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Abstract

A Surgical robotic system is a computer assisted electro-
mechanical device in a surgical context which helps the
surgeon by performing interventions. This system is a
safety critical system where occurring of errors might
lead to the endangerment of human life, or substantial
economic loss. Therefore, methods that guarantee the
correctness of the system adherence to crucial safety
properties are needed. A quite new way that can be used
to specify the dynamics behaviors of surgical robots is to
use hybrid automata. The semantics of hybrid automata
allows us to reason about and to simulate the behavior
of robots. This paper shows how to use hybrid automata
to model a case study on the coordination between surgi-
cal robots working in a shareable area. Additionally the
paper shows some formal analysis of particular require-
ments on both simulation and model checking level to
reason about the behavior of the robots.

Keywords: Surgical robots, formal specification, hybrid
automata

1. Introduction
Surgical robotics system is an area which received atten-
tion in the area of robotics. A robotic Surgery is defined
as a computer assisted electro-mechanical device in a sur-
gical environment which supports the surgeon by per-
forming interventions [12]. One of the most famous sur-
gical robotic systems is the da Vinci system which is used
for minimally invasive robotic Surgery [8]. The da Vinci
consists of up to three robotic arms for holding surgical

equipments, a patient side cart including one robotic arm
equipped with an endoscopic camera. The main purpose
of the systems is to perform the surgical intervention.

Generally, Surgical robotic systems are consider safety
critical systems where occurring of errors might lead to
the risk of human life, to economic loss, or to a huge envi-
ronment danger [13]. Therefore, specifying the behavior
of those systems has to be carried out carefully in order
to avoid the side effects that might cause undesirable or
even fateful behaviors. One of the primary concerns is
the safety of the patient, which in turn leads to an ex-
treme reliable, safe and robust robotic system. To our
knowledge, no safety standards for robotic surgical sys-
tems are established yet. There is no common definition
of the term safety in the context of robotic surgery and
it is not easy to defined. In our understanding, the cor-
rectness, the reliability and the dependability are quality
indicators for the safety of surgery robotics systems.

On the other hand, formal methods based on mathe-
matical models are very convenient to design safety criti-
cal systems. They have been used extensively in different
safety critical applications [9, 21]. The main advantage
of formal methods is that they provide a precise and ob-
vious description of the behavior of the system under de-
sign. Additionally, they not only allow us to formally
specify systems at different levels of abstraction, but also
to verify the consistency of the specified systems before
involving in the implementation phase. Usually Formal
methods use a kind of state transition diagrams, e.g. finite
automata or state-charts, to specify the discrete behav-
iors of system under consideration. One notable power of
such transition diagrams is that they grant themselves to
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formal analysis by means of the so called model checking
[6]. However, in the context of surgical robotics, where
the robots are situated in realistic physical environment,
it is necessary to consider continuous behaviors in addi-
tion to discrete behaviors. An examples of those contin-
uous behaviors includes the movement of the robot, the
kinetic movement of the arms. Unfortunately, the tradi-
tional state transition diagrams are not sufficient to com-
bine these types of behaviors. Hybrid automata [10],
in contrast to state transition diagrams, offer an elegant
methods to capture such types of behaviors.

Broadly speaking, hybrid automata extend the regu-
lar state transition diagrams with differential equations
to handle those continuous actions. On one hand, the
state transition diagrams are used to represent the dis-
crete changes of behaviors, while the differential equa-
tions are used to model the continuous changes. The
formal semantics of hybrid automata make them accessi-
ble to formal verification using model checking. Accord-
ingly,several model checkers have been implemented to
reason about the hybrid automata models [11, 7, 2, 17].

The contribution of this paper is to approach hybrid
automata to surgical robots context by modeling a par-
ticular scenario between two surgical robots in a shared
environment. The paper is doing so by modeling the
mutual exclusion scenario between two robots sharing
a critical working area. In particular, the paper focuses
on the application of the mutual exclusion protocol at
the OP:Sense Setup [20]. The paper additionally shows
some formal analysis of particular requirements on both
simulation and model checking level.

The paper is structured as follows: Sec. 2. discusses
some related work. Sec 3. gives a theoretical back-
ground of hybrid automata. In section 4. a surgical robots
case study is defined and the model of the scenario is ex-
plained in details using hybrid automata. In Sec. 5. a
formal analysis of the modeled scenario is described. Fi-
nally, Sec. 6. concludes the paper.

2. Related Work

Generally, in the areas of robots there are existing some
standards. For example, there are standards that describe
the safety requirements for industrial robots. Addition-
ally, there are standards for the medical devices that de-

scribe requirements of the quality management system of
medical devices. To our knowledge, however, no safety
standards for robotic surgical systems are settled. The use
of formal methods to specify critical safety in the area
of surgical robots is quite new, although they are used
in different safety critical areas such like air traffic con-
trol [9], vehicle control and software development [21].
Different papers attempted to use a certain kind of formal
method to model surgical robots. For example, in [5] the
authors approached ”Hybrid Input/Output automata” for
the verification of robotic surgical system where compo-
nents invariant were used to prove an overall safety prop-
erty. In [18] the authors presented the application of au-
tonomous surgery and verification of the surgical plan for
a simple puncturing. In [14] the authors proved a control
algorithm for directional force feedback in a surgical con-
text. Compared to the work of this paper, neither of these
previous work models the continuous behaviors of the
Surgical robots nor provides formal analysis using model
checking. A recent work similar to our work is presented
in [4], the author presented hybrid automata model on a
very simple puncturing case study and performed formal
analysis using reachability analysis. However, our case
study has more interactions and coordinations between
robots. Additionally, we propose to model more complex
dynamics scenarios and use the powerful of simulation to
observe the dynamic behaviors that are beyond the hybrid
automata to verify.

3. Hybrid Automata
A hybrid automaton [10] is represented graphically as
a state transition diagram dialect like state-charts, aug-
mented with mathematical formalisms on both transitions
and locations (see Fig. 2). Formally speaking, a hybrid
automaton is defined as the following ( more details about
Hybrid automata with illustrative examples can be found
in [10]).

Definition 1 A hybrid automaton is a tuple H = (X, Q,
Inv, Flow, E, Jump, Reset, Event, Init) where:

• X ⊆ Rn is a finite set of n real-valued variables that
model the continuous evolutions of the automaton
with respect to time.

• Q is a finite set of locations.
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• Inv(q) is the invariant predicate, which assigns an
invariant conditions for each location q ∈ Q. The
control of a hybrid automaton stays inside the lo-
cation q, as long as the invariant condition Inv(q)
satisfied.

• Flow(q) is the flow predicate on variables X for
each location q ∈ Q, which defines how the vari-
ables in X evolve over the time inside q. It con-
strains the time derivative of the continuous part of
the variables at location q. Basically, we represent
the flow as a constraint relation of the real variables
to the time. In the graphical representation, a flow of
a variable x is denoted as ẋ. A hybrid automaton is
classified according to the kind of the flow into dif-
ferent classes including timed automata [1],linear
automata, rectangular and non-linear automaton.

• E ⊆ Q×Q is the discrete transition relation over
the locations. Each edge e ∈ E is augmented by the
following annotations:

Jump: is a condition over X that must hold to en-
able transitions. Omitting a jump condition on
a transition means that the jump condition is
always true and it can be taken at any point of
time.

Reset: is a constraint, which may reset the vari-
ables to certain assignments. In the graphical
representation, X ′ = v denotes that the vari-
able X is reset with the value v. Resetting vari-
ables are omitted on transition, if the values of
the variables do not change before the control
jumps from a location to another location.

Event: synchronization label, used to synchronize
and coordinate the behavior of several au-
tomata. These synchronization labels are used
to construct the composition of the automata.

• Init is the initial condition that assigns initial values
to the variables X to each control location q ∈ Q.

Informally speaking, the semantics of a hybrid au-
tomaton is defined as a labeled transition system between
states, where a state consists of the current location of the
automaton and the current valuation of the real variables.

To model behaviors of larger systems, each part of a sys-
tem is modeled using hybrid automaton, and the com-
munication between the parts is performed by means of
shared variables and synchronization labels. The behav-
ior of the overall system is controlled using the so-called
parallel composition. Our scenario is composed of four
automata (see Fig.1 ) as we will show in the next sections.

4. Computer and Robot Assisted
Surgery Scenario

The setup of our scenario is a reactive surgical multi-
agent systems consisting of four main components: two
surgical robots operating in a shared area, controller and
scheduler. The main goal of the system is to provide
coordination between the two robots on the shared area
and to avoid any collision that might occur between the
robots. Additionally, the system provides a cooperation
between the two robots and a controller in such a way
that both robots read the environment and send the result
to single processor on the controller. To achieve the pre-
vious purpose, a scheduler (a part of the controller) co-
ordinates the behavior of both robots when they request
sending the data to the controller.

In order to prevent the robots form collision on a criti-
cal shared area, a part of the two robots should model mu-
tual exclusion protocol based on Fisher [15]. Also, each
robot repeatedly reads its environment and sends the re-
sult to the controller. Both robots share a single processor
with the controller. In our scenario, the scheduler coor-
dinates the reading of both robots. In case of both robots
require reading process at the same time, the scheduler
secures that the second robots has priority over the first
robot. That means the second robots can interrupt the first
robot reading process. As soon as the second robot com-
pletes its reading, the first robot reschedules its reading
process.

Generally, after sending its reading, each robot is de-
layed for a certain time to operate its environment and
to mutually coordinates the shared working area before
starting a new reading process. If the reading process is
not sent to the controller in adequate time, the robot takes
in consideration to send it again.
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4..1 Modeling the Scenario

The previous scenario will be modeled using four hybrid
automata (see Fig. 1). The automata communicate be-
tween each others through shared variables and synchro-
nization events. Since the model include two robots, we
use the index i to represent each the robots.

Controller

Robot2

Scheduler

Robot1
Robot1

Robot2

Scheduler

Controller

RoboticScenario

Figure 1: A surgical robotic scenario in abstract level.The
shape ⊂⊃−⊂⊃ indicates the hidden sub states.

In what follow, we describe details of each automaton
participating in the Fig. 1.

4..1.1 The robot behavior

The behavior of the two robots (see Fig.2) are identical
in the the model except that each roboti uses a contin-
uous variables yi to measure the time constraints inside
locations. Both robots coordinate their behavior using
the shared variable k which mutually controls the robots
within the shared area. The roboti has seven locations:
Init, move1, move2, SA, read, wait, and send. Initially,
the control of the roboti is in Init with yi :=0 and k:=0.
In the location move1, the robot has to wait no more than
a constant time unit, indicated by the parameter a, to up-
date the value of the variable k, i.e. assigning k:=i. In
the location move2, the robot waits a lower time bound
delay, indicated by the parameter b, before accessing the
shared location SA. After remaining in the later location
for acceptable delay, the robot starts to read a request us-
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0.8≤ ẏ1 ≤ 1

k = 1

0.8≤ ẏ1 ≤ 1
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Figure 2: Hybrid Automaton - Robot

ing the event requesti and resets yi and k to zero. In the
location read, the robot waits until the event readi takes
place from the scheduler in order to construct the read-
ing. Once the reading is allowed, the control moves to
the location wait. In the previous location, the robot re-
mains inside for up to 4 time units. During this time, the
robot is ready to send its reading to the controller using
the event sendi. The previous event occurs as soon as
the controller is ready to receive the reading. If the robot
did not receive the event sendi in the due time, it starts to
initiate a new reading-request and goes back to location
read. After sending the reading, the robot stays inside the
location send waiting for acknowledgment from the con-
troller using the event acki, and then it moves back to the
location Init and resets the variable to yi :=0 and k:=0.

4..1.2 The scheduler

The Scheduler automaton (see Fig. 3) is responsible for
allocating each robot CPU time on the shared processor.
For this purpose, it uses the event requesti to synchro-
nize both robots. This event indicates that the roboti is
initiating a request for CPU time to construct a reading.
The scheduler automaton uses two variable x1 and x2 to
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Figure 3: Hybrid Automaton - Scheduler

model the time that robot1 and robot2 have received since
the last request. The first robot takes duration between
0.5 and 1.1 milliseconds for the process of reading the
environment, while the second robot takes duration be-
tween 1.5 and 2.0 milliseconds. The scheduler has four
locations namely: idle, robot1, robot2, and enforceR-
obot2. These locations responsible for the variations of
requests. Initially, the control starts at location idle as
long as there is no pending request. As soon as each of
the robots requests a reading, the control goes to location
either the location robot1 or robot2. Whereas the control
goes to the location enforcerRobot2, when both robots
have pending requests. In case of both robots request the
CPU, a priority is given to the robot2.

4..1.3 The Controller

The Controller automaton (see Fig. 4 ) uses the variable
z to control its behavior. Initially, the control starts in
the location idle waiting for the send-signal from each of
the robots. Once the signal is acknowledged, the control
goes to either the location wait1 or wait2 based on the
robot which fire the signal. In the previous location, the
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Figure 4: Hybrid Automaton - Controller

automaton has to wait for send-signal up to 10 time units.
If signal2 event, respectively signal1 does not take place
in the required time, the invariant z ≤ 10 forces the con-
trol to jump back to the location idle by firing the event
expire1 respectively expire2. However, If the event send
occurs in the due time, it is acknowledged and the con-
trol transfers to the location compute. In the later loca-
tion, the controller automaton measures the time needed
to calculate the command to send it to the appropriate
robot. Additionally, the controller is augmented with a
clock variable c which measures the time elapsed since
the last signal has been sent to the robot or since the run
has begun when there was no signal sent.

5. Formal Analysis

Having defined and modeled our proposed scenario us-
ing hybrid automata, one can analyze the behaviors of
the model using either simulation or formal verification
tools. For this purpose, there are a wealth of tools and
languages proposed to analyze the behavior of systems
modeled by means of hybrid automata. Simulation tools,
for example [19], analyze intended behavior of under in-
vestigation using several runs of the model. Simulation is
powerful to analyze more complex continuous dynamics.
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Formal verification tools, on the other hand, are appeal-
ing as a concept to guarantee design correctness, but they
are limited to less continuous dynamics. In this section
we first investigate the formal analysis based on the sim-
ulation. A step further, we exploit the formal analysis
of the scenario with the help of model checking; in par-
ticular using one of standard model checkers of hybrid
automata HYTECH [11].

5..1 Simulation of The Scenario

We simulate the described scenario in Matlab Simulink
State-charts. Therefore we used two lightweight robot
models and modeled the critical structure as a sphere.
Both robots are not allowed to enter the critical structure
at the same time. Since the second robot is the priori-
tized ,the critical structure is entered only from this robot
if both robots are requested to enter, see Fig. 5. The no-
tation of state-charts allows us to precisely specify the
state-based systems. Hence it is possible to show the fun-
damental behavior of the case study. But to prove other
system requirements, especially time specification, it is
necessary to use other verification techniques. Therefore
we decided to use model checking tools, which are de-
scribed in the following section.

5..2 Model Checking

As we already mentioned, hybrid automata are equipped
with formal semantics, which make them possible to ap-
plicable not only in simulation but also in formal meth-
ods. This allows us to prove certain properties of the
specified systems, e.g. by model checking. However,
in the context of hybrid automata the term model check-
ing usually refers to reachability testing, i.e. the question
whether some (undesirable) state is reached from the ini-
tial state of the model. A model checker first computes
the reachability of the state space, and then checks the
reachability of a certain property simply by intersecting
the reachable state space and the property.

For the behavior specification of our scenario, we can
conduct various experiments using the model checker
HYTECH [11]. HYTECH is implemented for formal ver-
ification of linear hybrid automata. It takes, as input,
textual representations of hybrid automata like the one
showed in the Fig. 6 and performs reachability tests on

Figure 5: Simulation - Robot 2 is entering the critical
structure

the state space of the automata representing the overall
model. All the kinds of properties specified in terms
of reachability analysis can be checked using the model
checker. A property of interest can be formally speci-
fied using extended versions of of temporal logics [3].
Following the specification formalism of the logic RCTL
[16], a reachability of a certain property Ψ asserts that
starting from an initial state, is there a state along a run
of the model in which Ψ is satisfiable ?. This can be
specified in RCTL as follows:

init→∃♦Ψ

A safety property Ψ which states that something bad
must never occur can be specified as in terms of reacha-
bility as the following formula:

init :→∀�¬Ψ.
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1 automaton Robot1
2 synclabs: request1, read1, send1,ack1;
3 initially Init & y1=0 & k=0;
4 loc Init:
5 while True wait {}
6 when k=0 do {y1’ = 0} goto move1;
7 loc move1:
8 while y1<=a wait {dy in [8/10,1]}
9 when True do {k’=1, y1’=0} goto move2;
10 loc move2:
11 while True wait {dy in [8/10,1]}
12 when y1 >= b & k=1 goto SA1;
13 when y1 >= b & k=0 goto Init;
14 when y1 >= b & k=2 goto Init;
15 loc SA1:
16 while True wait {dy in [8/10,1]}
17 when True do {k’=0, y1’=0} sync request1 goto read;
18 loc read:
19 while True wait {}
20 when True do {y1’ = 0} sync read1 goto Wait;
21 loc Wait:
22 while y1=< 4 wait {dy =1}
23 when y1 >= 4 sync request1 goto read;
24 when True sync send1 goto Send;
25 loc Send:
26 while True wait {}
27 when True sync ack1 goto Init;
28 end

29 init_reach := reach forward from init endreach;
30 ext_error := loc[Robot1] = SA1 & loc[Robot2] = SA2;

31 if not empty(init_reach & ext_error)
32 then prints "Mutual Exclusion is violated";
33 else prints "Mutual Exclusion holds";
34 endif;

Figure 6: Example from the HYTECH code of a surgical
Robot ( Lines 1–28) Fig. 2. Some analysis commands are
shown in lines 29–34.

our main concerns in the safety property is to prove
that the formula Ψ is never reached from the initial states.

The question: is the Mutual exclusion guaranteed ?
is consider a safety property. Using HYTECH, it is easy
to prove this type of property by checking that the two
robots can not be found in the shared area at the same
time, i.e., no reachable state satisfies the robot1 resides
in location SA1 and robot2 resides in location SA2 at the
same time. Figure 6 ( line 29-33) shows how to check
this property with HYTECH.

The model checkers can be used not only to check
reachability of a certain property, but also to find the
time requirements between specific events. For example,
HYTECH can be used to determine the delay between sig-
nals that have been sent to the robots. In particular, we
can use HYTECH to compute the value of the of the clock
c in the set of all reachable states of the automaton con-

troller.
HYTECH additionally can be used not only to check

safety requirements, but also to find the constraints on
specific parameters to guarantee the existence of safety
property. The later is very a suitable technique for de-
signing parameters of robots specially when they are sit-
uated in a critical environment. For example, HYTECH
can compute the condition on the parameter a and b of
the two robots to guarantee the existence of mutual ex-
clusion.

6. Conclusion

The Area of surgical robots received recent interest as
an area of autonomous robots. Designing surgical robots
must take into consideration lots of safety concerns in or-
der to avoid any disasters that might happen. An elegant
method that help to design correct behaviors of systems
and to guaranteed the safety is to use formal methods.
This paper presented a formal way to model and specify
a complex scenario of surgical robots by means of hybrid
automata. In particular, the paper showed how to coor-
dinate the behaviors of two robots operating in a shared
critical area. Hybrid automata are used to model a sce-
nario based on a mutual exclusion protocol. The paper
simulated the described scenario with Matlab/Simulink.
Since the surgical robots application requires procedures
for guaranteeing the safety, the paper additionally used
the rigorous model checking technique on hybrid au-
tomata to verify the correctness of the model.The later
technique can be used to designing parameters of the
robots in order to guarantee the safety correctness of the
system. The successful formal analysis indicates that ap-
proaching hybrid automata to formal model more com-
plex scenario in the area of surgical robots is desirable.
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