
A Metaheuristic Algorithm with Hybrid Insertion Procedure

for the Traveling Salesman Problem

Takahiro Hoshino1, Chuan Tian1, Hisashi Kondo2, Kazuhiro Tsuboi2, Yoshio Hamamatsu1

 1 College of Science and Technology, Nihon University

Chiyoda-ku, Tokyo 101-8308, Japan

2 College of Engineering, Ibaraki University

Hitachi, Ibaraki 316-8511, Japan

Abstract
Finding the optimal solution to combinatorial optimization

problems can be difficult, even when a partial structure (solution)

of the optimal solution may be found easily. How to expand the

partial solution into a full solution and how to insert other

elements are important considerations for the construction of

initial solutions. We propose a new procedure for constructing

initial solutions of combinatorial optimization problems. This

procedure employs hybrid insertion, which combines standard

insertion with other heuristics. The proposed algorithm is applied

to the traveling salesman problem (TSP), an NP-hard

combinatorial optimization problem, to demonstrate the

efficiency of the proposed algorithm. The accuracy of the

obtained solutions is evaluated against the solutions of

benchmark problems. On most problems, the proposed algorithm

found shorter tours than other construction algorithms did.

Keywords: Traveling Salesman Problem, Threshold, CCA

Algorithm, Minimum Spanning Tree

1. Introduction

The main purpose of combinatorial optimization is to find

the best choice from among a large but finite set of choices.

It is often difficult to find the optimal solution to

combinatorial optimization problems as the scale of the

problem grows. However, a partial structure (solution) of

the optimal solution can sometimes be found relatively

easily. For example, parts of the solution to a scheduling

problem can be assigned with certainty due to hard

constraints. To generate initial solutions of higher

accuracy, the partial solution needs to be more effectively

expanded into a full solution via insertion of additional

elements. Toward this end, we propose a new construction

procedure of using hybrid insertion, which combines

standard insertion with other heuristics. The traveling

salesman problem (TSP) is an NP-hard combinatorial

optimization problem. Application of the proposed

algorithm to TSP is used here as a basis for discussing the

effectiveness of the algorithm.

The aim of the TSP is to find the shortest possible

Hamiltonian cycle for a number of cities given the

distances between them. The TSP has several applications,

such as vehicle routing problems[1]-[3] and circuit board

drilling problems[4]-[6].

The optimal solution to the TSP can easily be obtained by

finding all ordered tour combinations and selecting the

shortest among them. However, the number of tour

combinations increases exponentially with the number of

cities, giving large computation times for even a small

number of cities. Approximate metaheuristic algorithms

that provide relatively high accuracy using short

computation times are therefore required.

Genetic algorithms[7],[8], simulated annealing[9], ant

colony optimization[10], and other techniques[11],[12] are

well-known efficient metaheuristic algorithms for solving

TSP. Many of these algorithms consist of a construction

procedure that generates an initial set of tours and an

improvement procedure that finds shorter tours from the

initial tours. The nearest-neighbor algorithm, greedy

algorithm, savings heuristic[13], and Christofides

algorithm[14] are important construction algorithms.

Another construction algorithm is the CCA algorithm[15],

which combines convex hull, cheapest insertion, and angle

selection techniques. It first selects cities located on the

boundary of the convex hull as the initial subtour, and is

able to find shorter tours from that set than the other

construction algorithms mentioned can. Most of the

construction algorithms select the locally optimal choice at

each stage, and the insertion cost typically increases as the

number of unlinked cities decreases.

The proposed algorithm chooses between using the

standard insertion procedure from the CCA algorithm and

an insertion algorithm employing the minimum spanning

tree (MST). The choice depends on the insertion angle

between the two edges that connect an isolated city to two

cities on the current subtour. The solutions obtained by the

construction procedure in the proposed algorithm are

improved by using the 2-opt algorithm[16].

We compare the solutions given by our algorithm with

results from the CCA plus 2-opt algorithm (CCAO

algorithm) and the nearest neighbor plus 2-opt algorithm

(NNO algorithm). To evaluate the accuracy of the obtained

solutions, our algorithm and the other algorithms are

applied to benchmark problems in TSPLIB 95[17].

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 1

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

2. CCA Algorithm

Consider the optimal solution of a Euclidean TSP that

visits the cities on the boundary of the convex hull in the

same order as in Refs. [18] and [19]. Figure 1 shows an

example that illustrates the relationship between the

convex hull and the optimal tour. In the clockwise

direction, the order of the cities on the boundary of the

convex hull is 1-8-10-3-6-4 (Fig. 1(a)). The optimal tour

maintains this order (Fig. 1(b)). The optimal solution can

thus be obtained by inserting the remaining cities into the

subtour given by the boundary of the convex hull. The

CCA algorithm exploits this property by constructing

solutions from the initial subtour given by the convex hull.

The CCA algorithm as given in Ref. [15] is as follows.

1. Form an initial subtour by constructing the convex

hull of the set of cities (Fig. 2(1)).

2. Let denote the distance between cities i and j.

For each city k not yet contained in the subtour,

find the two cities i and j in the subtour that

minimize (Fig. 2(2)).

3. From all the combinations of (i, k, j) found in step 2,

select () that gives the maximum insertion

angle where is given by

Insert city between and (Fig. 2(3)).

4. Repeat steps 2 and 3 until a Hamiltonian cycle is

obtained (Fig. 2(4)).

Note that step 2 finds the two cities in the subtour that give

the cheapest insertion cost and step 3 finds the

unconnected city that gives the greatest insertion angle.

3. Proposed Algorithm

The proposed algorithm employs a threshold value that

can be varied to generate several different solutions.

3.1 Construction Procedure

In the CCA algorithm, a long route may get inserted into

the subtour during the process of reducing the number of

unconnected cities since this algorithm does not

reconstruct the tour or any subtours. We therefore improve

the insertion procedure by implementing a threshold value

as the tour cost increases. The threshold value is applied to

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1-8-10-3-6-4 1-8-[2]-[5]-10-3-[7]-6-4-[9]

(a) Cities on the boundary of the

convex hull (b) Optimal tour

[i]: City within the boundary

Fig.1 Convex hull and the optimal tour

q3

1

3

6

7

2

(1) (2)

1

3

4

5

6

2

7

6

(4)

4

5

1

3

7

2 4

5

q4

q3

q5

(3)
1

3

7

2 4

5

q5

Fig.2 CCA algorithm

1

4

6

7

9

5

8

2

10

3

11

(1)

1

4

6

7

9

5

8

2

10

3

11

(2)

q7

q9

q6

q3 q5

1

4

6

7

9

5

2

10

3

11

(3)

8

1

4

6

7

9

5

8

2

10

3

11

(4)

1

4

6

7

9

5

8

2

10

3

11

(5)

1

4

6

7

9

5

8

2

10

3

11

(6)

Fig.3 Construction procedure in the proposed algorithm

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 2

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

the cosine of the insertion angle because the insertion cost

tends to grow as the insertion angle decreases, that is, as

the cosine increases. If one or more cosines are less than

the threshold value, then the city corresponding to the

angle that has the minimum cosine value is inserted.

However, if all cosines are greater than the threshold, then

cities are inserted by the following procedure. First, to

decrease the insertion cost for unconnected cities, the MST

of the unconnected cities is constructed. The proposed

algorithm then inserts the cities that give the minimum

value of the ratio of route cost to number of cities in the

MST. The entire algorithm as shown in Fig. 3 is as follows.

1. Generate an initial subtour by constructing the

convex hull of the set of cities (Fig. 3(1)).

2. Perform step 2 of the standard CCA algorithm. That

is, find cities i and j for each k not in the subtour

(Fig. 3(2)), and then choose that has the

minimum value of from among all the

combinations of (i, j, k). If is less than the

given threshold, go to step 3, otherwise go to step 4.

3. Insert city between and (Fig. 3(3)). If a

Hamiltonian cycle has not been formed, go to step

2, otherwise go to step 7.

4. Generate the MST of the unconnected cities (Fig.

3(4)).

5. For each pair of linked cities i and j on the current

subtour, search the MST for the nearest neighbors l

and m of i and j, respectively (Fig. 3(5)).

6. Find (, , ,) from among all the

combinations of (i, j, l, m) found in step 5. (, , ,

) gives the minimum value of

where is the total distance along the path

linking to on the MST. Insert all of the cities

contained in the path from to inclusive in

between and (Fig. 3(6)). If a Hamiltonian

cycle has not been formed, go to step 2, otherwise

go to step 7.

7. Improve the tour by using the 2-opt algorithm.

The above algorithm thus gives a tour for a given

threshold value, and the tour cost depends on that

threshold value. The next section therefore presents a

method for generating a threshold value that gives better

solutions.

3.2 Method for Selecting the Threshold Value

We have also devised a procedure for searching for good

solutions by varying the threshold value. Let T be the

threshold value, be the tour length for the threshold

value T, and d be a "depth" parameter that is used for

generating new threshold values.

First, at depth we find the solutions for

and by applying the construction procedure. For

depths , new threshold values are then obtained from

the midpoint values between each pair of neighboring

threshold values at the previous depth, such as shown in

Fig. 4, and tours are constructed for each of these

threshold values. The depth d is increased by one after

generating all of the midpoint values. This process is

repeated until d reaches some preset "max depth"

parameter.

The number of new thresholds and solutions increases

exponentially as the max depth increases, and so we

impose the following conditions on generating new

threshold values:

[1] The range ranking, defined as the ranking of the

values of for the range

between two neighboring threshold values and

, does not exceed some preset value.

[2] does not equal .

Condition [1] means that threshold values likely to give

good solutions are generated, and threshold values that

give bad solutions are not generated. Since good solutions

are expected to have similar structures in parts of the

solutions, threshold values that give good solutions often

exist near other threshold values that also give good

solutions. The preset parameter employed in condition [1]

is called the worst-range ranking. Condition [2] is applied

to avoid generating duplicate solutions.

The proposed algorithm including the method for

generating new threshold values operates as follows.

1. Take initial parameters and and

construct a tour by using the proposed algorithm.

2. Update the present threshold value with a new

threshold value. If the present threshold is ,

the new threshold value is set to ,

otherwise it is set to .

3. Check the value of the new threshold T. If T

satisfies , go to step 4, otherwise go to step 5.

4. Determine whether T satisfies the conditions for

generating new threshold values. If T satisfies them,

construct a tour by using the proposed algorithm,

otherwise go to step 2.

5. Set the parameters to and . If d

is less than or equal to the preset max depth

parameter, go to step 2, otherwise stop.

0 1-1

; new threshold

; old threshold

cosqk

0 1-1
cosqk

0 1-1
cosqk

.

.

.

d=-1

d=0

d=1

Fig.4 Process of generating new threshold values

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 3

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

This algorithm is likely to find better solutions for larger

values of the max depth and worst-range ranking

parameters. However, more time is required for the

computation as these values increase. To decrease the

computation time, we made the following improvement to

the above algorithm. When a city is inserted into a subtour

during the construction procedure, the insertion procedure

that was used (standard insertion or proposed insertion)

and the insertion order of the city are recorded. This

information is used in the construction procedure to allow

generating only those parts that differ from previously

obtained solutions.

3.3 Method for Setting Parameters

To obtain better solutions using short computation times,

the max depth and worst-range ranking need to be set

appropriately. The parameters are set through the

following procedure.

The standard heuristic algorithm (i.e., CCA) is applied to a

set of problems of about the same scale in which cities are

randomly arranged and the tour length is recorded. The

proposed algorithm generates solutions for these problems

by using all settable combinations of worst-range ranking

and max depth. We define improvement accuracy as the

reduction in tour length by the proposed algorithm over the

CCA algorithm, and create a table of the improvement

accuracies corresponding to the worst-range ranking and

max depth. The improvement accuracies of the proposed

algorithm tend to saturate with respect to increases in max

depth and worst-range ranking. When the worst-range

ranking is set to r th (), if the reduction in the

improvement accuracy of d from the previous depth

is less than a prescribed value, the depth is recorded as

. This procedure sets the max depth for each r to a fixed

value. Similarly, if reduction in the improvement accuracy

from the parameters () to the parameters ()

is less than a prescribed value, the worst-range ranking r is

recorded and these parameters () are used in the

algorithm. Setting the parameters by the above procedure

makes it possible to cut down on wasted computing time

that offers little chance of improvement.

4. Computational Study

The solutions obtained by the CCAO algorithm, the NNO

algorithm, and the proposed algorithm were compared to

investigate the influence of tour construction.

4.1 Computation Conditions

The solution accuracies of the algorithms were evaluated

by using 70 benchmark problems taken from TSPLIB

95[17]. To set the worst-range ranking and max depth

parameters, the CCA algorithm and the proposed

algorithm were applied to 5 test problems consisting of

1000 randomly arranged cities. By method introduced in

Section 3.3, the max depth was set to 8 and the worst-

range ranking was set to 5 as appropriate parameters for

the proposed algorithm. The best solution tours were

obtained for several different threshold values using the

proposed algorithm. All computational experiments were

performed on a personal computer with a Core i7

processor and 4 GB of RAM.

4.2 Computational results

We now examine the difference in accuracy between the

algorithms by comparing the solutions. Figure 5 shows the

solutions given by each algorithm for a problem consisting

of 100 cities (kroE100). Vertices represent cities and solid

lines linking the cities represent the salesman's route. The

cities indicated by circle, square, and triangle markings in

Fig. 5(c) represent the cities that were inserted from the

MST constructed in step 4 in Section 3.1. For comparison,

these same cities are also indicated in Figs. 5 (a) and (b).

Comparing the results of the NNO and CCAO algorithms

shows that CCAO improves the accuracy by setting the

initial subtour to the boundary of the convex hull.

(a) NNO

(b) CCAO

(c) Proposed algorithm

Error: 6.06%

Error: 3.56%

Error: 0.36%

[×103]

[×103]

[×103]

[×103]

[×103]

[×103]

0 1 2 3 4

1

2

0 1 2 3 4

1

2

0 1 2 3 4

1

2

Fig.5 Computational results for kroE100

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 4

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

However, the CCAO algorithm sometimes generates long

paths due to the cheapest cost selection and greatest angle

insertion procedure. By inserting cities from the MST

instead of using this procedure, the tour in the proposed

algorithm gives the route improvement shown in Fig. 5(c).

In particular, the route through the cities indicated by the

triangles is inserted more effectively in comparison with

the CCAO algorithm. The proposed algorithm thus

accomplishes a reduction in the total tour cost.

We next discuss the accuracies and computation times for

the 70 problems listed in Table 1. The proposed algorithm

gives the best accuracy in all of the problems except for

the "u2319" problem indicated by italics. Compared to the

CCAO algorithm, the proposed algorithm finds shorter

tours in 64 of the problems. The solutions to the other 6

problems, which are highlighted in boldface, have

accuracy equal to that given by the CCAO algorithm.

Since the solution for T=1 corresponds to the solution of

the CCAO algorithm because the MST is not constructed,

the proposed algorithm can guarantee to match the

accuracy of the CCAO algorithm. The average error is

7.40% for NNO, 5.13% for CCAO, and 2.86% for the

proposed algorithm. Hence, our algorithm clearly

increases the accuracy of the solutions.

We next discuss the scale of the problems and the

accuracies. Figure 6 shows the accuracies of the proposed

NNO CCAO PA NNO CCAO PA NNO CCAO PA NNO CCAO PA

eil51 7.61 4.87 3.04 0.01 0.03 0.11 pr299 8.43 3.26 3.26 0.08 0.22 1.12

berlin52 10.26 1.02 0.03 0.02 0.03 0.10 lin318 8.06 6.65 4.28 0.09 0.27 1.97

st70 10.90 4.90 3.56 0.02 0.05 0.16 rd400 6.01 5.90 3.85 0.09 0.44 2.37

eil76 6.38 7.53 2.03 0.03 0.05 0.17 fl417 5.46 2.91 2.68 0.14 0.47 2.09

pr76 4.91 1.87 1.17 0.02 0.05 0.18 pr439 7.95 5.56 4.03 0.13 0.56 2.90

rat99 5.26 4.94 2.63 0.03 0.06 0.31 pcb442 5.97 9.01 1.24 0.13 0.56 2.09

kroA100 4.08 0.94 0.94 0.03 0.06 0.27 d493 7.20 4.47 3.42 0.13 0.72 5.80

kroB100 2.97 1.03 0.53 0.03 0.06 0.27 u574 7.51 6.19 3.67 0.19 1.05 7.88

kroC100 6.62 1.13 1.13 0.03 0.06 0.28 rat575 8.22 7.62 3.73 0.19 1.03 5.83

kroD100 8.91 2.72 2.08 0.02 0.06 0.27 p654 4.72 4.95 2.01 0.30 1.47 13.41

kroE100 6.06 3.56 0.36 0.03 0.08 0.26 d657 7.85 5.90 4.53 0.17 1.51 9.84

rd100 11.05 3.07 3.07 0.03 0.05 0.25 u724 9.06 6.71 3.88 0.20 1.95 14.12

eil101 7.91 5.43 2.58 0.02 0.08 0.23 rat783 8.74 7.07 4.72 0.31 2.40 16.52

lin105 14.92 1.21 1.02 0.03 0.08 0.21 pr1002 9.23 6.76 5.15 0.44 5.12 41.40

pr107 2.46 1.60 0.05 0.03 0.08 0.31 u1060 9.28 5.68 3.26 0.52 6.05 55.35

pr124 3.96 2.30 1.13 0.03 0.08 0.26 vm1084 6.79 5.30 3.45 0.52 6.63 43.13

bier127 8.06 4.34 2.96 0.05 0.09 0.34 pcb1173 9.71 8.51 4.58 0.64 9.05 32.73

ch130 8.67 5.63 2.87 0.05 0.09 0.39 d1291 11.10 7.65 5.08 0.62 12.31 60.43

pr136 13.16 2.84 2.84 0.05 0.09 0.30 rl1304 7.89 6.60 2.20 0.78 12.75 59.45

pr144 3.79 4.27 2.27 0.03 0.09 0.31 rl1323 8.16 5.10 3.15 0.62 13.46 68.80

ch150 5.17 4.40 1.17 0.05 0.11 0.34 nrw1379 7.19 6.10 3.16 1.00 15.38 117.13

kroA150 7.64 1.82 1.06 0.05 0.11 0.43 fl1400 4.69 3.79 2.57 1.37 15.94 121.37

kroB150 9.22 2.93 1.36 0.05 0.11 0.34 u1432 7.80 8.88 3.36 1.03 17.35 55.08

pr152 5.18 4.38 2.17 0.05 0.09 0.50 fl1577 5.81 6.14 3.02 1.73 23.51 164.77

u159 10.01 5.11 2.94 0.05 0.09 0.34 d1655 7.77 7.25 5.59 1.58 27.77 164.41

rat195 5.88 6.82 3.00 0.05 0.12 0.44 vm1748 9.99 6.19 4.92 1.58 33.10 183.80

d198 2.88 2.01 1.00 0.05 0.13 0.71 u1817 9.83 8.90 7.68 1.16 37.60 238.28

kroA200 7.21 2.97 1.64 0.06 0.14 0.56 rl1889 9.80 7.71 4.82 2.04 42.96 169.88

kroB200 7.16 1.70 1.70 0.05 0.12 0.59 d2103 4.08 6.84 2.81 1.30 61.28 201.79

ts225 10.76 8.40 0.00 0.06 0.16 0.30 u2152 8.26 8.36 6.95 2.46 64.29 418.11

tsp225 4.75 4.74 1.88 0.06 0.14 0.63 u2319 2.24 8.47 2.87 1.78 80.58 148.20

pr226 9.39 3.72 1.38 0.06 0.17 0.65 pr2392 8.14 7.92 6.05 3.40 90.06 684.20

gil262 5.61 5.49 3.74 0.06 0.19 1.15 pcb3038 9.15 7.71 4.96 4.26 193.93 891.99

pr264 6.72 7.81 2.69 0.06 0.20 1.34 fl3795 6.42 2.91 1.62 10.42 392.12 1815.80

a280 6.65 4.01 1.01 0.06 0.19 0.92 fnl4461 7.57 7.24 4.50 6.85 616.12 4227.81

Instance
Accuracy [%] Time [s]

Instance
Time [s]Accuracy [%]

Table 1 Comparison of accuracies and computation times of the algorithms

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 5

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

algorithm and CCA algorithm versus the number of cities.

The accuracies of both algorithms have a tendency to

decrease as the number of cities increases. The CCA

algorithm is able to efficiently insert cities on and near the

boundary of the convex hull because of the characteristics

of the algorithm. There is no guarantee of other cities

being inserted efficiently because of greedy insertion.

Thus, the accuracies of both algorithms worsen as the

scale of the problem increases. By using hybrid insertion,

however, the proposed algorithm can better prevent the

decrease in accuracy than the CCA algorithm can.

Figure 6 also shows that the improvement accuracies of

the proposed algorithm and CCA algorithm differ for the

same scale of problem. Improvement accuracy tends to

depend on the locations of the cities. We discuss the

relationship between the accuracies and city arrangements

in terms of the dispersion of the number of cities per unit

area. The area for each benchmark problem is partitioned

into a square lattice such that the average number of cities

per unit area is approximately one and the dispersion of

the number of cities per unit area can be obtained.

Problems with large dispersions have many areas of dense

cities, and problems with small dispersions have less

variation between areas than problems with large

dispersions. Figure 7 shows improvement accuracies of the

proposed algorithm before 2-opt for the CCA algorithm

versus dispersion value. This figure shows the results for

problems containing 250 or more cities because few

differences are found between the accuracies of the

proposed algorithm and the CCA algorithm for problems

with less than 250 cities. As can be seen in Fig. 7,

improvement accuracies tend to decrease as dispersion

increases. The reason for this trend is the similar structure

of the routes generated by steps 2 and 3 in the CCA

algorithm and steps 4 to 6 in the proposed algorithm, since

distances between isolated cities are often similar in

problems with large dispersions. However, the accuracies

of the problems with small dispersions are often improved

by using hybrid insertion due to maintaining more than a

certain distance between isolated cities.

Finally, we examine the difference between the calculation

times of the algorithms. From the results for the CCAO

and the NNO algorithm, the computation time of the

former is longer than the latter. The reason is that the

computation time required by the construction procedure

in the CCA algorithm is O(N3) compared to O(N2) in the

nearest neighbor algorithm. A similar trend can be seen

when the results for the proposed algorithm are compared

with the NNO algorithm. The computation time of the

proposed algorithm is on the order of 2 to 9 times larger

than that of the CCA algorithm. The increase depends on

the number of tours, that is, the number of thresholds, and

this number varies between problems due to the generating

conditions described in Section 3.2. The proposed

algorithm thus requires different computation time even

when the number of cities is the same. The computation

time also depends on the frequency with which the

insertion procedure employing the MST is used. The

proposed procedure requires longer running times when

insertion using the MST occurs more frequently.

5. Conclusion

We proposed a new construction procedure that employs

hybrid insertion and discussed the effectiveness of the

algorithm in terms of application to the TSP. In the

proposed algorithm, an insertion criterion is employed that

depends on the cosine of the insertion angle exceeding a

given threshold value. When the threshold is exceeded, the

algorithm inserts cities from an MST over the cities that

have not yet been inserted, otherwise the CCA algorithm is

employed. We also proposed a method for generating new

thresholds by using preset max depth and worst-range

ranking parameters to obtain better solutions.

We applied our algorithm to benchmark problems in

TSPLIB 95, and compared the solutions with those

obtained by the CCAO and NNO algorithms. The results

clearly showed that our algorithm gives higher accuracy in

most of the benchmark problems. Through a combination

10 100 1000 10000
0

5

10

15

Number of cities

A
cc

u
ra

cy
 [

%
]

: PA

: CCA

Fig.6 Accuracy versus number of cities

0.1 1 10 100
0

2

4

6

8

10

12

Dispersion

Im
p
ro

v
em

en
t
ac

cu
ra

ci
es

 f
o
r

C
C

A
 [

%
]

: 501−1100 cities

: 1101−2000 cities

: 250−500 cities

: 2001−4461 cities

Fig.7 Accuracy improvement versus dispersion

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 6

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

of insertion by the standard CCA algorithm and insertion

from an MST, our algorithm is guaranteed to give at least

the accuracy of the CCA algorithm while simultaneously

offering the ability to find shorter tours. We expect that

errors could be further reduced by utilizing the tour

constructed by our algorithm as the initial tour of other

metaheuristic algorithms, such as GA. The idea of

selecting between the standard insertion procedure and the

proposed insertion procedure depending on the situation

could also be incorporated into other construction

algorithms. Examples of such algorithms are the nearest

insertion method, the farthest insertion method, and the

arbitrary insertion method. The TSP is used in this paper

as an example of the application of this idea. How to apply

the idea to other combinatorial optimization problems is

left as an issue for the future.

The proposed algorithm requires longer computation time

than the CCAO and NNO algorithms do, which is

commensurate with the increase in accuracy. The

computation time of the proposed algorithm could be

improved by replacing the CCA algorithm which is the

base of the proposed algorithm with a more efficient

algorithm. Furthermore, we used Prim's algorithm[20] for

the construction of the MST which has a computation time

of O(N2) for finding the MST. The computation time for

building the MST could be reduced to O(NlogN) by

implementing a faster MST algorithm such as that given in

Refs. [21] and [22]. This issue will be addressed in the

future.

References
[1] G. Laprote: "The vehicle routing problem: An overview of

exact and approximate algorithms", European Journal of

Operations Reseach, Vol. 59, No. 3, pp. 345-358, (1992)

[2] Mir Mohammad Alipour: “A Learning Automata Based

Algorithm For Solving Capacitated Vehicle Routing

Problem”, International Journal of Computer Science

Issues, Vol. 9, Issue 2, No.1 pp. 138-145 (2012)

[3] S. A. Kallel1 and Y. Boujelbene: “Heterogeneous Vehicle

Routing Problem with profits Dynamic solving by

Clustering Genetic Algorithm”, International Journal of

Computer Science Issues, Vol. 10, Issue 4, No.1 pp. 247-

253 (2013)

[4] S. Danusaputro, C. Y. Lee and L. A. Martin-Vega: "An

efficient algorithm for drilling printed circuit boards",

Computers & Industrial Engineering, Vol. 18, No. 2, pp. 145-

151, (1990)

[5] E. Aoyama, T. Hirogaki, T. Katayama and N. Hashimoto:

"Optimizing drilling conditions in printed circuit board by

considering hole quality optimization from viewpoint of

drill-movement time", Journal of Materials Processing

Technology, Vol. 155-156, No. 30, pp. 1544-1550, (2004)

[6] M. Ancau: "The optimization of printed circuit board

manufacturing by improving the drilling process

productivity", Computers & Industrial Engineering, Vol. 55,

No. 2, pp. 279-294, (2008)

[7] M. Yamamura, T. Ono and S. Kobayashi: "Character-

preserving genetic algorithms for traveling salesman

problem", Journal of the Japan Society for Artificial

Intelligence, Vol. 7, No. 6, pp. 1049-1059, (1992)

[8] Hassan Ismkhan, Kamran Zamanifar: “Developing Improved

Greedy Crossover to Solve Symmetric Traveling Salesman

Problem”, International Journal of Computer Science Issues,

Vol. 9, Issue 4, No.3 pp. 121-126 (2012)

[9] S. C. Lin and J. H. C. Hsueh: "A new methodology of

simulated annealing for the optimization problems", Physica

A: Statistical Mechanics and its Applications, Vol. 205, No.

1-3, pp. 367-374, (1994)

[10] H. M. Naimi and N. Taherinejad: "New robust and

efficient ant colony algorithms: Using new interpretation of

local updating process", Expert Systems with Applications,

Vol. 36, No. 1, pp. 481-488, (2009)

[11] X. Yan, C. Zhang, W. Luo, W. Li, W. Chen and H.

Liu: “Solve Traveling Salesman Problem Using Particle

Swarm Optimization Algorithm”, International Journal of

Computer Science Issues, Vol. 9, Issue 6, No.2 pp. 264-271

(2012)

[12] J. Knox: "Tabu search performance on the symmetric

traveling salesman problem", Computers & Operations

Research, Vol. 21, No. 8, pp. 867-876, (1994)

[13] G. Clarke and J. W. Wright: "Scheduling of vehicles

from a central depot to a number of delivery points",

Operations Research, Vol. 12, No. 4, pp. 568-581 (1964)

[14] N. Christofides: "Worst-case analysis of a new

heuristic for the travelling salesman problem", Technical

Report 388, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh (1976)

[15] E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy and

D.B.Shmoys, "The Traveling Salesman Problem", John-

Wiley and Sons (1985)

[16] E. Aarts and L. K. Lenstra: "Local search in

combinatorial optimization", John wiley and sons, pp. 215-

310 (1997)

[17] G. Reinelt, "TSPLIB 95", Universität Heidelberg,

http://www2.iwr.uni-heidelberg.de/groups/comopt/software/

TSPLIB95/ (1995)

[18] Merrill M. Flood, “The traveling salesman problem”,

Operations Research, Vol. 4, pp. 61-75 (1956)

[19] Y. Takenaka, N. Funabiki, “An application of convex

hull to genetic algorithm for traveling salesman problem,

Technical report of IEICE, SS97-48, pp. 17-24 (1998)

[20] R. C. Prim: “Shortest connection networks and some

generalizations”, Bell Syst. Tech. J., Vol. 36, pp. 1389-1401

(1957)

[21] J. L. Bentley and J. H. Friedman: "Fast Algorithms for

constructing minimal spanning trees in coordinate spaces",

IEEE Trans. on computers, Vol. C-27, No. 2, pp. 97-105

(1978)

[22] Nevalaninen, J. Ernvall and J. Katajainen: "Finding

minimal spanning trees in a Euclidean coordinate space",

BIT, Vol. 21, pp.46-54 (1981)

Takahiro Hoshino received his B.E., M.E., and Ph.D. degrees in
systems engineering from Ibaraki University in 2002, 2007, and
2010 and is now an assistant professor at the College of Science
and Technology, Nihon University. He is a member of IEEJ and
the Japan Society for Industrial and Applied Mathematics.

Chuan Tian graduated from the department of Computer-aided
Mechanical Design, Qingdao Technical College, in 2005, and

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 7

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

received his B.E. degree in department of Computer Science and
Technology from Southwest University of Science and Technology
of China in 2009. After working as an engineer at software
development in Qingdao Haier Software Corporation, he received
his M.E. degree in Electrical Engineering, Nihon University of
Japan in 2014. He is now a Ph.D. candidate at the College of
Science and Technology, Nihon University.

Hisashi Kondo received his Dr.Eng. degree in information
engineering from Hokkaido University in 1994. He is now a lecturer
at the College of Engineering, Ibaraki University. His current
research interests include cellular automata, swarm intelligence,
and metaheuristics. He is a member of IEEE-CS, EATCS, IPSJ,
JSAI, and the Japan Society for Software Science and Technology.

Kazuhiro Tsuboi received his M.Eng. and D.Eng. degrees in
aeronautical engineering from the School of Engineering of the
University of Tokyo in 1985 and 1993. After working as a
researcher at the Institute of Computational Fluid Dynamics and at
the Institute of Mathematical Science in Kao Corporation, he joined
the faculty of Ibaraki University in 1996. He is now a professor in
the Department of Intelligent Systems Engineering of Ibaraki
University. He is a member of the Physical Society of Japan, the
Japan Society for Industrial and Applied Mathematics, the Japan
Society of Fluid Mechanics, the Japan Society of Mechanical
Engineers, and also a senior member of the American Institute of
Aeronautics and Astronautics.

Yoshio Hamamatsu graduated from the Department of Electrical
Engineering, Nihon University, in 1974 and received his M.Eng.
degree in 1976. In 1984, he received his Ph.D. degree from
Hokkaido University. He became a research associate at
Tamagawa University in 1976, an assistant professor in 1982, and
an associate professor in 1988; an associate professor at Ibaraki
University in 1992 and a professor in 1998; and a professor in the
College of Science and Technology, Nihon University, in 2008, and
a professor emeritus at Ibaraki University in 2008. He was a
visiting research professor at the University of Delaware (USA)
from 1985 to 1986, and also in 1988. His main area of research
deals with traffic flow and queuing theory. He is a member of IEEJ.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 3, May 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201603.18 8

doi:10.20943/01201603.18 2016 International Journal of Computer Science Issues

