary Morris 

3 Ellis Island Blues Boo Hewerdine 

4 Predominio del Sol Nueva Vulcano 

 
Both K-Means in R and Weka was compared to identify 

if their some commonalities and the figure below shows 

the comparison. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: KMeans Cluster with k = 5 
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The same centroids are showing up in Weka for every 

value of k, whereas the centroids resulting from kMeans 

in language R are different every time. The cluster 

sizes resulting from the R analysis are more evenly 

distributed, whereas the cluster sizes in Weka have a 

wide variance as shown in chart above. 

 
To make analyze more information in the clusters, we 

applied Expectation Maximization algorithm which uses 

probabilistic approach. Expectation–Maximization (EM) 

algorithm is an iterative method for finding maximum 

likelihood or maximum a posteriori (MAP) estimates of 

parameters in statistical models, where the model 

depends on unobserved latent variables. 

 
Table 4: Expectation Maximization Clusters and Songs 

Predicted with K = 6 

 
Clusters Songs Artist Name 

0 One Way Mule Silver chair 

1 Waltz No. 6 Larry Coryell 

2 Better Things Bouncing Souls 

3 Du Fehlst Mir So Illegal 2001 

4 The Storyteller Sleeps Michael Gettel 

 
Table 5: K-Means Clusters from Weka with K = 6 

 
Clusters Songs Artist name 

0 Broken Silence Better Luck next time 

1 Kennedy rag Suzy Thompson 

2 1 Piano Concerto 

No. 1 in B Flat 

Minor Op. 23: I. 

Allegro non troppo 

e molto maestoso 

Emil Gilels 

3 Rechtsstaat Heideroosjes 

4 Predominio del Sol Nueva Vulcano 

5 Escenas de la vida 

en el borde 

Chango Spasiuk 

 

 
Table 6: K-Means Clusters in R with K = 6 

 

Clusters Songs Artist name 

0 My  Bike  (Banana  

man album) 

Ghoti Hook 

1 Plug it in Otis Bigod 20 

2 Rowing John Barry and John 

Debney 

3 Za Horuca Richard Muller 

4 The house that 

faded 

Blue Orchids 

5 Ron Campbell The Lamps 

 

 
We compared the results obtained to identify which 

algorithm performed very well. The result can be seen in 

the figure below. 

 

 
 
 

Figure 10: Kmeans for MSD with k=6 

 
The result shows that Expectation Maximization and 

Clustering analysis in R have even distribution in their 

variance compared to Weka. The centroids are also of k- 

means in R and Expectation Maximization are always 

different at each iteration. However, the running time in 

Expectation Maximization is very much due to the large 

sets of data we used. 
 
 

 
 

Figure 11: Comparison between k and time 

 
From the plot we can see that the time of processing 

clusters increases when we keep increasing the value of 

k. However, this could be different based on the type of 

operating system the user deploys to build his 

recommendation. For this project, the researcher used a 

HP operating system with a 6 GB installed memory, Intel 

® core(TM) i5, and 64 bit Operating system. 
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Other Approach 

 

We also explored other approach in improving our 

system in order  to minimize errors. So we compared 

Correlation, Moving Average Error and Root Mean 

Square Errors and from the plot result, we observed that 

RMSE is a better approach in predicting. The least 

method is Correlation as we can see from the plot. 
 

 
 
 

 
 

Figure 12: Comparing the Time of Running of each 

cluster 

 
The Graph shows that RMSE performs better than MAE 

followed by correlation. Predicting Music using RMSE 

minimizes error than better than any other approach. 

 
3.3 Social network analysis of million song data 

 

The SNA of the Million Songs Dataset was also conducted 

in order to explore to which extent it is possible to use 

network analysis over implicit user feedback in order to 

learn or improve artist-artist associations. The data could 

be used for identifying metadata issues and/or enhancing 

the quality of the recommendations, via improved recall set 

and ranking function. 
 

 

 
Figure 13: Size distribution 

 
 

 
Figure 14: Visualization 

 
From the above  graph, we  can see that there  are 

communities or networks that exist among the artist. The 

networks show that these groups of artist sings either sing 

the same pattern of songs or have a common genre. The 

more we increase the Modularity, the more we see that 

artists form communities around different genres. Further 

works can be also conducted on the network analysis in 

order to study the clusters of songs and the rankings of 

each artist. It would be interesting to see the graph with the 

complete dataset from the Million Song Dataset. 

Community detection was particularly insightful: it 

surfaces artist compatibility, naturally from the interactions 

of users and music services. Besides that, degree and 

PageRank can be used for ranking popular artists inside 

communities, another useful piece of information for 

designing or improving music recommendation systems. 
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4. Results of findings 
 

In this work, I have developed a recommendation system 

with Collaborative Filtering, and Content based approach 

using clustering such as k-Means and k-nearest 

neighbors’ algorithm. The experiments using Million 

Song Dataset showed that recommending by k-NN is 

faster than recommending by Collaborative Filtering on 

any number of cores. Although the time frame increases 

as the clusters keep increasing. When more than one core 

is used, k-NN is faster. K-NN has also better scalability, 

but it is very sub-linear though. 

 
Recommendations of Collaborative Filtering and k-NN 

are different – k-NN has better hit rate but Collaborative 

Filtering has better RMSE on hits. Clustering can 

decrease the needed time for a recommendation. It works 

even for small number of clusters – with five clusters the 

average time of recommendation decreased to less than 

half of the time that was needed by version without 

clustering. Unfortunately with increasing number of 

clusters the time didn’t decrease much, because the k- 

Means algorithm created a lot of small clusters, but most 

of users kept in few largest clusters. We explored also 

the Social Network of Artists. In the social network, we 

tend to explore relationships that exist among the artists, 

and we found that indeed there is always a community of 

exist. This can be based on the genre of music. . The 

more we increase the Modularity, the more we see that 

artists form communities around different genres. 

 
4.1 Conclusion 

 
Recommender systems are a powerful new technology 

for extracting additional value for a business from its 

user databases. These systems help users find items they 

want to buy from a business. Recommender systems 

benefit users by enabling them to find items they like. 

Conversely, they help the business by generating more 

 
sales. Recommender systems are rapidly becoming a 

crucial tool in E-commerce on the Web. Recommender 

systems are being stressed by the huge volume of user 

data in existing corporate databases, and will be stressed 

even more by the increasing volume of user data 

available on the Web 2. 

New technologies are needed that can dramatically 

improve the scalability of recommender systems. As one 

of the most successful approaches to building 

recommender systems, collaborative filtering (CF) uses 

the known preferences [14] of a group of users to make 

recommendations or predictions of the unknown 

preferences for other users. 

 
 

 
In this paper we explored CF-based recommender 

systems and compared it with other algorithms such as 

MAE, RMSE, and Correlation. Our results show that 

item-based techniques hold the promise of allowing CF- 

based algorithms to scale to large data sets and at the 

same time produce high- quality recommendations. This 

is similar to RMSE which performed better than MAE 

and correlation. Notwithstanding, CF uses RMSE 

method in making recommendation too. 
 

However, for future works on large datasets, we 

recommend that SparkR be used since it is a distributed 

system. Spark framework is very easy to use more than 

Hadoop and the code is not complex, easy to read. The 

high speed  and scalability of algorithms built on this 

system is good because it is embedded on Spark memory. 

SparkR can work faster for large datasets projects that 

require parallel solution but the scalability can be sub- 

linear, and very important characteristics are readability, 

easy deployment on many platforms because it is a 

distributed system and maintainability. It is also good for 

creating proofs of concepts, because creating a parallel 

program with Spark is nearly as easy as writing a 

sequential one. 
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