
A Comparative Study on Performance of Hadoop File System

with MapR File System to Process Big Data Records

Dr. T. Suryakanthi1 and V. S. J. Pallapolu2

1 Fellow, Faculty of Computing, Botho University

2

Gaborone, Botswana

 Lecturer, Department of Accounting and Finance, University of Botswana

Gaborone, Botswana

Abstract
Big Data is a buzz word heard everywhere and many

organizations are generating huge amounts of data. The data is

growing at faster pace. Variety of data stored is posing a new

challenge for the organizations. Organizations need a new set of

tools and techniques which can efficiently process, analyze and

visualize the data for better decision making. Distributed systems

developed by the developers can run on various nodes to an

extent can solve the problem of data processing. Development of

cloud applications is an advantage to the organizations to process

the huge data on the cloud. Hadoop and its ecosystem will help

to efficiently process the data by using commodity hardware.

MapReduce is a framework for writing programmes for Hadoop

system. Hadoop Distributed File System (HDFS) is the storage

system for storing large data on commodity hardware. Hadoop

file system still faces few challenges. Recently MapR has

developed the MapR file system to distribute the large data sets

and it overcomes the challenges faced by the Hadoop file system.

In this paper we first study about the Hadoop file system, its

limitations and then make a comparative study of MapR file

system. Also we analyze how the MapR system is more efficient

in distributing the data than Hadoop file system. We also analyze

how MapR system overcomes the limitations of Hadoop File

System.

Keywords: Big Data, Cloud, Hadoop, HDFS, MapR.

1. Introduction

Hadoop [1] prominence has grown a lot in recent years and

it is considered as standard framework for big data

analytics [2, 3]. One of the reasons for this is hadoop

scalability feature. Hadoop File system provides good

features for accessing large data. It also provides effective

fault tolerance. It provides faster access to huge data.

HDFS [4] is designed for sequential read of the data from

beginning of each block. It is highly optimized for parallel

sequential readers which reduces the seek time and speed

up the process. But over a period of time it has been

observed that there are number of limitations with respect

to HDFS was observed. These limitations will be discussed

in section III of this paper. So it is highly essential to have

a new system which implements Hadoop API. MapR [5]

has introduced entirely new architectural components

which will resolve most of the limitations by HDFS. This

paper is organized as follows. Section II focus on literature

review on Hadoop File System, Section III discusses some

of the limitations by HDFS, Section IV focus on MapR-FS.

In Section V we compare the HDFS system with MapR

system to analyze which system provides the efficient

features in today Big data world. Analysis can be made to

check whether the new system overcomes the limitations of

HDFS. Section VI focus on architectural components of

MapR-FS. Section VII results of our study is discussed.

We conclude the study in section VIII.

2. Literature Review of Hadoop File System

Reliable data storage of very large data sets and to

efficiently stream those data sets a file system called HDFS

[4] is designed. Data and computation is distributed across

many servers. One of the important characteristic of

Hadoop is that it can scale to thousands of hosts and data

can be partitioned in many nodes and computation is

performed. Application data and file system Meta data is

stored separately in HDFS. Name node is an dedicated

server on which HDFS stores the metadata. Data Node is

another server on which application data is stored. All the

servers communicate each other using TCP [6] based

protocols. Fig 1 shows the HDFS architecture. HDFS

supports various operations on files like all the

conventional file system. The major operations which are

supported by hadoop includes read, write and delete files.

It also supports to create and delete directories.

The data storage in the file system is the responsibility of

Hadoop HDFS and HBase. Primary data storage is HDFS.

There is an computation for the huge data analysis called

MapReduce framework. This consists of a single master

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 53

doi:10.20943/IJCSI-201602-5356 2016 International Journal of Computer Science Issues

job-tracker and one slave task-tracker per cluster node.

This follows the master-slave technology. Master will

schedule the jobs for the slaves and slaves execute the

tasks as given by the master. MapReduce framework and

HDFS run on the same set of nodes. The data is already

present and tasks are executed on the scheduled nodes.

Here we are moving the code to the data rather data to the

code which allows for faster computation. There are many

languages in Hadoop ecosystem which will enable the

huge data transfer between the clusters.

Fig 1. HDFS Architecture

The HDFS architecture is composed of data nodes and

name node. Files and directories are hierarchically stored

as HDFS namespace. They are represented by inodes.

Various attributes like file permissions, file modification,

access time, namespace and disk space is recorded by the

inode.

Contents in the file are break into chunks and each chunk

of file is replicated in the multiple datanodes. HDFS client

is responsible for user applications to access the file

system. Once the application starts the file operation like

reading a file, a list of datanode is requested by the HDFS

client through the namenode. Conventional file systems

like NTFS, FAT systems do not provide any interface to

find the location of file blocks. HDFS provides an

Application Program Interface to locate the file blocks.

The file operations in HDFS like read and write can be

implemented through single-writer and multi-reader mode.

It means that once a file is created and data is written on it,

the data cannot be altered or removed. We can write only

the new data by appending to an existing file after opening

that in read mode. HDFS contains blocks. Unique block

with ID is created by the Namenode whenever required. It

also lists replication datanodes.

3. Limitations of HDFS

The distributed file system like NFS [7] is built for general

applications, while Hadoop file system is built for the

specific applications. Hadoop system is designed for

sequential file read. If there are four blocks of data and the

data in the third block has to be read, it start from first

block and read all the blocks in sequence. Random

seeking is a difficult task to perform with HDFS.

Mechanism for local caching of data is not provided with

HDFS where as other file system provide it. In HDFS

system once the data is written to a file it can only be read

for several times. Once the file is created and closed it

cannot be updated with a new data. Updates to the files

after they have already been closed are not supported.

Hadoop provides better recovery for hardware failures but

the limitation here is the system performance is lost in

proportion to number of nodes failed. Table 1 shows the

limitations of HDFS.

Table 1: Limitations of HDFS

Feature Limitation

Reliability NameNode leaves data and performance

vulnerable
Mutability

Write once/read only; Data immutable;

Source data changes data needs to be

reloaded into cluster

Block size

Same size for I/O, replication, sharding not

optimized for different requirements

POSIX

semantics
Must use „hadoop fs‟ to access data

Availability No snapshot or built-in mirroring capability

Scalability NameNode only scales to 100M files

Performance Written in Java and runs on block device

4. MapR File System

Limitations found in the Hadoop file system need to

overcome with the advancement of technology. MapR has

introduced an enterprise grade distribution framework for

Apache Hadoop. This framework improves reliability,

performance and usability. This file system provides

complete Hadoop ecosystem which includes MapR-FS [8]

the file system, Map Reduce [9] and MapR Control system

user interface. Fig 2 shows the MapR distribution for

Hadoop.

Data protection in MapR is carried out with a special

feature called Snapshots [10]. This will enable us to

rollback to known good data set. It is a read-only image of

a volume which provides recovery by point-in-time. In

order to increase the efficiency of cluster disk resources,

snapshots store changes to data stored in volume.

Snapshots can be created manually or can be automated.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 54

doi:10.20943/IJCSI-201602-5356 2016 International Journal of Computer Science Issues

Fig 2. MapR distribution (Source: doc.mapr.com)

MapR provides security features in order to protect the

data in the cluster. Users can be protected through various

mechanisms like Kerberos, LDAP/AD, and NIS. To

authorize the users MapR provides Access Control Lists

for cluster. MapR also provides the wire level security to

encrypt the data transmission for traffic within the cluster.

In order to recover any data disasters, MapR provides a

disaster recovery by providing built in mirroring. Between

clusters we can create local or remote mirror volumes to

mirror the data. These data mirrors can also be created in

data centers or on public cloud [11]. The mirroring

framework is shown in Fig3.

Fig 3: Mirroring for data recovery

Cluster 1 has the volume A1 data and local mirror of A1. It

has also remote mirror for volume A2. Similarly cluster 2

will have remote mirror of A1, and volume A2 data.

Cluster 3 will have remote mirror of volume A2, local

mirror of Volume A3 and so on. Network file system

protocol is used by MapR file system to enable read write

data. Applications and various tools can access the MapR

FS storage layer using NFS.

Graphical control panel for cluster administration [12] in

MapR is provided by the MapR Control System (MCS)

[13]. MCS dashboard will provide the detailed information

about the clusters, the cluster utilization, disk space, and

MapReduce jobs.

5. Comparative Study of HDFS and MapR-FS

In this section we look into detail comparative study of

Hadoop Distributed File system with MapR-FS. First of all

both are distributed file system. MapR is an

implementation of HDFS API. The applications which are

written for HDFS will also run with MapR-FS. Both the

systems have replication factor which are resilient to

failure. Let us now look into performance of each of the

system. HDFS has Name node performance bottleneck

whereas in MapR-FS as there is no name node, and

location metadata is distributed across the cluster. It

provides higher performance. In MapR-FS full read-write

access is allowed. In HDFS it is not allowed. The block

size in HDFS is split into equal 64MB. In MapR-FS the

chunks are split into 256 MB each. The unit of replication

with HDFS is block and each block is 64 MB. In MapR FS

the unit of replication is container and each container holds

32 GB.

MapR-FS contains various such components which makes

it efficiently process the data. It also overcomes the

challenges faced by the Hadoop system.

6. Architectural Components of MapR-FS

In this section the architectural components of the MapR-

FS is discussed. The MapR-FS architectural components

are shown in the Table 2.

Table 2: Architectural components of MapR-FS (source:doc.mapr.com)

Component Description

Storage Pools These are group of disks to which

MapR-FS writes the data

Containers Files and directories stored as abstract

entity

CLDB Container location can be tracked by this

service

Volumes These are management entity stores and

organize containers

Snapshots It is a read-only image of a volume at

specific point of time

Direct Access NFS This enables application to read data and

write data directly to the cluster

Storage pools are made up of number of disks that are

grouped together. Each storage pool has 3 disks. There are

multiple storage pools on each of the nodes. Containers

are used to store data. These containers reside in storage

pools.

Cluster 1 Cluster 2 cluster 3

 LMA1 Vol A1

Vol

A2

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 55

doi:10.20943/IJCSI-201602-5356 2016 International Journal of Computer Science Issues

7. Results

In this paper, we analyze how the MapR system is more

efficient than Hadoop file system based on the study of

these two systems. The systems are analyzed for efficiency

in their availability, scalability and performance. In HDFS

even though there is capability to provide the read-only

images of the disks, it is not consistent. In MapR system

snapshots are highly consistent and built in mirroring

provided will help for load balancing and backup in case

of any disasters. In HDFS the name node scales to 100

million files per cluster. In MapR-FS there is no limitation

of files per cluster, but it is only limited by the availability

of the disk space. HDFS is written in JAVA and it is

slower as JVM needs to be always present. But MapR

system is written in C program which provides high

performance. In HDFS name node coordinates the files

and directories and their contents which affects the

performance, whereas in MapR-FS there is no name node

and metadata for files and directories are fully distributed.

Write performance is improved by write operations within

storage pool across disks in MapR-FS.

8. Conclusion

The distributed file system and MapReduce computation

model has been successful in handling massive data

processing, Hadoop has gained more attention in industry

for the big data. Hadoop is an open source framework

which supports massive data processing. This enables

distributed processing on large clusters using commodity

hardware. Hadoop has major features like scalability, cost

efficiency, flexibility and fault tolerance. Even though

Hadoop has features which handle data efficiently, it also

have some limitations. In this paper we have studied

limitations by Hadoop system. We have also made a study

between HDFS and MapR-FS a file system from MapR.

We also studied the components of the MapR-FS, and how

MapR-FS overcome the limitations of HDFS. We also

analyzed the MapR-FS efficiency in terms of the

scalability and performance. We conclude that MapR-FS is

more efficient as it avoids the limitations faced by HDFS.

References
[1] T. White, Hadoop: The definitive guide, Sebastopol, CA,

USA, O‟Reily Meida, 2012.

[2] J. Manyika et.al, Big data: The next frontier for innovation,

competition, and productivity, SanFrancisco, CA, USA:

Mc.kinskey global institute, 2011. Pp 1-137.

[3] D. Fisher, R.D. Line, M.Czerwinski, S.Drucker,

“Interactions with big data analytics”, Interactions vol 19,

no3, pp-50-59, May 2012.

[4] K. Shavachko, H. Kuang, S.Radia, and R. Chansler, “The

Hadoop Distributed File System (HDFS)‟, Proc of MSST

2010, pp1-10, 2010.

[5] Map Reduce Architecture Guide available at

doc.mapr.com/Architecture+guide

[6] Huston G., Telstra (2000), The future of TCP, The internet

protocol Journal, Cisco Systems, Vol.3, No.3

[7] Russell Sandbaerg, “Design and Implementation or the SUD

Network File system”, Sun Microsystems.

[8] http://doc.mapr.com/display/MapR/Working+with+MapR-

FS.

[9] J. Dean, S.Ghemwat, “MapReduce Simplified data

processing on large clusters”, Commun, ACM, vol 51, no.1

pp 107-113, 2008.

[10] The MapR Distribution for Apache Hadoop, extracted from

www.mapr.com/sites/default/files/mapr_dist_

white_paper.pdf.

[11] Miller, M. (2009) Understanding Cloud Computing.

Retrieved February 17, 2012 from www.informit.com/

articles/article.aspx?p=1321170

[12] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay

scheduling: a simple technique for achieving locality and

fairness in cluster scheduling. In EuroSys, 2010.

[13] Map Reduce Control System available at doc.mapr.com

/display/MapR/MapR+Control+System

Dr. T. Suryakanthi earned her master’s degree in computer
applications in 2002 from Andhra University, Visakhapatnam,
India and doctoral degree in 2014 from Lingaya’s University,
Faridabad, India. She has worked for around 2 years in software
industry and has been teaching for 2 and half years. She was
Assistant Professor of Computer Applications at Lingaya’s
University and is currently associated with Botho University,
Gaborone, Botswana. She is a member of IEEE, ACM, IAEng.
She has 11 research papers to her credit in international
conferences and journals. Her current research interests include
Artificial Intelligence, Natural Language Processing, Machine
Translation, Big data analytics and Theory of automata.

Mrs. V. S. J. Pallapolu earned her master’s degree in computer
applications in 2008 from Acharya Nagarjuna University, Guntur,
India. She is in teaching from the past 4 years. She is currently
associated with University of Botswana, Gaborone, Botswana.
She has not only taught in fulltime courses and also contributed to
Distance programs in the University of Botswana .She has
published a paper in International Journal and presented two (2)
papers in international conferences. Her current research interests
include big data analytics, business intelligence, and Information
management.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 56

doi:10.20943/IJCSI-201602-5356 2016 International Journal of Computer Science Issues

