
Utilizing Business Process Models to Generate Software Test

Cases

Sarah Khader1 and Rana Yousef2

1 Department of computer information systems, University of Jordan
Amman, Jordan

2 Department of computer information systems, University of Jordan
Amman, Jordan

Abstract
A business process model (BPM) represents the step-by-step

activities used to accomplish a business objective for the

organization. The correctness of the BPM directly controls the

correctness of the final developed software system. This research

aims to utilize the BPM in the software development lifecycle in

its very early phases, not only to provide a better understanding

of the business case but to generate test cases from these models

to help improve software testability. In order to accomplish this

goal, a framework was developed to automatically generate test

cases from business process models before any development has

been conducted yet, emphasizing the principles of test-driven

approaches for software development. Evaluation has shown that

test case generation is possible using BPMs, In addition, a

considerable part of the test cases generation process can be

automatically compared to the traditional approach of producing

test cases from the requirements documents. This in turn can

improve and simplify software testability, and hence the overall

development process, in this research the generated test cases set

from the framework were compared to a test cases set generated

from the requirements traditionally, results of the comparison

were in favor of the framework in terms of time needed to

generate test cases, Completeness, code coverage, productivity

and test case affectivity.

Keywords: Business Process modeling; test case; BPMN.

1. Introduction

Due to the swift development of the internet, the

competition in the world of developing software increased,

and the need to have high quality software is now more

important than ever. So what is high-quality software? It’s

not about the application that's the most publicized, or the

fastest, most featureful, or best, often it has competing

applications that are superior in many aspects. But at the

end of the day, it is one of the most popular programs out

there and is what many people like to use, what they find

as the right tool for the job, and it simply works as

expected.

The context within the software under development will

certainly impact whether the software is considered high

quality or not. A software crash in a standalone personal

computer application may be irritating but a software crash

in an industrial control system could kill someone [25]. In

both cases, robustness is still a desirable and an important

quality characteristic for the software. What is different is

the level of robustness in the two different contexts.

Therefore, while the context may determine the relative

level of a particular characteristic, the quality

characteristics and attributes remain the same.

In order to achieve high quality software more effort and

concentration shall be spent in achieving a certain level of

quality attributes this in turn requires - spending major

effort and cost in the testing phase.

As known; According to a survey of IT executives

performed by the Standish Group [1], only 39% of

software projects succeeded, while 18% were challenged

and 43% completely failed as shown in Figure 1-1.

Software projects

Challenged

Succeeded

Failed

Fig. 1 Standish Group Report 2012

Furthermore, they say that an average software project runs

222% late, 189% over budget and delivers only 61% of the

specified functions.

To fulfill the need to develop high quality and rapid

software, a group of software developers met at the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 1

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201602.17&domain=pdf&date_stamp=2016-04-17

Snowbird resort in Utah to discuss new lightweight

development methods. They published the Manifesto for

Agile in 2001 [26]; Agile software development is multiple

software development methods in which solutions develop

through merging between self-organizing and cross-

functional teams. It encouraged adaptive planning, early

delivery, evolutionary development, continuous

improvement, and prompts fast and flexible response to

change [27].

As organizations are moving towards being more agile, the

need to bridge the gap between business and IT is

increasing, and bearing in mind the increasingly

competitive business world, companies can’t adapt their

structures and processes with the technological changes,

Many of these companies decided to adopt IT technologies

that supports modern business practices.

Agile development methods made maintaining high quality

software even more challenging as features are developed

on the fly and changes are continually imposed during the

development process.

In order to maintain high quality rapid software, test

planning, test case design and black-box tests should play a

crucial role. Test cases are usually extracted in the

requirement and specification phase. However, in this

research, test cases are extracted as early as the business

process modeling phase, which we expect to speed up the

process due to utilizing available assets in an organization.

The rest of this paper consist of 4 subsections, first is the

literature review where similar work for this research will

be addressed, secondly the proposed framework where the

research methodology for this will be presented, in the

third section the experiment results and finally the last

section will briefly discuss the thesis structure.

2. Literature review

This research will utilize the business process modeling

quality measures in the very early phases of development

process, in order to improve the testability of the software

system through a semi-automatic generation of test cases.

There is plenty of literature which emphasizes the power

and importance of BPM in the software development

lifecycle. For example Joseph Barjis [4] in his paper

introduced an innovative method for business process

modeling for the purpose of software system design; the

author has introduced some non-conventional frameworks

to use with modeling.

Herden et al [5] proposed a new agile development

methodology based on the business process modeling

notation (BPMN). Their methodology defines an agile

process which uses this notation to generate prototypes

from the early stages of the development process, easing

the validation of software by the customer.

David J. Teece [11] in his paper discussed the importance

of business models and the relations between business

models and business strategy.

Charles Baden-Fuller and Mary S. Morgan [20] show in

their paper that studying business models as models is very

rewarding as they can be treated as an exemplar models

that can be copied or could be used as short hand

description to scale models.

Shafer, Smith & Linder [21], in their paper “The power of

business models” emphasized the growing importance of

business process modeling from different angels, Different

definitions were given to describe the process of business

modeling, and the authors also discussed some of the

business process modeling problems.

The standardization of business process modeling notation,

especially 2.0 by OMG gave opportunity to the emergence

of tools for modeling and execution of business processes

that helped fast prototyping of applications. Such as the

work of Herden [5] in their paper the authors propose a

new agile development methodology based on BPMN that

defines an agile process which uses BPMN to generate

prototypes from the early stages of the development

process, easing the validation of software by the customer.

Following the approach of agile methods that prioritize and

produce executable artifacts rather than textual

descriptions that increases the time required for system

development. Furthermore, the graphical representation of

BPMN, used to specify the flow of tasks and services,

giving scope for users to play the role of business analysts.

With business process modeling, companies and

organizations can gain explicit control over their processes.

Currently, there are many notations in the area of business

process modeling, where Business Process Model and

Notation (BPMN) is denoted as the standard as Kocbek

[22] provided in their paper the state-of-the-art results

addressing the acceptance of BPMN, while also examining

the purposes of its usage. Furthermore, the advantages,

disadvantages and other interests related to BPMN were

also investigated to achieve these objectives, a Systematic

Literature Review (SLR) and a semantic examination of

articles’ citations was conducted.

In this research the BPMN was used for its powerful XML

based structure, as business process models presented in

BPMN based format are the input for the framework

explained in details in chapter three, the xml file is parsed

easily using XPath, However several updates and changes

are proposed to enhance BPMN, one of these changes is

what Giacomo [24] proposed in their paper that traditional

business process modeling notations, including the

standard Business Process Model and Notation (BPMN),

rely on an imperative standard wherein the process model

captures all allowed activity flows. In other words, every

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 2

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

https://en.wikipedia.org/wiki/Snowbird,_Utah
https://en.wikipedia.org/wiki/Utah

flow that is not specified is implicitly disallowed. Recently,

several researchers have exposed the limitations of this

standard in the context of business processes with high

variability. As an alternative, declarative process modeling

notations have been proposed. It has been recognized that

the boundary between imperative and declarative process

modeling is not hard. Instead, mixtures of declarative and

imperative process modeling styles are sometimes

preferable, leading to proposals for hybrid process

modeling notations. These developments raise the question

of whether completely new notations are needed to support

hybrid process modeling. Their paper answers that

question negatively. The paper presents a conservative

extension of BPMN for declarative process modeling,

namely BPMN-D, and shows that Declare models can be

transformed into readable BPMN-D models.

As can be seen from the above literature, most of the

research in utilizing BPM in the software development

process is focused on generating prototypes and/or

providing methodologies to understand and extract

requirements for the system. However, our work in this

research is concerned with generating test cases.

There is remarkable amount of literature on methods for

generating test cases, however few is available on

generating test cases from business process models, and

the researches that do, only describe models for specific

languages, our method on the other hand would work with

any business process model described in the standards of

OMG for BPMN 2.0.

Guangquan, Mei and Jun [6] in their paper produced test

cases for web services based on extended UML activity

diagram; they propose a method that produces relevant test

cases only.

Fanjul, Tuya and Riva [24] proposed generating test cases

from BPEL using systematic procedure; however none of

the methods above uses CPM; CPM is a pragmatic

representation of the well-known equivalence partitioning

method used in testing (The Testing Standards Working

Party, 1998) which is a technique that separates all input

data (testable data) of a software into partitions of

equivalent data from which test cases can be derived,

giving the pragmatic nature of CPM, utilizing CPM in test

case generating will help speed up the process.

One of the methods used in this research is the category

partition method(CPM), CPM is mainly a method for

extracting test cases from high system specifications

documents, in this research it was used to extract test cases

from the business process models automatically, one of the

main corners in literature review is the 1988 paper for

Ostrand and Balcer [7] in which they have introduced the

category partition method, according to the authors The

advantages of this method is that it gives the tester the

possibility to modify the test specification when necessary,

and the ability to control the complexity of the tests

generated.

Enhancement to the CPM method is a research area in

which researches like Liu [8] are interested, in their paper

the authors produced a new framework with the name

(CHOC’LATE) this framework was presented to support

their argument that The traditional approach to partitioning

the input domain may not be adequately strong to

ensure similar execution actions for the same resultant

partitions. Instead they propose that output scenarios

should also be explicitly considered for any partition

testing method to improve the homogeneity of the input

partitions, which, in turn, is the key factor for high fault-

detection effectiveness.

3. The proposed Framework

One of the most commonly used techniques in software
testing is equivalence partitioning [9] which is a technique
that separates all input data (testable data) of a software
into partitions of equivalent data from which test cases can
be derived. Each partition will be presented by well-
designed test cases that cover that particular partition, this
technique reduces the time and number of test cases
required to test software by producing test cases that
expose classes of errors.

Equivalence partitioning is a well-practiced technique
and is also very pragmatic, on the other hand it is seldom
described in a formal or precise way, probably it is best
presented by the Ostrand and Balcer’s Category Partition
Method (CPM) [7]. In our research the category partition
method is used to generate test cases from high level
software specifications (Business process models), the
CPM method is specialized to generate test frames
automatically from business process models based on all
possible paths generated from the model, the resulting test
frames can be used to generate the final test cases.

Figure 1 illustrates the five main phases which were
developed this in research in order to extract test cases
from business process models.

Step 1: Obtain the business process model and test it

In this research the “Innovator for business analysts”
1

tool is used to plot and test all business models, other tools
can be used as well if complies with the OMG standards
for business modeling notation 2.0.

The generated BPM is tested against:

 Notation violations: These are predefined by the
“Innovator for business analysts” tool, and we

1 Open source tool: http://www.mid.de/en

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 3

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

https://www.google.jo/search?espv=2&biw=1366&bih=599&q=define+adequate&sa=X&ved=0CB0Q_SowAGoVChMI_YvFp-WSyQIVSEIUCh3UnQw1
https://www.google.jo/search?espv=2&biw=1366&bih=599&q=define+indistinguishable&sa=X&ved=0CB0Q_SowAGoVChMI55X75-SSyQIVTFoUCh1TyQhU
http://www.mid.de/en

used the predefined list as is, for example if two
opposite gates are sequent, the system will
automatically display an alert.

 Unresolved model references: The model is
validated against Nil or unresolved references.

 Configuration violations: These configurations are
predefined by the user and the model will be
verified against those, this feature will be used to
apply some constraints to some business process
models.

Fig. 2 The proposed framework

Step2: Generate all possible paths

To generate all possible paths for a model from the
start event to the end event, the concept of depth first
search is used [10], all tasks and diagram activities are
considered as nodes, all sequence flows in the models are
considered as edges and the root node is the start event for
the model.

The algorithm will start the navigation from the root
node and adds all activities as nodes in the path to form a
possible path until a gateway is encountered, in this
research all model gateways are categorized under (AND,
XOR,OR and parallel gateways) and the resulting paths are
treated as follows:

 In the case of AND, all branches shall be executed
in parallel.

 In the case of XOR, exactly one branch will be
executed.

 In the case of OR and PARALLEL gateways, one
or more of the branches shall be executed in
parallel.

Step3: Generate all possible test frames

A test frame in this research is used in the context of an
extended view of the processes in the model with

knowledge about their inputs, so test frames will bind
partitions to categories as will be explained below.

The CPM method was adapted in this research to
automatically generate high level test frames based on
possible paths which are determined by business rules and
constraints in the business process model. The generated
test frames can then be used, after filtration and
specialization, to create the actual test cases.

The Ostrand and Balcer’s Category Partition Method
(CPM) was adapted in this research to perform the follows
steps:

a. Identify independently testable features:
testable features are the set of all inputs to a
process.

b. Identify categories: which are the
characteristics of each input element.

c. Partition categories into choices: where
choices are the interesting cases of the sub
domain.

Step 4: Reduce the number of test frames

Combining the choices generated from the previous
step would result in a tremendous amount of test frames, so
constraints will be defined to reduce the number of test
frames and to eliminate the meaningless combinations,
these choices are provided manually by the test engineer
and they must be one of the following:

 The if property: If the length of the input string is
zero, this means that it is not a special character.
So, for the special character choice we put (if!
Zerovalue).

 Error property: We exclude erroneous situations
for example if the input size is less than zero then
we will consider it only once and we mark it with
the Error property.

 Single property: It is used as the error property but
with a different meaning. When we use it we
indicate that we want to use this choice only in one
combination and not in multiple combinations.

Step 5: Generate test cases

After generating test frames a simple instantiation shall
be performed to produce test cases.

4. Experimental data and results

Most test case generation methods are usually applied
after the development process is underway, and it relays

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 4

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

either on the requirements’ document or the generated
software. In this section, we are going to compare the test
cases generated using our developed framework with those
generated using a traditional requirements-based method in
terms of completeness, time, defect detection, test case
affectivity and test case generation productivity.

In order to perform the comparison, we used a real case
study of a software system developed for the deanship of
academic research (DAR) in the University of Jordan; The
DAR Employees’ Evaluation system. This system was
developed to be used to track and log employees’
accomplishments. It helps users logging their achievement
for the day, and help admins manage and monitor
performance.

After careful analysis of the DAR system requirements
the following BPM model was obtained.

As can be seen from Figure 2, the system consists of
three main processes: The admin system definition
process, the admin reporting process and the user process.

PROCESS 1- Admin System Definition Process: In this
process the system administrator defines all system
sections, procedures and users.

PROCESS 2- Admin Reporting Process: In this
process, the admin can view and generate reports.

PROCESS 3- User Process: In this process, the user
can view his/her procedures, log in new procedure whether
it is an urgent procedure or a regular one.

Fig. 2: DAR Business process model

A sample of the generated test cases is shown in Figure
3 for the reporting process.

For the purpose of comparing our generated test cases
produced by the framework, we asked a professional
quality assurance team leader to generate test cases for this
project using the traditional requirements-based method.
Then, we compared test cases generated using both
methods in terms of:

1. Completeness: the number of generated test cases

2. Time: required time to generate test cases

3. Defect detection: this is the measure of test case
ability to uncover defects.

4. Test case affectivity: the ratio of the numbers of
errors detected to the number of test cases
executed.

Affectivity = (Errors detected / test cases executed)

5. Test case generation productivity: another
important measure is the productivity of test cases
generation which is reflected on project time, it is
the ratio of number of test cases produced by
minute. Productivity= Test Cases/Tester Days

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 5

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

Test frame number: 1

Date from - Value = Empty

Request report

View Report

Test frame number: 2

Date from - Value = More than Date to

Request report

View Report

Test frame number: 3

Date from - Format = Not in Date format

Request report

View Report

Test frame number: 4

Date to - Format = Not in Date format

Request report

View Report

Test frame number: 5

Date to - Value = Empty

Request report

View Report

Test frame number: 6

Date to - Value = Less than Date from

Request report

Fig. 3: A sample of test cases generated by our framework: BPMN-based

framework

Table 1 below shows the results of comparing the test
cases generated by our framework and those generated by
the traditional requirements-based method.

Table 1: Comparison results

To sum it up, BPMN based framework generated more
test cases therefore more complete and test cases were
generated in less time than the traditional method which
led to better test case generation productivity.

Also, as shown in table 1 above, BPMN-based
framework produced better results in defect detection. As
the test case affectivity measure depends on two variables
which are the number of errors detected and the number of
test cases executed, a relatively close result in this criteria
were figured out, with an improvement by 2%.

5. Conclusions

Our main objective in this research was to improve
software testing through utilizing business process models
in generating software test cases.

 Business process modeling was used at an early stage
in the software development process to help produce test
cases automatically with an ultimate goal to enhance the
software development process.

The new method for generating test cases is based on
BPMN 2.0 OMG standards, the BPMN xml file is parsed
using XPath technique, then all possible paths in the
business process model were extracted using depth first
algorithm while bearing in mind different model gateways
and different gateway complexities. After producing all
paths from the diagram, the test engineer inputs all
required data for the CPM method (categories and
partitions) for each process input for each process, and the
framework will produce and combine test cases to be used
later in the development process.

As a method for evaluation, we have studied and
compared the behavior of test cases generated using
traditional ways after the development process is
underway, and test cases generated from the BPMN-based
framework at an early stage before the development
process starts, different comparison criteria were
evaluated; completeness, time, defect detection, Test case
affectivity and test case generation productivity. Results
showed that our framework has improved test case
generation compared to the traditional requirements-based

method, where the number of test cases has been
improved by a factor of 3.2, 62.5% reduction in time, 3.5
in defect detection ability, 2% improvement in test case
affectivity.

Although our framework can be applied to plan-
driven approaches, where having a preliminary tests at
early stages of development is an added value, it would
be difficult to deploy our framework for large systems,
due to the complexity limitations.

Criteria
Requirements-

based
BPMN based

Completeness 14 45

Time one working day 30 minutes

Defect detection 4 14

Test case affectivity 29% 31%

Code coverage 23% 86%

Test case generation

productivity

0.03 test case per

minute

90 test cases per

minute

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 6

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

In this context we will briefly describe some interesting
research topics, which worth further investigation:
Improvement to the algorithm complexity can be
considered; although this method is aimed towards small to
mid-size projects it is crucial to make some improvement
to the time complexity especially if the framework is used
to generate test cases for larger projects. Also, generating
automation scripts to be used directly with automation
tools would be very helpful, it is possible to generate test
scripts from this method and use them as input directly to a
test automation tool. Finally, improvement to CPM stage
of the method could be done by building a database for all
entered categories and partitions in the system to be used
in later projects.

References
[1] Standish, the Standish Group International, Inc. (2012).Third

Quarter Research Report, West Yarmouth, MA, technology.
Harvard business school press, Boston.

[2] Somerville, I. (2010). Software engineering. 9th ed. Reading, MA:
Addison-Wesley

[3] Pravin, A., & Srinivasan, S. (2013). Effective Test Case Selection

and Prioritization in Regression Testing. Journal of Computer
Science, 9(5), 654.

[4] Barjis, J. (2008). The importance of business process modeling in
software systems design. Science of Computer Programming,
71(1), 73-87.

[5] Herden, A., Farias, P. P. M., de Andrade, P. R. M., & Albuquerque,
A. B. (2014). Agile PDD–One Aproach to Software

Development Using BPMN. In11th International Conference
Applied Computing, Porto, Portugal.

[6] Guangquan, Z., Mei, R., & Jun, Z. (2007).A business process of

web services testing method based on uml 2.0 activity diagram.
In Intelligent Information Technology Application, Workshop
on (pp. 59-65). IEEE.

[7] Ostrand, T. J., & Balcer, M. J. (1988). The category-partition

method for specifying and generating functional

tests. Communications of the ACM, 31(6), 676-686.

[8] Liu, H., Poon, P. L., & Chen, T. Y. (2015). Enhancing partition

testing through output variation. In Proceedings of the 37th
International Conference on Software Engineering-Volume 2 (pp.
805-806). IEEE Press.

[9] Wiegers, K.(1999). Software Requirements. Microsoft press,
Redmond work. John Wiley & Sons, Inc,

[10] Even, S. (2011). Graph algorithms. Cambridge University Press.
[11] Teece, D. J. (2010). Business models, business strategy and

innovation. Long range planning, 43(2), 172-194.

[12] Sánchez-González, L., García, F., Ruiz, F., & Mendling, J. (2012).
Quality indicators for business process models from a gateway

complexity perspective. Information and Software Technology,
54(11), 1159-1174.

[13] Pravin, A., & Srinivasan, S. (2013). Effective Test Case Selection

and Prioritization in Regression Testing. Journal of Computer
Science, 9(5), 654.

[14] Mendling, J.(2008). Metrics for Process Models: Empirical
Foundations of Verification, Error Prediction, and Guidelines for
Correctness: Springer Publishing Company, Incorporated.

[15] Khlif, W., Zaaboub, N., & Ben-Abdallah, H. (2010). Coupling

metrics for business process modeling. International Journal of
Computers, 4(4).

[16] Baden-Fuller, C., & Morgan, M. S. (2010). Business models as

models. Long Range Planning, 43(2), 156-171.

[17] Van der Aalst, W. M. (2007). Trends in business process analysis.
In Proceedings of the 9th International Conference on Enterprise
Information Systems (ICEIS) 2007 (pp. 12-22).

[18] Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H. A., & van
der Aalst, W. (2007). Quality metrics for business process models.
BPM and Workflow handbook, 144, 179-190.

[19] Younessi, H. (2002). Object Oriented Defect Management of
Software. Prentice Hall PTR.

[20] Baden-Fuller, C., & Morgan, M. S. (2010). Business models as

models. Long Range Planning, 43(2), 156-171.

[21] Shafer, S. M., Smith, H. J., & Linder, J. C. (2005). The power of
business models. Business horizons, 48(3), 199-207.

[22] Potrč, T., Baumgartner, S., Roškar, R., Planinšek, O., Lavrič, Z.,
Kristl, J., & Kocbek, P. (2015). Electrospun polycaprolactone
nanofibers as a potential oromucosal delivery system for poorly
water-soluble drugs. European Journal of Pharmaceutical
Sciences, 75, 101-113.

[23] De Giacomo, G., Dumas, M., Maggi, F. M., & Montali, M. (2015,
June). Declarative Process Modeling in BPMN. In Advanced
Information Systems Engineering (pp. 84-100). Springer
International Publishing.

[24] García-Fanjul, J., Tuya, J., & De La Riva, C. (2006). Generating
test cases specifications for BPEL compositions of web services
using SPIN.International Workshop on Web Services–Modeling
and Testing (WS-MaTe 2006) (p. 83)

[25] Meyer ,Bertrand.(1997) Object-Oriented Software

Construction,Prentice Hall; 2 edition

[26] Kent Beck. (2001). Manifesto for Agile Software Development.
[ONLINE] Available at:http://agilemanifesto.org/. [Accessed 13
October 15].

[27] Agile alliance (2013). [ONLINE] Available at:
http://www.agilealliance.org/the-alliance/what-is-agile/. [Accessed
13 October 15]

[28]

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 2, March 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201602.17 7

doi:10.20943/01201602.17 2016 International Journal of Computer Science Issues

http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/

