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Abstract 
Finding the optimal solution to combinatorial optimization 

problems can be difficult, even when a partial structure (solution) 

of the optimal solution may be found easily. How to expand the 

partial solution into a full solution and how to insert other 

elements are important considerations for the construction of 

initial solutions. We propose a new procedure for constructing 

initial solutions of combinatorial optimization problems. This 

procedure employs hybrid insertion, which combines standard 

insertion with other heuristics. The proposed algorithm is applied 

to the traveling salesman problem (TSP), an NP-hard 

combinatorial optimization problem, to demonstrate the 

efficiency of the proposed algorithm. The accuracy of the 

obtained solutions is evaluated against the solutions of 

benchmark problems. On most problems, the proposed algorithm 

found shorter tours than other construction algorithms did. 

Keywords: Traveling Salesman Problem, Threshold, CCA 

Algorithm, Minimum Spanning Tree 

1. Introduction

The main purpose of combinatorial optimization is to find 

the best choice from among a large but finite set of choices. 

It is often difficult to find the optimal solution to 

combinatorial optimization problems as the scale of the 

problem grows. However, a partial structure (solution) of 

the optimal solution can sometimes be found relatively 

easily. For example, parts of the solution to a scheduling 

problem can be assigned with certainty due to hard 

constraints. To generate initial solutions of higher 

accuracy, the partial solution needs to be more effectively 

expanded into a full solution via insertion of additional 

elements. Toward this end, we propose a new construction 

procedure of using hybrid insertion, which combines 

standard insertion with other heuristics. The traveling 

salesman problem (TSP) is an NP-hard combinatorial 

optimization problem. Application of the proposed 

algorithm to TSP is used here as a basis for discussing the 

effectiveness of the algorithm. 

The aim of the TSP is to find the shortest possible 

Hamiltonian cycle for a number of cities given the 

distances between them. The TSP has several applications, 

such as vehicle routing problems[1]-[3] and circuit board 

drilling problems[4]-[6].  

The optimal solution to the TSP can easily be obtained by 

finding all ordered tour combinations and selecting the 

shortest among them. However, the number of tour 

combinations increases exponentially with the number of 

cities, giving large computation times for even a small 

number of cities. Approximate metaheuristic algorithms 

that provide relatively high accuracy using short 

computation times are therefore required. 

Genetic algorithms[7],[8], simulated annealing[9], ant 

colony optimization[10], and other techniques[11],[12] are 

well-known efficient metaheuristic algorithms for solving 

TSP. Many of these algorithms consist of a construction 

procedure that generates an initial set of tours and an 

improvement procedure that finds shorter tours from the 

initial tours. The nearest-neighbor algorithm, greedy 

algorithm, savings heuristic[13], and Christofides 

algorithm[14] are important construction algorithms. 

Another construction algorithm is the CCA algorithm[15], 

which combines convex hull, cheapest insertion, and angle 

selection techniques. It first selects cities located on the 

boundary of the convex hull as the initial subtour, and is 

able to find shorter tours from that set than the other 

construction algorithms mentioned can. Most of the 

construction algorithms select the locally optimal choice at 

each stage, and the insertion cost typically increases as the 

number of unlinked cities decreases. 

The proposed algorithm chooses between using the 

standard insertion procedure from the CCA algorithm and 

an insertion algorithm employing the minimum spanning 

tree (MST). The choice depends on the insertion angle 

between the two edges that connect an isolated city to two 

cities on the current subtour. The solutions obtained by the 

construction procedure in the proposed algorithm are 

improved by using the 2-opt algorithm[16]. 

We compare the solutions given by our algorithm with 

results from the CCA plus 2-opt algorithm (CCAO 

algorithm) and the nearest neighbor plus 2-opt algorithm 

(NNO algorithm). To evaluate the accuracy of the obtained 

solutions, our algorithm and the other algorithms are 

applied to benchmark problems in TSPLIB 95[17]. 
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2. CCA Algorithm 

Consider the optimal solution of a Euclidean TSP that 

visits the cities on the boundary of the convex hull in the 

same order as in Refs. [18] and [19]. Figure 1 shows an 

example that illustrates the relationship between the 

convex hull and the optimal tour. In the clockwise 

direction, the order of the cities on the boundary of the 

convex hull is 1-8-10-3-6-4 (Fig. 1(a)). The optimal tour 

maintains this order (Fig. 1(b)). The optimal solution can 

thus be obtained by inserting the remaining cities into the 

subtour given by the boundary of the convex hull. The 

CCA algorithm exploits this property by constructing 

solutions from the initial subtour given by the convex hull. 

The CCA algorithm as given in Ref. [15] is as follows.  

1. Form an initial subtour by constructing the convex 

hull of the set of cities (Fig. 2(1)). 

2. Let  denote the distance between cities i and j. 

For each city k not yet contained in the subtour, 

find the two cities i and j in the subtour that 

minimize  (Fig. 2(2)). 

3. From all the combinations of (i, k, j) found in step 2, 

select ( ) that gives the maximum insertion 

angle  where  is given by 

 
Insert city  between  and  (Fig. 2(3)). 

4. Repeat steps 2 and 3 until a Hamiltonian cycle is 

obtained (Fig. 2(4)). 

Note that step 2 finds the two cities in the subtour that give 

the cheapest insertion cost and step 3 finds the 

unconnected city that gives the greatest insertion angle. 

3. Proposed Algorithm 

The proposed algorithm employs a threshold value that 

can be varied to generate several different solutions. 

3.1 Construction Procedure 

In the CCA algorithm, a long route may get inserted into 

the subtour during the process of reducing the number of 

unconnected cities since this algorithm does not 

reconstruct the tour or any subtours. We therefore improve 

the insertion procedure by implementing a threshold value 

as the tour cost increases. The threshold value is applied to 
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the cosine of the insertion angle because the insertion cost 

tends to grow as the insertion angle decreases, that is, as 

the cosine increases. If one or more cosines are less than 

the threshold value, then the city corresponding to the 

angle that has the minimum cosine value is inserted. 

However, if all cosines are greater than the threshold, then 

cities are inserted by the following procedure. First, to 

decrease the insertion cost for unconnected cities, the MST 

of the unconnected cities is constructed. The proposed 

algorithm then inserts the cities that give the minimum 

value of the ratio of route cost to number of cities in the 

MST. The entire algorithm as shown in Fig. 3 is as follows. 

1. Generate an initial subtour by constructing the 

convex hull of the set of cities (Fig. 3(1)). 

2. Perform step 2 of the standard CCA algorithm. That 

is, find cities i and j for each k not in the subtour 

(Fig. 3(2)), and then choose  that has the 

minimum value of  from among all the 

combinations of (i, j, k). If  is less than the 

given threshold, go to step 3, otherwise go to step 4. 

3. Insert city  between  and  (Fig. 3(3)). If a 

Hamiltonian cycle has not been formed, go to step 

2, otherwise go to step 7. 

4. Generate the MST of the unconnected cities (Fig. 

3(4)). 

5. For each pair of linked cities i and j on the current 

subtour, search the MST for the nearest neighbors l 

and m of i and j, respectively (Fig. 3(5)). 

6. Find ( , , , ) from among all the 

combinations of (i, j, l, m) found in step 5. ( , , , 

) gives the minimum value of  

 
where  is the total distance along the path 

linking  to  on the MST. Insert all of the cities 

contained in the path from  to  inclusive in 

between  and  (Fig. 3(6)). If a Hamiltonian 

cycle has not been formed, go to step 2, otherwise 

go to step 7. 

7. Improve the tour by using the 2-opt algorithm. 

The above algorithm thus gives a tour for a given 

threshold value, and the tour cost depends on that 

threshold value. The next section therefore presents a 

method for generating a threshold value that gives better 

solutions. 

3.2 Method for Selecting the Threshold Value 

We have also devised a procedure for searching for good 

solutions by varying the threshold value. Let T be the 

threshold value,  be the tour length for the threshold 

value T, and d be a "depth" parameter that is used for 

generating new threshold values.  

First, at depth  we find the solutions for  

and  by applying the construction procedure. For 

depths , new threshold values are then obtained from 

the midpoint values between each pair of neighboring 

threshold values at the previous depth, such as shown in 

Fig. 4, and tours are constructed for each of these 

threshold values. The depth d is increased by one after 

generating all of the midpoint values. This process is 

repeated until d reaches some preset "max depth" 

parameter.  

The number of new thresholds and solutions increases 

exponentially as the max depth increases, and so we 

impose the following conditions on generating new 

threshold values: 

[1] The range ranking, defined as the ranking of the 

values of  for the range 

between two neighboring threshold values  and 

, does not exceed some preset value.  

[2]  does not equal . 

Condition [1] means that threshold values likely to give 

good solutions are generated, and threshold values that 

give bad solutions are not generated. Since good solutions 

are expected to have similar structures in parts of the 

solutions, threshold values that give good solutions often 

exist near other threshold values that also give good 

solutions. The preset parameter employed in condition [1] 

is called the worst-range ranking. Condition [2] is applied 

to avoid generating duplicate solutions. 

The proposed algorithm including the method for 

generating new threshold values operates as follows. 

1. Take initial parameters  and  and 

construct a tour by using the proposed algorithm. 

2. Update the present threshold value with a new 

threshold value. If the present threshold is , 

the new threshold value is set to , 

otherwise it is set to . 

3. Check the value of the new threshold T. If T 

satisfies , go to step 4, otherwise go to step 5. 

4. Determine whether T satisfies the conditions for 

generating new threshold values. If T satisfies them, 

construct a tour by using the proposed algorithm, 

otherwise go to step 2. 

5. Set the parameters to  and . If d 

is less than or equal to the preset max depth 

parameter, go to step 2, otherwise stop. 
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This algorithm is likely to find better solutions for larger 

values of the max depth and worst-range ranking 

parameters. However, more time is required for the 

computation as these values increase. To decrease the 

computation time, we made the following improvement to 

the above algorithm. When a city is inserted into a subtour 

during the construction procedure, the insertion procedure 

that was used (standard insertion or proposed insertion) 

and the insertion order of the city are recorded. This 

information is used in the construction procedure to allow 

generating only those parts that differ from previously 

obtained solutions.  

3.3 Method for Setting Parameters 

To obtain better solutions using short computation times, 

the max depth and worst-range ranking need to be set 

appropriately. The parameters are set through the 

following procedure. 

The standard heuristic algorithm (i.e., CCA) is applied to a 

set of problems of about the same scale in which cities are 

randomly arranged and the tour length is recorded. The 

proposed algorithm generates solutions for these problems 

by using all settable combinations of worst-range ranking 

and max depth. We define improvement accuracy as the 

reduction in tour length by the proposed algorithm over the 

CCA algorithm, and create a table of the improvement 

accuracies corresponding to the worst-range ranking and 

max depth. The improvement accuracies of the proposed 

algorithm tend to saturate with respect to increases in max 

depth and worst-range ranking. When the worst-range 

ranking is set to r th ( ), if the reduction in the 

improvement accuracy of d from the previous depth  

is less than a prescribed value, the depth  is recorded as 

. This procedure sets the max depth for each r to a fixed 

value. Similarly, if reduction in the improvement accuracy 

from the parameters ( ) to the parameters ( ) 

is less than a prescribed value, the worst-range ranking r is 

recorded and these parameters ( ) are used in the 

algorithm. Setting the parameters by the above procedure 

makes it possible to cut down on wasted computing time 

that offers little chance of improvement.   

4. Computational Study 

The solutions obtained by the CCAO algorithm, the NNO 

algorithm, and the proposed algorithm were compared to 

investigate the influence of tour construction. 

4.1 Computation Conditions 

The solution accuracies of the algorithms were evaluated 

by using 70 benchmark problems taken from TSPLIB 

95[17]. To set the worst-range ranking and max depth 

parameters, the CCA algorithm and the proposed 

algorithm were applied to 5 test problems consisting of 

1000 randomly arranged cities. By method introduced in 

Section 3.3, the max depth was set to 8 and the worst-

range ranking was set to 5 as appropriate parameters for 

the proposed algorithm. The best solution tours were 

obtained for several different threshold values using the 

proposed algorithm. All computational experiments were 

performed on a personal computer with a Core i7 

processor and 4 GB of RAM. 

4.2 Computational results 

We now examine the difference in accuracy between the 

algorithms by comparing the solutions. Figure 5 shows the 

solutions given by each algorithm for a problem consisting 

of 100 cities (kroE100). Vertices represent cities and solid 

lines linking the cities represent the salesman's route. The 

cities indicated by circle, square, and triangle markings in 

Fig. 5(c) represent the cities that were inserted from the 

MST constructed in step 4 in Section 3.1. For comparison, 

these same cities are also indicated in Figs. 5 (a) and (b). 

Comparing the results of the NNO and CCAO algorithms 

shows that CCAO improves the accuracy by setting the 

initial subtour to the boundary of the convex hull.  

(a) NNO

(b) CCAO

(c) Proposed algorithm
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Error:  3.56%

Error:  0.36%
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Fig.5 Computational results for kroE100 
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However, the CCAO algorithm sometimes generates long 

paths due to the cheapest cost selection and greatest angle 

insertion procedure. By inserting cities from the MST 

instead of using this procedure, the tour in the proposed 

algorithm gives the route improvement shown in Fig. 5(c). 

In particular, the route through the cities indicated by the 

triangles is inserted more effectively in comparison with 

the CCAO algorithm. The proposed algorithm thus 

accomplishes a reduction in the total tour cost.  

We next discuss the accuracies and computation times for 

the 70 problems listed in Table 1. The proposed algorithm 

gives the best accuracy in all of the problems except for 

the "u2319" problem indicated by italics. Compared to the 

CCAO algorithm, the proposed algorithm finds shorter 

tours in 64 of the problems. The solutions to the other 6 

problems, which are highlighted in boldface, have 

accuracy equal to that given by the CCAO algorithm. 

Since the solution for T=1 corresponds to the solution of 

the CCAO algorithm because the MST is not constructed, 

the proposed algorithm can guarantee to match the 

accuracy of the CCAO algorithm. The average error is 

7.40% for NNO, 5.13% for CCAO, and 2.86% for the 

proposed algorithm. Hence, our algorithm clearly 

increases the accuracy of the solutions. 

We next discuss the scale of the problems and the 

accuracies. Figure 6 shows the accuracies of the proposed 

NNO CCAO PA NNO CCAO PA NNO CCAO PA NNO CCAO PA

eil51 7.61 4.87 3.04 0.01 0.03 0.11 pr299 8.43 3.26 3.26 0.08 0.22 1.12

berlin52 10.26 1.02 0.03 0.02 0.03 0.10 lin318 8.06 6.65 4.28 0.09 0.27 1.97

st70 10.90 4.90 3.56 0.02 0.05 0.16 rd400 6.01 5.90 3.85 0.09 0.44 2.37

eil76 6.38 7.53 2.03 0.03 0.05 0.17 fl417 5.46 2.91 2.68 0.14 0.47 2.09

pr76 4.91 1.87 1.17 0.02 0.05 0.18 pr439 7.95 5.56 4.03 0.13 0.56 2.90

rat99 5.26 4.94 2.63 0.03 0.06 0.31 pcb442 5.97 9.01 1.24 0.13 0.56 2.09

kroA100 4.08 0.94 0.94 0.03 0.06 0.27 d493 7.20 4.47 3.42 0.13 0.72 5.80

kroB100 2.97 1.03 0.53 0.03 0.06 0.27 u574 7.51 6.19 3.67 0.19 1.05 7.88

kroC100 6.62 1.13 1.13 0.03 0.06 0.28 rat575 8.22 7.62 3.73 0.19 1.03 5.83

kroD100 8.91 2.72 2.08 0.02 0.06 0.27 p654 4.72 4.95 2.01 0.30 1.47 13.41

kroE100 6.06 3.56 0.36 0.03 0.08 0.26 d657 7.85 5.90 4.53 0.17 1.51 9.84

rd100 11.05 3.07 3.07 0.03 0.05 0.25 u724 9.06 6.71 3.88 0.20 1.95 14.12

eil101 7.91 5.43 2.58 0.02 0.08 0.23 rat783 8.74 7.07 4.72 0.31 2.40 16.52

lin105 14.92 1.21 1.02 0.03 0.08 0.21 pr1002 9.23 6.76 5.15 0.44 5.12 41.40

pr107 2.46 1.60 0.05 0.03 0.08 0.31 u1060 9.28 5.68 3.26 0.52 6.05 55.35

pr124 3.96 2.30 1.13 0.03 0.08 0.26 vm1084 6.79 5.30 3.45 0.52 6.63 43.13

bier127 8.06 4.34 2.96 0.05 0.09 0.34 pcb1173 9.71 8.51 4.58 0.64 9.05 32.73

ch130 8.67 5.63 2.87 0.05 0.09 0.39 d1291 11.10 7.65 5.08 0.62 12.31 60.43

pr136 13.16 2.84 2.84 0.05 0.09 0.30 rl1304 7.89 6.60 2.20 0.78 12.75 59.45

pr144 3.79 4.27 2.27 0.03 0.09 0.31 rl1323 8.16 5.10 3.15 0.62 13.46 68.80

ch150 5.17 4.40 1.17 0.05 0.11 0.34 nrw1379 7.19 6.10 3.16 1.00 15.38 117.13

kroA150 7.64 1.82 1.06 0.05 0.11 0.43 fl1400 4.69 3.79 2.57 1.37 15.94 121.37

kroB150 9.22 2.93 1.36 0.05 0.11 0.34 u1432 7.80 8.88 3.36 1.03 17.35 55.08

pr152 5.18 4.38 2.17 0.05 0.09 0.50 fl1577 5.81 6.14 3.02 1.73 23.51 164.77

u159 10.01 5.11 2.94 0.05 0.09 0.34 d1655 7.77 7.25 5.59 1.58 27.77 164.41

rat195 5.88 6.82 3.00 0.05 0.12 0.44 vm1748 9.99 6.19 4.92 1.58 33.10 183.80

d198 2.88 2.01 1.00 0.05 0.13 0.71 u1817 9.83 8.90 7.68 1.16 37.60 238.28

kroA200 7.21 2.97 1.64 0.06 0.14 0.56 rl1889 9.80 7.71 4.82 2.04 42.96 169.88

kroB200 7.16 1.70 1.70 0.05 0.12 0.59 d2103 4.08 6.84 2.81 1.30 61.28 201.79

ts225 10.76 8.40 0.00 0.06 0.16 0.30 u2152 8.26 8.36 6.95 2.46 64.29 418.11

tsp225 4.75 4.74 1.88 0.06 0.14 0.63 u2319 2.24 8.47 2.87 1.78 80.58 148.20

pr226 9.39 3.72 1.38 0.06 0.17 0.65 pr2392 8.14 7.92 6.05 3.40 90.06 684.20

gil262 5.61 5.49 3.74 0.06 0.19 1.15 pcb3038 9.15 7.71 4.96 4.26 193.93 891.99

pr264 6.72 7.81 2.69 0.06 0.20 1.34 fl3795 6.42 2.91 1.62 10.42 392.12 1815.80

a280 6.65 4.01 1.01 0.06 0.19 0.92 fnl4461 7.57 7.24 4.50 6.85 616.12 4227.81

Instance
Accuracy [%] Time [s]

Instance
Time [s]Accuracy [%]

Table 1 Comparison of accuracies and computation times of the algorithms 
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algorithm and CCA algorithm versus the number of cities. 

The accuracies of both algorithms have a tendency to 

decrease as the number of cities increases. The CCA 

algorithm is able to efficiently insert cities on and near the 

boundary of the convex hull because of the characteristics 

of the algorithm. There is no guarantee of other cities 

being inserted efficiently because of greedy insertion. 

Thus, the accuracies of both algorithms worsen as the 

scale of the problem increases. By using hybrid insertion, 

however, the proposed algorithm can better prevent the 

decrease in accuracy than the CCA algorithm can.  

Figure 6 also shows that the improvement accuracies of 

the proposed algorithm and CCA algorithm differ for the 

same scale of problem. Improvement accuracy tends to 

depend on the locations of the cities. We discuss the 

relationship between the accuracies and city arrangements 

in terms of the dispersion of the number of cities per unit 

area. The area for each benchmark problem is partitioned 

into a square lattice such that the average number of cities 

per unit area is approximately one and the dispersion of 

the number of cities per unit area can be obtained. 

Problems with large dispersions have many areas of dense 

cities, and problems with small dispersions have less 

variation between areas than problems with large 

dispersions. Figure 7 shows improvement accuracies of the 

proposed algorithm before 2-opt for the CCA algorithm 

versus dispersion value. This figure shows the results for 

problems containing 250 or more cities because few 

differences are found between the accuracies of the 

proposed algorithm and the CCA algorithm for problems 

with less than 250 cities. As can be seen in Fig. 7, 

improvement accuracies tend to decrease as dispersion 

increases. The reason for this trend is the similar structure 

of the routes generated by steps 2 and 3 in the CCA 

algorithm and steps 4 to 6 in the proposed algorithm, since 

distances between isolated cities are often similar in 

problems with large dispersions. However, the accuracies 

of the problems with small dispersions are often improved 

by using hybrid insertion due to maintaining more than a 

certain distance between isolated cities. 

Finally, we examine the difference between the calculation 

times of the algorithms. From the results for the CCAO 

and the NNO algorithm, the computation time of the 

former is longer than the latter. The reason is that the 

computation time required by the construction procedure 

in the CCA algorithm is O(N3) compared to O(N2) in the 

nearest neighbor algorithm. A similar trend can be seen 

when the results for the proposed algorithm are compared 

with the NNO algorithm. The computation time of the 

proposed algorithm is on the order of 2 to 9 times larger 

than that of the CCA algorithm. The increase depends on 

the number of tours, that is, the number of thresholds, and 

this number varies between problems due to the generating 

conditions described in Section 3.2. The proposed 

algorithm thus requires different computation time even 

when the number of cities is the same. The computation 

time also depends on the frequency with which the 

insertion procedure employing the MST is used. The 

proposed procedure requires longer running times when 

insertion using the MST occurs more frequently.  

5. Conclusion 

We proposed a new construction procedure that employs 

hybrid insertion and discussed the effectiveness of the 

algorithm in terms of application to the TSP. In the 

proposed algorithm, an insertion criterion is employed that 

depends on the cosine of the insertion angle exceeding a 

given threshold value. When the threshold is exceeded, the 

algorithm inserts cities from an MST over the cities that 

have not yet been inserted, otherwise the CCA algorithm is 

employed. We also proposed a method for generating new 

thresholds by using preset max depth and worst-range 

ranking parameters to obtain better solutions. 

We applied our algorithm to benchmark problems in 

TSPLIB 95, and compared the solutions with those 

obtained by the CCAO and NNO algorithms. The results 

clearly showed that our algorithm gives higher accuracy in 

most of the benchmark problems. Through a combination 
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of insertion by the standard CCA algorithm and insertion 

from an MST, our algorithm is guaranteed to give at least 

the accuracy of the CCA algorithm while simultaneously 

offering the ability to find shorter tours. We expect that 

errors could be further reduced by utilizing the tour 

constructed by our algorithm as the initial tour of other 

metaheuristic algorithms, such as GA. The idea of 

selecting between the standard insertion procedure and the 

proposed insertion procedure depending on the situation 

could also be incorporated into other construction 

algorithms. Examples of such algorithms are the nearest 

insertion method, the farthest insertion method, and the 

arbitrary insertion method. The TSP is used in this paper 

as an example of the application of this idea. How to apply 

the idea to other combinatorial optimization problems is 

left as an issue for the future. 

The proposed algorithm requires longer computation time 

than the CCAO and NNO algorithms do, which is 

commensurate with the increase in accuracy. The 

computation time of the proposed algorithm could be 

improved by replacing the CCA algorithm which is the 

base of the proposed algorithm with a more efficient 

algorithm. Furthermore, we used Prim's algorithm[20] for 

the construction of the MST which has a computation time 

of O(N2) for finding the MST. The computation time for 

building the MST could be reduced to O(NlogN) by 

implementing a faster MST algorithm such as that given in 

Refs. [21] and [22]. This issue will be addressed in the 

future. 
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