

Scoped Class Cohesion Metric for Software Process

Assessment

Raphael Wanjiku1, George Okeyo2 and Wilson Cheruiyot3

1Computer Information Systems Department, Africa Nazarene University

Nairobi, Kenya
2,3Computing Department, Jomo Kenyatta University of Agriculture and Technology

Nairobi, Kenya

Abstract

Class Cohesion is an important software quality that can be used

to improve software development process and the software

product: process merit assessment and dependable software

product. Many Class cohesion metrics measuring the relationship

between methods and attributes have been developed and

extensively researched. However, the use of relationships among

attributes in measuring class cohesion from class scopes has been

ignored and the effects of local variables on class cohesion need

to be factored in the measurements. This research paper presents

a new class cohesion metric that uses attributes relationships

within class scopes with data collected using the SCCM software

tool that was developed for the purpose this study. The results

give higher metric values showing the importance of scoped

relationships among these class members while giving a simpler

and better interpretation of class cohesion through class attributes

interaction.

Keywords: Class, Cohesion, Attribute, Method, SCCM, Scoping.

1. Introduction

The quality of a software product can be traced from its

process and the set metrics that measure its effectiveness

in fulfilling customers’ requirements and adherence to

acceptable development standards. One of these software

metrics is cohesion. Cohesion refers to the degree of

relatedness among modules of a software product [21] [22]

[23]. Cohesion measures the usage of a module and its

elements within another module in terms of imported or

exported functionality. Cohesion has been a subject of

study for almost four decades with Yourdon and

Constantine [38] classifying measures on an ordinal scale

for component cohesion to normalized Hamming Distance

metrics by Counsell, Swift and Crampton [10].

In object oriented systems, cohesion is measured in terms

of the degree to which methods and attributes of a class

belong together. High class cohesion in object oriented

systems manifests a well-designed class [16]. According to

Briand, Daly and Wust [6], high cohesion within a module

makes it easier to develop, facilitates comprehension [15],

helps in identification of modules that require

reconstruction [30], enhances maintenance, testing [1] and

components reusability, improves process merit

Assessment [31] and reduces fault-proneness ensuring

components independence with less complexities [32].

Class scope refers to the visibility of variables and their

usage within the class [45]. Scoping of class elements

controls access of data in various parts of a program and a

metric that address attributes interactions [33] within

scopes would help in understanding this control [28].

2. Related Work

This section discusses the various cohesion metrics that

can be used in evaluating a class’ cohesiveness.

Chidamber and Kemerer proposed the Lack of Cohesion

Methods (LCOM 1) and LCOM 2 [8] [9] that measure

lack of class cohesion [2] through lack of attribute

commonality in methods. As outlined by Sharma and

Srinivasan [36], these are inverse cohesion measures [24]

and a class with zero value indicates that none of its

methods use any of the attributes, therefore lacking

cohesion [41].

Li and Henry [26] further extended LCOM1 and LCOM2

with LCOM3 Metric that introduces the use of undirected

graph [13]. Each class method is represented as a graph

node (vertice) and any shared instance attribute(s) is

represented as an edge. The total class cohesion is the

number of connected graph components. This concept was

advanced by Hitz and Montazeri [18] to LCOM4 metric

where a class X has a set of instance attributes I (x) and a

set of methods M (x). A undirected graph G (v, e) is used

where M(x) represents vertices. The graph edges [37] are

formed when two vertices access the same instance

attribute [7]. LCOM4 is measured as the number of

connected components of G(x) and recommends that large

classes should be divided into smaller, more cohesive

classes if LCOM4>1.

Henderson-Sellers [17] proposed the last version of the

LCOM metrics: the LCOM5 metric. LCOM5 outlines that

a given class has a cohesion measure (LCOM5) zero (0) if

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 12

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

every method references all its attributes (perfect

cohesion). A one (1) is given, if every class method

references only one attribute. This metric uses a

normalized range of 0 to 1 and the measure varies as a

percentage of the perfect cohesion.

There are other metrics that have borrowed concepts from

the LCOM metrics;

The RLCOM metric proposed by Li [27] works by use of

pairs of methods; The Coh Metric proposed by Briand,

Daly and Wust [6] uses distinct types for each method in a

class although it excludes members’ and normalizes the

range (from 0 to 1) [20]; Bieman and Kang’s [4] tight class

cohesion(TCC) and loose class cohesion(LCC) metrics.

The TCC measures the percentage of pairs of public

methods in a class with no common attribute usage and its

relative number of directly connected methods (those

sharing at least one attribute) [12].The LCC measures the

percentage of pairs of public methods in a class with

transitive closure of common attribute usage and its

relative number of indirectly connected methods (two

methods that share at least one attribute directly or

transitively).

Badri [3] also proposed the DCD and DCI metrics that add

method invocations [20]. The DCD (Degree of Cohesion

Direct) measures the fraction of the directly connected

pairs of methods where two methods are directly

connected if they are directly connected to an attribute or

if they directly or transitively invoke the same method.

The DCI (Degree of Cohesion Indirect) measures the

fraction of the directly and transitively connected pairs of

methods where the two methods are transitively connected

if they are directly or indirectly connected to an attribute

or if the two methods directly or transitively invoke the

same method [29]. Bonja and Kidanmariam [5] proposed

the Class Cohesion (CC) Metric that measures the degree

of similarity between methods pairs whereas Dallal [46]

proposed the distance design-based direct class cohesion

(D3C2) that uses a direct attribute type (DAT) matrix that

measures the interaction between methods caused by

sharing attributes.

3. Methodology

Software development process assessment is the beginning

of a great software product improvement [42].The

assessment of class design and development ensures that

highly cohesive classes are achieved at fair costs without

compromising on the quality of the software product.

Class cohesion assessment is normally done to ensure

standard practices have been followed and to make

recommendations for process improvement [43] [44].

3.1 Scoped Class Cohesion Metric (SCCM) Software

Tool

In this study, the SCCM software tool was developed to

assist in the calculation of the metric values. The software

has been developed in JavaScript and HTML5 with four

separate JavaScript files for each language (Java,

JavaScript, PHP and C++) implementation and is

accessible on a web browser interface as shown in Fig.1

below.

Fig. 1 SCCM interface

The software works by allowing a user to select a valid

source code file from a storage location, the user then

compresses the code in order to remove white spaces and

comments that do not form part of the tokenized source

code and then calculates the metric values which are

output on the web console.

3.2 Experimental Setup

The data used in the calculation of the SCCM is acquired

from a source-code rich online repository

(https://www.github.com) and from a total of ten standard

classes per cluster (4clusters-PHP, Java, C++ and

JavaScript classes) from ten different object oriented

systems. The languages were selected because they are in

the top ten lists of most currently used OOP languages by

developers [19].

The metric values used by the SCCM use a rational scale

with a minimum value of natural 0 and a maximum value

of 1[20].The variables used in the experiment are: public

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 13

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

https://www.github.com/

attributes, private attributes, local attributes, public

methods, private methods, direct and indirect occurrences

of attributes and methods. In addition, the inherited

methods were factored in whereas the constructors and the

destructors were omitted so that artificial cohesion is not

introduced [40].

In order to identify the effective metric among the two,

descriptive statistics have been used for data interpretation.

In measuring the central tendency; the geometric mean is

used to approve the effective metric among SCCM and

COH whereas the relationship between the metric values

and its various constituents uses Pearson’s coefficient. The

COH metric has been considered since its formulation is

closely related to the SCCM and for reliability purposes

although it ignores scoping and use of local variables.

3.3 SCCM Metric

The following parameters were used in the development of

the metric;

PM - public methods

PRM - private and or protected methods

PA - public attributes

PRA - private and local attributes

PO - public occurrences (of both PA and PRA in

public methods and the invocations of any class

methods)

PRO - private occurrences (both PA and PRA in

private methods and the invocations of any class

methods).

TPC - Expected total public cohesion

 𝐓𝐏𝐂 = (𝐏𝐀 + 𝐏𝐑𝐀) ∗ 𝐏𝐌 (1)

TPRC - Expected total private cohesion

 𝐓𝐏𝐑𝐂 = (𝐏𝐀 + 𝐏𝐑𝐀) ∗ 𝐏𝐑𝐌 (2)

PC - Observed total public cohesion

 𝐏𝐂 =
𝐏𝐎

𝐓𝐏𝐂
 (3)

PRC - Observed total private cohesion

 𝐏𝐑𝐂 =
𝐏𝐑𝐎

𝐓𝐏𝐑𝐂
 (4)

TC - Total class cohesion

 𝐓𝐂 = 𝐏𝐂 + 𝐏𝐑𝐂 (5)

4. Results and Discussion

This section introduces the acquired results and discussion

from the experiment performed. Table 1 shows the

scanned raw values from several systems collected using

the SCCM software.

Table 1: SCCM and COH values from the PHP Cluster

PHP SYSTEMS

SYSTEM SCCM COH PM PRM PA PRA PO PRO LV LVUSAGE

Shopping Cart 0.5 0.5 5 5 0 1 19 0 6 19244

Configuration 0.754 0.754 10 15 0 7 156 0 17 1462080

CSS 0.233 0.233 5 5 6 0 22 12 7 112944

Game1 0.333 0.25 4 0 0 3 11 0 1 0

Game2 0.6 0.6 3 2 2 0 6 4 11 30562

Board 0.167 0.167 8 0 0 3 21 0 4 1560

CRUD 0.523 0.262 13 0 0 5 46 0 12 10610

Registration-login 0.4 0.4 5 0 2 0 13 0 8 6940

DSN 0.25 0.2 4 1 0 1 7 0 1 40

TicTacToe 0.6 0.6 3 2 2 0 6 4 11 30562

 Pearson’s Coefficients

0.197 0.571 -0.191 0.339 0.56 -0.168 0.844 0.414

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 14

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

The geometric means were computed and recorded as

shown in Table 2 comparing between SCCM and COH

metric values.

Table 2: C++ systems cluster geometric means

C++ SYSTEMS

SYSTEM SCCM COH

GEOMETRIC

MEAN

Escape pod 0.533 0.333 0.421

Stationary 0.292 0.292 0.292

Player game 0.419 0.419 0.419

Widget 0.325 0.175 0.238

Banking System 0.447 0.447 0.447

HRM System 0.652 0.202 0.363

Snake Game 0.228 0.229 0.229

Person 0.512 0.184 0.307

LeanclubLib 0.375 0.375 0.375

ProgramLib 0.089 0.071 0.079

Fig. 2 below shows the influence of public methods within

a given class.

Fig. 2 SCCM/COH PM factor

The effect of both private and public attributes of the

classes is also shown in Table 3 giving Pearson’s

coefficient values in regard to SCCM.

Table 3: PA and PRA Pearson’s Coefficients on SCCM values

JAVASCRIPT SYSTEMS

SYSTEM SCCM PA PRA

AlertifyJs 0.403 5 22

AncestryJs 0.875 0 4

Board Game 0.6155 8 14

Class12Lib 0.3043 3 10

Metaclass 0.925 4 0

JsClass9Lib 0.1561 6 50

Jssl8Lib 0.189 18 25

ProtoJS 0.3238 0 7

PersonaJs 0.6667 3 3

LanguageJs 0.4375 1 3

 -0.4001 -0.6863

Fig. 3 below shows the effects of total number of variables

in a class.

Fig. 3 Total variables influence on SCCM

In all the four sampled clusters, the values of SCCM were

found to be higher than those of COH which is also

evident in comparison to the geometric means. This results

from the accounting of method calls by SCCM which are

not factored in by the COH metric.

Classes from systems with higher public attributes gave

lower SCCM values showing a negative correlation

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 15

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

between the number of public attributes and the cohesion

values. Within the SCCM metric, private attributes were

noted to contribute to class cohesion negatively and they

also non-influenced the metric if the class is inherited.

This is because private members cannot be accessed

outside a class [14]. However, the calculation of the

SCCM values does not account the use constructors and

destructors because they artificially increase the cohesion

value [11]. Inherited attributes and methods (directly or

indirectly) were factored in to cater for inheritance- which

is a major concept in object oriented software

development) [35]. Classes with lower numbers of both

public and private attributes gave higher SCCM values and

as the total number of attributes increased, the values of

SCCM also decreased.

From the analysed data, the presence of low local variables

and their usage is associated with low SCCM values. This

emphasizes the importance of local variables and their

usage in calculating class cohesion value which is also

reflected by the negative Pearson’s correlation value with

the SCCM metric stating that they are equally important

just like the public and private attributes.

Classes with higher number of public methods were also

noted to have least SCCM values whereas those classes

that possess private methods and variables were found to

be more cohesive than those that did not utilize both

scoped variables and methods.

In all the classes studied, we observed that large classes

have the least SCCM values making them good candidates

for inspection. These large classes are also associated with

large number of methods which may increase the

likelihood of errors during the development process

making error tracking a strenuous process [34]. These

class lengths could also lead to maintainability issues and

subsequently effecting any changes in the development

and testing processes. The values of SCCM also tend to

decrease with increase in the number of public

occurrences.

A highly cohesive class gives a high quality software

product. This is characterized with reduced fault proneness

and complexity whereas at the same time enhancing a

developer’s understanding and reliability of the

code[39].A highly cohesive class also helps in supporting

low coupling between the modules and ensures code

reusability which is core facet in object oriented systems.

This sharply contrasts with lowly cohesive classes that are

associated with poor class design and costly testing

efforts’ [25].

The values from both COH and SCCM are closely related

although different approaches have been followed.

However, with the consideration of the new methodology

that integrates the scoping of the occurrences’ and adding

up of local variables and their usage, new metric gains

have been achieved by the SCCM compared to its

derivative: COH metric.

5. Conclusions and Future work

In this paper, a new way of evaluating class cohesiveness

has been introduced based on scoping elements that make

up a class. An easier way of collecting the data has also

been provided which could also be employed on the COH

metric with light adjustments. From the analyzed data, it

has also been found out that local variables also play a

critical role similarly to the public and private variables in

enhancing data control and that large classes or classes

with many members do not necessary mean they are

cohesive compared to smaller classes. It is therefore

important for developers to introduce them when

necessary if at all understanding, easier maintenance,

better testing and good class design is to be achieved in the

long run.

The future scope of this work can be extended by:

 Creating a source code parser for the four clustered

languages instead of just JavaScript.

 Evaluating cohesion of a class from the methods

cohesion perspective using local variables.

 Analysis of the COH metric using SCCM software

with a few adjustments on the tool.

References
[1] L. Badri, B. Mourad and T. Fadel. An Empirical Analysis

of Lack of Cohesion Metrics for Predicting Testability of

Classes. International Journal of Software Engineering and

Its Applications, 5(2), 2011, pp. 69-86.

[2] I. Baig. Measuring Cohesion and Coupling of Object-

Oriented Systems: Derivation and mutual study of

cohesion and coupling. m.s. thesis. School of Engineering,

Blekinge Institute of Technology Sweden, 2005.

[3] L. Badri and M. Badri. A Proposal of a new class cohesion

criterion: an empirical study. Journal of Object

Technology, 3 (4), 2004.

[4] J. Bieman and B. Kang. Cohesion and reuse in an object-

oriented system. Proceedings of the 1995 Symposium on

Software Reusability, Seattle, Washington, United States,

1995, pp.259–262.

[5] C. Bonja and E. Kidanmariam. Metrics for class cohesion

and similarity between methods. Proceedings of the 44th

Annual ACM Southeast Regional Conference, Melbourne,

Florida, 2006, pp. 91-95.

[6] L. C. Briand, J. W. Daly and J. Wust. A Unified

Framework for Cohesion Measurement in Object-Oriented

Systems. Software Metrics Symposium, Proceedings,

Fourth International, 1997, pp. 43-53.

[7] S. M. Chandrika, E. S. Babu and N. Srikanth. Conceptual

Cohesion of Classes in Object Oriented Systems.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 16

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

International Journal of Computer Science and

Telecommunications, 2(4), 2011, pp.38-44.

[8] S. R. Chidamber and C. F. Kemerer. Towards a metrics

suite for object-oriented design. Object-Oriented

Programming Systems, Languages and Applications

(OOPSLA), 26, 1991, pp.197–211.

[9] S. R. Chidamber and C.F. Kemerer, C.F. A metrics suite

for object oriented design. IEEE Transactions on Software

Engineering, 20, 1994, pp.476–493.

[10] S. Counsell, S. Swift and J. Crampton. The interpretation

and utility of three cohesion metrics for object-oriented

design, ACM Transactions on Software Engineering and

Methodology (TOSEM), 15(2), 2006, pp. 123-149.

[11] A. J. Dallal. Validating Object-Oriented Class Cohesion

Metrics Mathematically. Recent Advances in Software

Engineering, Parallel and Distributed Systems, 2011.

[12] A. J. Dallal and L. C. Briand. An object-oriented high-

level design-based class cohesion metric. Information and

Software Technology, 2010, pp. 1346–1361.

[13] A. J. Dallal, A Design-Based Cohesion Metric for Object-

Oriented Classes. International Journal of Computer

Science and Engineering, 1(2), 2010, pp. 195-200.

[14] Dammers.Why do we need private variables.

http://programmers.stackexchange.com/questions/143736/

why-do-we-need-private-variables. [Cited: 23rd

December,2015]

[15] R. Dasari and G. Vasanthakumari. Fault Prediction in

Object-Oriented Systems Based on C3 (Conceptual

Cohesion of Classes).International Journal of Modern

Engineering Research (IJMER), 1(1), 2011, pp. 113-119.

[16] G. Gui and P. Scott. Measuring Software Component

Reusability by Coupling and Cohesion Metrics. Journal of

Computers, 4(9), 2009.

[17] B. Henderson-Sellers. Object-Oriented Metrics Measures

of Complexity. Prentice-Hall, Inc., Upper Saddle River,

NJ, 1996.

[18] M. Hitz and B. Montazeri. Measuring coupling and

cohesion in object oriented systems. Proceedings of the

International Symposium on Applied Corporate

Computing, 1995, pp. 25–27.

[19] R. Hiscott.10 Programming Languages You Should Learn

Right Now. http://mashable.com/2014/01/21/learn-

programming-languages/. [Cited: 22nd December,2015]

[20] S. M. Ibrahim, S. A. Salem, A. I. Manal and M. Eladawy.

Identification of Nominated Classes for Software

Refactoring Using Object-Oriented Cohesion Metrics.

International Journal of Computer Science Issues (IJCSI),

9(2), 2012, pp. 68-76.

[21] K. Kaur and H. Singh, H. An investigation of Design Level

Class Cohesion Metrics. The International Arab Journal of

Information Technology, 9(1), 2012.

[22] R. Kaur and T. Kaur. Comparison of various lacks of

Cohesion Metrics. International Journal of Computer

Trends and Technology (IJCTT). 4(5), 2013.

[23] A. Kaur and P. Kaur. Class Cohesion Metrics in Object

Oriented Systems. IJSWS, 2(3), 2013, pp.78-82.

[24] N. Kayarvizhy, S. Kanmani and R. V. Uthariaraj. High

Precision Cohesion Metric. WSEAS TRANSACTIONS on

INFORMATION SCIENCE and APPLICATIONS. 10(3),

2013, pp. 79-89.

[25] S. Khatri, S. Chhilar and A. Sangwan. Analysis of Factors

Affecting Testing in Object oriented systems. International

Journal on Computer Science and Engineering.Vol.3 No.3,

March, 2011.

[26] W. Li, and S. M. Henry, S.M. Maintenance metrics for the

object oriented paradigm. Proceedings of 1st International

Software Metrics Symposium, Baltimore, 1993, pp. 52–60.

[27] X. Li, B. Pan and B. Xing. A Measurement Tool for Object

Oriented Software and Measurement Experiments with It.

Proc. IWSM 2000. (Lecture Notes in Computer Science

2006, Springer-Verlag, Berlin, Heidelberg, 2001), 44-54.

[28] D. Marshall. Scope of Variables (webpage).

http://www.cs.cf.ac.uk/Dave/PERL/node52.html. [Cited:

20th February,2016]

[29] I. Marsic. Class Cohesion Metrics. Retrieved from

http://www.ece.rutgers.edu/~marsic/books/SE/instructor/sli

des/lec-16%20Metrics-Cohesion.ppt. 2013.[Cited: 20th

February,2016]

[30] M. Meyers and B. David. An Empirical Study of Slice-

Based Cohesion and Coupling Metrics. ACM Transactions

on Software Maintenance, V (N), 2007, pp.1-25.

[31] K. Patidar, R. Gupta and G. Chandel. Coupling and

Cohesion Measures in Object Oriented Programming.

International Journal of Advanced Research in Computer

Science and Software Engineering, 3(3), 2013.

[32] R. Pena and L. Fernandez. A sensitive Metric of Class

Cohesion. International Journal “information Theories &

Applications”, 13, 2006.

[33] D. G. Ratna, S. V. Appaji, P. L. N. Raju and A. N. L.

Kumar. Efficient Implementation of Fault Prediction in

Object-Oriented Systems. International Journal of

Computer Science & Communication Networks, 1(3),

2011, pp. 310-317.

[34] L. Rosenberg and L. Hyatt. “Software Quality Metrics for

Object- Oriented System Environments”, Software

assurance Technology Center, Technical Report SATC-

TR-95-1001,NASA Goddard Space Flight Center,

Greenbelt, Maryland 20771.

[35] L. Samel, S. Ibrahim and E. Mohammed. International

Journal of Computer Science Issues. Identification of

Nominated Classes for Software Refactoring Using

Object-Oriented Cohesion Metrics. Volume 9, Issue 2,

March 2012.

[36] S. Sharma and S. Srinivasan. A review of Coupling and

Cohesion metrics in Object Oriented Environment.

International Journal of Computer Science & Engineering

Technology (IJCSET), 4(8), 2013, pp. 1105-1111.

[37] S. Yadav, S. Sunil and S. Uttpal. A Review of Object-

Oriented Coupling and Cohesion Metrics. International

Journal of Computer Science Trends and Technology

(IJCST), 2(5), 2014.

[38] E. Yourdon and L. Constantine. Structured Design.

Yourdon Press, 1978.

[39] A. Yadav and R. A. Khan. Journal of Information and

Operations Management ISSN: 0976–7754 & E-ISSN:

0976–7762 , Volume 3, Issue 1, 2012, pp. 191-193

[40] J. A. Dallal, "Improving Object-Oriented Lack-of-

Cohesion Metric by Excluding Special Methods", In

Proceedings of the 10th WSEAS International Conference

on Software Engineering Parallel and Distributed Systems,

2011, pp. 124- 129.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 17

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

http://programmers.stackexchange.com/questions/143736/why-do-we-need-private-variables
http://programmers.stackexchange.com/questions/143736/why-do-we-need-private-variables
http://mashable.com/2014/01/21/learn-programming-languages/
http://mashable.com/2014/01/21/learn-programming-languages/
http://www.cs.cf.ac.uk/Dave/PERL/node52.html
http://www.ece.rutgers.edu/~marsic/books/SE/instructor/slides/lec-16%20Metrics-Cohesion.ppt
http://www.ece.rutgers.edu/~marsic/books/SE/instructor/slides/lec-16%20Metrics-Cohesion.ppt

[41] S. P. Sreeja and R. Sridaran. ”A survey on different

approaches of determining cohesion based object oriented

metrics”international journal of engineering research and

development, Vol 4, 2012.

[42] Software process improvement and assessment

https://www.asaquality.ee/services/software-process-

improvement. [Cited: 23rd February,2016]

[43] D. Davis. Software Process Assessment using the Software

Engineering Institute’s CMM® Based Appraisal for

Internal Process Improvement. From

http://www.davissys.com/PDF/cbaipiov.pdf [Cited: 20th

December,2016]

[44] P. Marko. SPICE-International Standard for Software

Process Assessment. Seminar on Quality Models for

Software Engineering. Helsinki.

https://www.cs.helsinki.fi/u/paakki/Pyhajarvi.pdf.

[Cited:23rd February,2016]

[45] Dave. Scope of Variables.

https://www.cs.cf.ac.uk/Dave/PERL/node52.html. [Cited

24th February, 2016]

[46] J. A. Dallal, A design-based cohesion metric for object-

oriented classes, International Journal of Computer Science

and Engineering, 2007b, 1(3), pp. 195-200.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.1218 18

doi:10.20943/01201602.1218 2016 International Journal of Computer Science Issues

https://www.asaquality.ee/services/software-process-improvement
https://www.asaquality.ee/services/software-process-improvement
http://www.davissys.com/PDF/cbaipiov.pdf
https://www.cs.helsinki.fi/u/paakki/Pyhajarvi.pdf
https://www.cs.cf.ac.uk/Dave/PERL/node52.html

