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Abstract: 

In this research we have proposed a novel 

approach for the computation of PageRank 

vector of Google web search engine and 

appellate this approach as Fuzz-PageRank 

Approach (FUPRA). Practically, the number 

of web connections is a fuzzy concept and 

thus can be modeled using fuzzy logic and 

fuzzy sets. Through fuzzification of the fuzzy 

transition probability matrix, the proposed 

approach have accelerated the convergence 

rate of PageRank and renamed this vector as 

Fuzz-PageRank. For simplicity, we have 

assumed a triangular membership function 

for each element in a Google matrix. We have 

compared the convergence rate and number 

of iterations of the standard PageRank 

algorithms with our proposed method. The 

results has shown that our proposed approach 

has clearly outperformed the PageRank 

techniques. 
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1. Introduction: 

Web comprises of a complex anatomy with billions of 

webpages and numbers of links. Interminably changes 

have been made in web pages, that is new pages are 

being modify, some of the pages being blot out and at 

any time remaining web pages are being revised, all 

this will increase the complications to fully understand 

the mathematics behind the world wide web. As 

millions of people creates their different style 

webpages, so world web contains distinct range of web 

pages style. Anyhow it was anxious to whether the 

data is confined by a distinct article or is blowout in a 

number of articles. [1] 

When the surfer visiting webpage ‘a’ at some 

particular time t after some time that is t+1 randomly 

move to another webpage ‘b’ with probability 1/deg(a) 

(where deg is the number of outlinks of webpage ‘a’) 

this movement is defined by stochastic transition 

matrix. In form of random walk of surfer Markov 

chain was induced and the stochastic transition matrix 

describe the movement of surfer from webpage ‘a’ to 

webpage ‘b’ and demonstrated as P with 𝑃𝑎𝑏  in 

Equation (1). [2][19] 

𝑃𝑎𝑏 =
1

deg(𝑎)
                                                                  

(1) 

Markov process was demonstrated by number of web 

surfer simulations. [11][12][2] Many links in each web 

page represents the transition probabilities. [4] It was 

fictive that there was no ambiguity in the considered 

web pages or in the transition probabilities. This is not 

the actual situation in reality. Fuzzy sets or fuzzy 

numbers help to simulate this uncertainty. [11] This 

forms the ground for the current study, where we have 

developed the Fuzzy-PageRank approach (FUPRA). 

Markov chain was converted into fuzz-Markov chain 

as we had cope with fuzzy numbers. 
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We introduce the Fuzz-PageRank in this article by 

making use of fuzzy sets or fuzzy numbers, transition 

probabilities as define Fuzz-Markov chain. [1] Our 

study on Google hyperlink data strongly validate the 

edge of Fuzz-PageRank over PageRank. 

Ambiguities of non-probabilistic systems can be 

simulated easily by Fuzzy numbers. The real numbers 

set of fuzzy subsets contains fuzzy numbers. 

Arithmetic interval or the extension principle are the 

main ground for arithmetic operations on fuzzy 

numbers. The shape of membership function sturdily 

indicates how the fuzzy numbers were operated. 

Analogous figure of membership function can inferred 

naturally. Present implementations involve Triangular 

fuzzy numbers or Trapezoidal fuzzy numbers. [1]  

Bhamidipati and Pal (2006) proposed the different 

model for web surfer, in which links between 

webpages are represented by fuzzy magnitudes. They 

compared fuzzRank with PageRank by its ranking, 

rate of convergence and validness. Benefits of 

fuzzRank over PageRank were studies through 

comprehensive example. [1] 

Yan, Gui, Du and Guo (2011) studied that searching 

through web had become essential to gain cognizance 

from titanic web material. They presented a genetic 

PageRank algorithm (GPRA) based on previously 

studied PageRank algorithm. They had proved by 

experiments that genetic PageRank algorithm (GPRA) 

is efficient as compared to PageRank algorithm. [3] 

Dubey and Roy (2011) deliberated the PageRank 

algorithm. They revised the two methods for ranking 

of webpages that are Hypertext Induced Topic Search 

(HITS) and PageRank techniques to evaluate the 

significance of webpages through the Hyperlink 

anatomy of the web. They had introduced the novel 

PageRank algorithm that based on normalization 

method to increase its convergence rate by decreasing 

the iterations. [4]   

Vajargah and Gharehdaghi (2012) studied fuzzy finite 

Markov chains and demonstrate their assets ground on 

possibility theory. Simulation of fuzzy Markov chain 

was done by them for dissimilar sizes. Fuzzy Markov 

chain periodicity behavior was upgraded. [5] 

Kandiah and Shepelyansky (2012) simulated the 

PageRank of opinion formation and genuine directed 

graph of some Universities and sites were examined. 

PageRanking was done for Google search engine by 

considering opinion formation of connected 

constituents is subjective with their PageRank 

probability. They analyzed that sites network which 

they had considered had a robust susceptibility to a 

despotic opinion formation as compared to 

universities network and also inferred that the Sznajd 

model for scale free-networks. [6] 

Tabrizi, Shakery, Asadpour, Abassi and Tavallaie 

(2013) discussed graph clustering and its role in 

numerous applications. They presented the 

Personalized PageRank Clustering (PPC) algorithm 

that is top-down algorithm that can expose graph 

clustering more precisely as compared to bottom-up 

algorithms that are near-linear approaches. This top-

down algorithm consist of linear time and space 

complexity and been preferred to number of accessible 

clustering algorithm. [7] 

Garcia, Pedroche and Romance (2013) showed some 

new outcomes that aid the concept of personalized 

PageRank. They worked on directed graph that may be 

comprised of dangling nodes. The personalized 

PageRank for every webpage analytically described 

that helps to categorize the surfers of Social Networks 

Websites. Novel ideas were presented in dealing 

ambitiously complex networks by making use of data 

associated to directed graph adjacency matrix and its 

dangling node distribution vector. [8]  

Bourchtein and Bourchtein (2013) inferred some 

properties of the general PageRank algorithm. The 

showed that usually convergence of PageRank vector 

is non-uniform. PageRank vector were evaluated in 

form of actual stochastic matrix and personalization 

vector. From outcomes of experiment webpages 

ranking analyzed. [9] 

Sharma and Gupta (2013) studied the significance of 

Fuzzy logic in different areas like Mathematics, 

Information Technology and Artificial Intelligence. 

They explained their fundamental concepts and fuzzy 

sets operations. They discussed that the uncertainties 

in life can be understand by correlating it with fuzzy 

set theory and fuzzy logic. As Fuzzy logic is a 

technique where one can reckon gradation of truth, 

which can be a number between 0 and 1. [10] 

Koumenides and Shadbolt (2014) presented the 

analysis of semantic web search methods. They 

concentrated on ranking techniques and supporting 

methods discovered by present semantic search 

organizations. They discussed the future work in the 

field of research and constructing community 

consensus for better ordered assessment and slow 

progress for computation of PageRank algorithm. [11] 

2. Outline to Fuzzy Logic and Fuzzy Set 

Theory: 

The number of sets in the world in our surroundings 

are outlined by an un-sharp boundary. [12] Fuzzy logic 
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are not only consist of two options but an entire range 

of truth values for logical propositions. [10] Fuzzy 

logic comprises 0 and 1 as the extreme cases of truth 

but also embraces in between 0 and 1 the number of 

conditions of truth [12][13] In reality, fuzzy 

knowledge used as uncertain, probabilistic, imprecise, 

ambiguous or inexact form. [10][22] 

Whereas the classical set theory is constructed on the 

fundamental concept of which one can be belongs to 

set or not belongs to set. A crisp set is sharp and 

definite survives on only two options that “one 

belongs to” or “one not belongs to” the set in this 

theory, and there is a very specific and clear boundary 

to specify that an individual is a member of the set. 

The fuzzy set theory is an expansion of Fuzzy set 

theory where entities are matter of degrees. [14] 

Membership function determines a grade of sameness 

of elements in the universe of discourse U to fuzzy 

sets. [14][15] Each entity of a universe of discourse U 

maps by a membership function into real numbers 

between 0 and 1. [14] A more appropriate and 

summarizing approach to outline a MF is to 

demonstrate it as a mathematical formula. [16] MF can 

be demonstrated as 

𝜇𝐴: 𝑈 → [0,1]                                                                
(2) 

3. Markov Chains: 

A sequence {𝐴𝑛}𝑛∈𝑁 is representing a Markov chain 

of first order of random variables where every random 

variable, 𝐴𝑖 , take values from state space U and 

satisfies the Equation (3). [1] 

𝑃(𝐴𝑛+1\𝐴𝑜, 𝐴1, … … . . , 𝐴𝑛) = 𝑃(𝐴𝑛+1\𝐴𝑛)                                       

(3) 

First order Markov chain is declared as homogenous 

in the case where 𝑃(𝐴𝑛+1\𝐴𝑛) is independent of n. 

Suppose 𝑝𝑖𝑗 demonstrate single move transition 

probability from state i to state j represented as 

𝑃(𝐴𝑛+1 = 𝑖\𝐴𝑛 = 𝑗). Presuming a state j in Equation 

(4) as: 

𝑃(𝐴𝑛+1 = 𝑗) = ∑ 𝑃(𝐴𝑛+1 = 𝑗\𝐴𝑛 = 𝑖)𝑁
𝑖=1 𝑃(𝐴𝑛 = 𝑖)                        

(4) 

𝑃(𝐴𝑛+1 = 𝑗) = ∑ 𝑝𝑖𝑗
𝑁
𝑖=1 𝑃(𝐴𝑛 = 𝑖)                                                  

(5) 

Similarly for k-step transition probability from state i 

to state j is given by 𝑝𝑖𝑗
(𝑘)

 as: 

𝑝𝑖𝑗
(𝑘)

= 𝑃(𝐴𝑛+𝑘 = 𝑖\𝐴𝑛 = 𝑗)                                                        

(6) 

𝑝𝑖𝑗
(𝑘)

= ∑∏ 𝑃(𝐴𝑛+𝑚 = 𝑎𝑛+𝑚
𝑘
𝑚=1 \𝐴𝑛+𝑚−1 =

𝑎𝑛+𝑚−1)                       (7) 

𝑝𝑖𝑗
(𝑘)

=

∑ ∏ 𝑝𝑎𝑛+𝑚,𝑎𝑛+𝑚−1
𝑘
𝑚=1𝑎𝑛+1,…….,𝑎𝑛+𝑘−1∈𝑈                               

(8) 

It was perceived that k-step transition probability is 

equal to the 𝑘𝑡ℎpower of P. If every state of U is 

aperiodic then Markov chain is also declared as 

aperiodic. In a case when each pair of states in U is 

connected to each other then it is known as 

irreducible Markov chain. A regular Markov chain 

should be finite, aperiodic and irreducible that is 

𝑝𝑖𝑗
(𝑛)

→ 𝜋𝑗∀𝑖, 𝑗 ∈ 𝑈. Stationary distribution of 

Markov chain is given by 𝜋 = 𝜋1, 𝜋2, …… , 𝜋𝑁 which 

is considered as ergodicity means independent of 

initial state,  𝑃(𝐴𝑛 = 𝑗) converges to a distinctive 𝜋𝑗 . 

[1] 

4. Fuzzy Markov Chains: 

The probabilities mentioned in Markov chains are real 

numbers and are identified. Practically they are 

assessed, and some errors are related with the 

assessment method, which might be assessed under 

appropriate suppositions. Fuzzy numbers are a better 

way to model the ambiguity in the transition 

probabilities. [1]A fuzzy distribution on U is outlined 

by a mapping  𝜇𝑎 : U → [0, 1], and a vector a is 

demonstrated as in Equation (9). [1] 

𝑎 = (𝜇𝑎(1), … , 𝜇𝑎(𝑁)).                                                      

(9) 

Fuzzy distribution on the Cartesian product 𝑈 × 𝑈 is 

demonstrated as fuzzy transition matrix P is of the 

form ((𝑝𝑖𝑗))
𝑖,𝑗∈𝑈

 is called single step transition 

probability matrix.[1][17] A fuzzy Markov chain is 

outlined as a series of random variables, through 

which movement from state to another state can be 

evaluated by the fuzzy relation P and follow. [1] 

𝜇𝑎(𝑛+1)(𝑗) = {𝜇𝑎(𝑛)(𝑖)^ 𝑝𝑖𝑗𝑖∈𝑈
𝑚𝑎𝑥 }, 𝑗 ∈ 𝑈                                          

(10) 

Above equation is the fuzzy algebraic 

equivalent of the transition law of classical 

Markov chains. The attention-grabbing 

outcome is that, contrasting the situation of 

classical Markov chains, whenever the 

sequence of matrices 𝑃𝑛 converges, it does so 

in finitely many steps to a matrix  𝑃𝑇. If it does 

not converge, it  oscillates with a finite period 

𝑣 starting from some finite power. [1][17 ] 
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 The fuzzy Markov chain is said to be 

aperiodic if the powers of related transition 

matrix P converge to a non-periodic 

solution  𝑃𝑇  that is known as limiting fuzzy 

transition matrix. When the row of solved 

matrix 𝑃𝑇are same then a fuzzy Markov chain 

is named as ergodic. [1] 

5. The Fuzzy Matrix of the Web: 

In any directed Web graph the number of pages are 

exhibit by nodes and the edges in between pages of 

directed web graphs are links. For example the 6-page 

web directed graph is revealed in figure below. 

[18][15][16] 

The directed graph in the figure below is demonstrated 

by directed graph matrix (DGM) in Equation (11) as: 

𝐷𝐺𝑀 = 

[
 
 
 
 
 
0 1 0 0 0 0
0 0 1 1 0 0
0
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0 0
1 1
0
0

1
0]
 
 
 
 
 

                                                               

(11) 

Page 1 to page 2 of the web was linked by directed 

edge and page 2 is not linked to page 1 as there is no 

edge between these two nodes.  The inlinks to a 

particular pages indicates the importance of that page. 

Page 3 has zero out degree as it has no directed edge 

towards any page. 

The computation of Fuzz-PageRank is begin by 

converting directed graph matrix (DGM) to Fuzzy 

matrix (FM). Based on the strength of relation from 𝑖𝑡ℎ 

webpage to 𝑗𝑡ℎ webpage, we can represent the fuzzy 

numbers to demonstrate the directed web page. As the 

number of links from 𝑖𝑡ℎ webpage to 𝑗𝑡ℎwebpage is a 

fuzzy concept and is highly unpredictable, thus this 

uncertainty can be qualified using fuzzy sets. [1][14] 

Heuristically, we assume that the strength of 

relationship from 𝑖𝑡ℎ to 𝑗𝑡ℎwebpage is a linguistic 

variable for example if there is no link from webpage 

i to j then we assign a membership value of 0.25. We 

assume that actually the two websites are not 

connected but there is some weak independence 

between 𝑖𝑡ℎ and 𝑗𝑡ℎ  webpages.  

We quantify the web links strength as weak, medium, 

high and very high. In the diagram demonstrated 

below, we have presented the concept using fuzzy 

triangular membership functions. As we assumed the 

values by judgment, thus selection of initial fuzzy 

membership values is a handcrafting problem as well 

and need further research to formally define this 

assignment. 

𝐹𝑀 =  

[
 
 
 
 
 
0.25 0.5 0.25 0.25 0.25 0.25
0.25 0.25 0.5 0.5 0.25 0.25
0.25
0.25
0.25
0.25

0.25
0.25
0.25
0.25

0.25
0.25
0.25
0.5

0.25
0.25
0.25
0.25

0.25
0.5
0.25
0.25

0.25
0.5
0.5
0.25]

 
 
 
 
 

                           

(12) 

 

Now making it row stochastic Fuzzy Adjacency 

matrix (FA) as shown in Equation (13). [2] 

𝐹𝐴 = 

[
 
 
 
 
 
 
𝑟𝑜𝑤1 𝑠𝑢𝑚(𝑟𝑜𝑤1)⁄

𝑟𝑜𝑤2 𝑠𝑢𝑚(𝑟𝑜𝑤2)⁄

𝑟𝑜𝑤3 𝑠𝑢𝑚(𝑟𝑜𝑤3)⁄

𝑟𝑜𝑤4 𝑠𝑢𝑚(𝑟𝑜𝑤4)⁄

𝑟𝑜𝑤5 𝑠𝑢𝑚(𝑟𝑜𝑤5)⁄

𝑟𝑜𝑤6 𝑠𝑢𝑚(𝑟𝑜𝑤6)⁄ ]
 
 
 
 
 
 

                                                    

(13) 

That is Fuzzy Adjacency matrix becomes: 

𝐹𝐴 =

 

[
 
 
 
 
 
0.1429 0.2857 0.1429 0.1429 0.1429 0.1429
0.1250 0.1250 0.2500 0.2500 0.1250 0.2500
0.1667
0.1250
0.1429
0.1429

0.1667
0.1250
0.1429
0.1429

0.1667
0.1250
0.1429
0.2857

0.1667
0.1250
0.1429
0.1429

0.1667
0.2500
0.1429
0.1429

0.1667
0.2500
0.2857
0.1429]

 
 
 
 
 

                         

(14) 

 

So in Fuzzy Adjacency or Fuzzy Hyperlink matrix row 

3 represents Fuzzy dangling node that is node with 

zero out-degree in fuzzy hyperlink matrix, we can say 

row with similar values. Continuing rows recognizes 

Fuzzy non-dangling nodes. 

Through fuzzy concept we have also treated dangling 

nodes by given weightage to them known as Fuzzy 

dangling nodes collectively with non-dangling nodes 

known as Fuzzy non-dangling nodes. [2][18] 

6. Fuzzy Google Matrix: 

The stochastic irreducible Fuzzy Google matrix 

demonstrated in Equation (15). [2][18] 

𝐺𝑓 =  𝛼𝐹𝐴 + (1 − 𝛼)𝕝𝑣𝑓                                               

(15) 

 In Equation (12), (1 − 𝛼) is a probability with which 

surfer at any page will transport to any web page 

avoids to jump to outlink (page with zero out degree). 

The terminus of the random move is selected with 

respect to the fuzz-personalization vector 𝑣𝑓 and 𝕝 is a 

column matrix holding each component equals to one. 
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Fuzzy Google matrix 𝐺𝑓 is defined by Markov matrix 

as its each row sum equals to 1. [2]      

Damping factor 𝛼 = 0.85 is the most preferred choice 

for reckoning of PageRank vector for Google matrix 

similarly we had considered  𝛼 = 0.85 for reckoning 

of fuzz-PageRank vector for fuzzy Google matrix. 

[18] 

𝐺𝑓

= 0.85

[
 
 
 
 
 
0.1429 0.2857 0.1429 0.1429 0.1429 0.1429
0.1250 0.1250 0.2500 0.2500 0.1250 0.2500
0.1667
0.1250
0.1429
0.1429

0.1667
0.1250
0.1429
0.1429

0.1667
0.1250
0.1429
0.2857

0.1667
0.1250
0.1429
0.1429

0.1667
0.2500
0.1429
0.1429

0.1667
0.2500
0.2857
0.1429]

 
 
 
 
 

+ (1 − 0.85)

[
 
 
 
 
 
1
1
1
1
1
1]
 
 
 
 
 

[
 
 
 
 
 
1/6
1/6
1/6
1/6
1/6
1/6]

 
 
 
 
 

 

(16) 

𝐺𝑓 =

[
 
 
 
 
 
0.1465 0.2678 0.1465 0.1465 0.1465 0.1465
0.1313 0.1313 0.2375 0.2375 0.1313 0.1313
0.1667
0.1313
0.1465
0.1465

0.1667
0.1313
0.1465
0.1465

0.1667
0.1313
0.1465
0.2678

0.1667
0.1313
0.1465
0.1465

0.1667
0.2375
0.1465
0.1465

0.1667
0.2375
0.2678
0.1465]

 
 
 
 
 

                

(17) 

7. Computation of PageRank vector and 

Fuzz-PageRank vector by Numerical 

Inference: 

7.1 Fuzz-PageRank by Standard Power 

Method: 

The most preferred choice for the computation of 

stationary distribution Fuzz-PageRank vector 

𝜋𝑓
(𝑘+1) is standard power method as for the estimation 

of PageRank studied by Wills. Eigenvalues are 

approximated by standard power method. For 

estimation of Fuzz-PageRank we uses 𝜋𝑓
(𝑘+1) =

 𝐺𝑓𝜋𝑓
(𝑘), where 𝜋𝑓

(𝑘+1)
 converges to a desired 

tolerance value. See Algorithm 1 and Algorithm 2. 

[2][18][19] 

We have calculated the PageRank vector and Fuzz-

PageRank vector for the directed graph for figure 2. 

 

 

 

Algorithm: 1 PageRank by Power Method 

function PageRank(G,𝝅𝟎) 

repeat 

𝝅(𝒌+𝟏)= G𝝅(𝒌) ; 

r = |𝝅(𝒌+𝟏)| –𝝅(𝒌)|| ; 

until r < ε 

return 𝝅(𝒌+𝟏); 

 

Algorithm: 2 Fuzz-PageRank by Power Method 

 

function PageRank(G,𝝅𝒇
𝟎) 

repeat 

𝝅𝒇
(𝒌+𝟏)

= G𝝅𝒇
(𝒌)

 ; 

r = ||𝝅𝒇
(𝒌+𝟏)

 –𝝅𝒇
(𝒌)

|| ; 

until r < ε 

return 𝝅𝒇
(𝒌+𝟏)

  ; 

 

7.2 Fuzz-Adaptive Method: 

Kamvar et.al researched the methods to improve the 

rate of convergence of PageRank vector. In this 

research work I am considering the methods to 

progress the rate of convergence of Fuzz-PageRank. 

Fuzz-Adaptive method converges rapidly. By power 

method we perform redundant computation for pages 

that converges rapidly with the webpages that have 

slow rate of convergence. [2] 

Rending the Fuzz-PageRank vector 𝜋𝑓
(𝑘)

  into C, 

converged 𝑛 − 𝑚 webpages and into N, non-

converged m webpages. 𝜋𝑓
(𝑘)

 for the current iteration 

may be demonstrated as in Equation (18): 

𝜋𝑓
(𝑘)

= [
𝜋𝑓𝑁

(𝑘)

𝜋𝑓𝐶
(𝑘)

]                                                                  

(18) 

The Fuzzy Google Matrix can also be render into two 

matrices. The pages that have not converged are 

demonstrated by  𝐺𝑓𝑁 with dimensions 𝑚 × 𝑛 and 

similarly 𝐺𝐶𝑓 is demonstrating the pages that are 

converged with dimensions(𝑛 − 𝑚) × 𝑛. The 

standard power method may be represented as in 

Equation (19). [2] 

[
𝜋𝑓𝑁

(𝑘+1)

𝜋𝑓𝐶
(𝑘)

] = [
𝐺𝑓𝑁

𝐺𝑓𝐶
] [

𝜋𝑓𝑁
(𝑘)

𝜋𝑓𝐶
(𝑘)

]                                              

(19) 
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As 𝜋𝑓𝐶
(𝑘)

 is the Fuzz-PageRank vector of the nodes that 

have already been converged, so no more computation 

is desirable for them. The proceeding iteration may be 

demonstrated in Equations (20) and (21). [2] 

𝜋𝑓𝑁
(𝑘+1)

= 𝐺𝑓𝑁𝜋𝑓
(𝑘)

                                                       

(20) 

𝜋𝑓𝐶
(𝑘+1)

= 𝜋𝑓𝐶
(𝑘)

                                                          

(21) 

We can accelerates the rate of converge by extracting 

non-converged webpages in Fuzz-Adaptive method 

for further computation. [2] See algorithm 3 and 

algorithm 4.   

Algorithm:3 PageRank by Adaptive Method 

 

Function AdaptivePageRank(G,π0) 

repeat 

𝝅𝑵
(𝒌+𝟏)

 = GN𝝅𝑵
(𝒌)

 ; 

𝝅𝑪
(𝒌+𝟏)

 = 𝝅𝑪
(𝒌)

 ; 

[N,C] = detectConverged(𝝅(𝒌), 𝝅(𝒌+𝟏) , ε ); 

 r = ||G𝝅(𝒌) –𝝅(𝒌)||1; 

until r < ε; 

return 𝝅(𝒌+𝟏) ; 

 

Algorithm:4 Fuzz-PageRank by Adaptive Method 

 

Function AdaptivePageRank(G,𝝅𝒇
𝟎) 

repeat 

𝝅𝒇𝑵
(𝒌+𝟏)

= GN𝝅𝒇
(𝒌)

 ; 

𝝅𝒇𝑪
(𝒌+𝟏)

=𝝅𝒇𝑪
(𝒌)

; 

[N,C] = detectConverged(𝝅𝒇
(𝒌)

, 𝝅𝒇
(𝒌+𝟏)

 , ε ); 

 r = ||G𝝅𝒇
(𝒌)

 –𝝅𝒇
(𝒌)

 ||1; 

until r < ε; 

return 𝝅𝒇
(𝒌+𝟏)

; 

 

7.3 Fuzz-PageRank by Aitken’s Method: 

 

Aitken’s method is used for speed up the convergence 

rate of iterative methods. [19][21] Aitken’s method 

has been applied to computer PageRank vector with 

robust acceleration rate and named this vector as Fuzz-

Aitken PageRank vector. 

Considering 𝜋𝑓
(𝑘)

 is achieved after 𝑘 iterations then 

approximating it with the fist two  𝜋𝑓  , 𝑢2 : 

𝜋𝑓
(𝑘)

= 𝜋𝑓𝑢2;                                                                      

(22) 

Hence: 

𝜋𝑓
(𝑘+1)

= 𝐺𝜋𝑓
(𝑘)

= 𝜋𝑓 +  𝛼𝜆2𝑢2;                                            

(23) 

𝜋𝑓
(𝑘+2)

= 𝐺𝜋𝑓
(𝑘+1)

= 𝜋𝑓 +  𝛼𝜆2𝑢2.                                        

(24) 

Signifying 𝑔 , ℎ 𝑎𝑠: 

𝑔𝑖 = (𝜋𝑓𝑖
(𝑘+1)

− 𝜋𝑓𝑖
(𝑘)

)
2
;                                                

(25) 

ℎ𝑖 = 𝜋𝑓𝑖
(𝑘+2)

− 2𝜋𝑓𝑖
(𝑘+1)

+ 𝜋𝑓𝑖
(𝑘)

.                                      

(26) 

Acheiveing: 

𝑔𝑖 =  𝛼2(𝜆2 − 1)2(𝑢2(𝑖))
2
,                                        

(27) 

ℎ𝑖 =  𝛼(𝜆2 − 1)2(𝑢2(𝑖)).                                            

(28) 

If ℎ𝑖  ≠ 0, then express vector f  

𝑓𝑖 = 
𝑔𝑖

ℎ𝑖
=  𝛼𝑢2(𝑖),                                                       

(29) 

That is,  

𝑓 =  𝛼𝑢2,                                                          (30) 

Dominant eigenvector is represented as: 

𝜋𝑓 = 𝜋𝑓
(𝑘)

− 𝑓.                                                   (31) 

Combination of the preceding iterations are used to 

acquire a forward approximation of true eigenvector. 

[19][20] 

Algorithm:5 PageRank by Aitken’s Method 

 

function y = Aitkenpagerank(π(k),π(k+1),π(k+2)) 

g= (π(k+1) – π(k))2; 

h=π(k+2)+2π(k+1)+π(k); 

f= g .h ; 

y= π(k+2)–f; 

renormalize y; 

return 

 

 

 

Algorithm:6 Fuzz-PageRank by Aitken’s Method 

 

function y = Aitkenpagerank(𝝅𝒇
(𝒌)

, 𝝅𝒇
(𝒌+𝟏)

, 𝝅𝒇
(𝒌+𝟐)

) 
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g= (𝝅𝒇
(𝒌+𝟏)

  – 𝝅𝒇
(𝒌)

)2; 

h=𝝅𝒇
(𝒌+𝟐)

+ 𝟐𝝅𝒇
(𝒌+𝟏)

+ 𝝅𝒇
(𝒌)

;  

f= g .h ; 

y=𝝅𝒇
(𝒌+𝟐) –f; 

renormalize y; 

return 

 

                                

 

Fig 1 : Six webpage(node) Directed Graph 

 

8. PageRank vs Fuzz-PageRank for the 6-

node Directed Graph in Figure 1 by 

Standard Power Method: 

Table 1 At 𝜶 = 𝟎. 𝟖𝟓 with tolerance level of 0.001. 

Fuzz-PageRank vector 𝝅𝒇 computed in 5 iterations and 

0.000373 seconds as represented in Table 1(a) whereas 

PageRank was computed in 15 iterations and 0.006129 seconds 

as represented in Table 1(b).  

(a) 

Page Initial 

value 

Iteratio

n 1 

Iteratio

n 2 

Iteratio

n 3 

Iteratio

n 4 

Iteratio

n 5 

N 𝜋𝑓
(0)

 𝜋𝑓
(1)

 𝜋𝑓
(2)

 𝜋𝑓
(3)

 𝜋𝑓
(4)

 𝜋𝑓
(5)

 

1 0.1667 0.1447 0.1452 0.1453 0.1452 0.1452 

2 0.1667 0.1650 0.1623 0.1630 0.1628 0.1629 

3 0.1667 0.1827 0.1853 0.1844 0.1847 0.1846 

4 0.1667 0.1625 0.1627 0.1624 0.1626 0.1625 

5 0.1667 0.1625 0.1624 0.1626 0.1625 0.1625 

6 0.1667 0.1827 0.1820 0.1823 0.1822 0.1822 

(b) 

Pag

e 

Initial 

value 

Iteration 

1 

Iteration 

2 

… Iteration 

14 

Iteration

15 

N 𝜋(0) 𝜋(1) 𝜋(2) … 𝜋(14) 𝜋(15) 

1 0.1667 0.0486 0.0647 … 0.0705 0.0704 

2 0.1667 0.1903 0.0859 … 0.1303 0.1303 

3 0.1667 0.2611 0.3855 … 0.3204 0.3206 

4 0.1667 0.1194 0.1475 … 0.1258 0.1258 

5 0.1667 0.1194 0.1114 … 0.1239 0.1238 

6 0.1667 0.2611 0.2049 … 0.2292 0.2292 

 

9. Adaptive PageRank vs Fuzz-Adaptive 

PageRank for the 6-node Directed Graph 

by Adaptive Method: 

Table 2 At 𝜶 = 𝟎. 𝟖𝟓 with tolerance level of 0.001. 

Fuzz-Adaptive PageRank vector𝝅𝒇 computed in 5 iterations and 

0.000686 seconds whereas Adaptive PageRank was computed in 

15 iterations and 0.001058 seconds.  

 

Nodes PageRank   ′𝜋’ Fuzz-PageRank   

′𝜋𝑓′ 

1 0.0704 0.1452 

2 0.1303 0.1692 

3 0.3206 0.1846 

4 0.1258 0.1625 

5 0.1238 0.1625 

6 0.2292 0.1822 

 

10. Fuzz-PageRank vs PageRank for the 

Google matrix of 100 x 100 by Standard 

Power Method: 

Table 3 Google matrix of 100 x 100 for 𝜶 = 𝟎. 𝟖𝟓  with tolerance 

value of 0.001. 

(a) 

Page Initial value Iteration 1 

N 𝜋𝑓
(0)

 𝜋𝑓
(1)

 

1 0.0100 0.0100 

2 0.0100 0.0100 

3 0.0100 0.0100 

4 0.0100 0.0100 

5 0.0100 0.0100 

. . . 

. . . 

. . . 

96 0.0100 0.0100 

97 0.0100 0.0100 

98 0.0100 0.0100 

99 0.0100 0.0101 

100 0.0100 0.0100 

(b) 

Page Initial 
value 

Iteration 
1 

Iteration 
2 

.. Iteratio
n 6 

Iteratio
n 7 

N 𝜋(0) 𝜋(1) 𝜋(2) .. 𝜋(6) 𝜋(7) 

1 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

2 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

3 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

4 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

5 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

. . . . . . . 

. . . . . . . 

. . . . . . . 

96 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

97 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

98 0.0100 0.0076 0.0070 .. 0.0074 0.0074 

99 0.0100 0.0061 0.0135 .. 0.0137 0.0137 

100 0.0100 0.0076 0.0070 .. 0.0074 0.0074 
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11. PageRank vs Fuzz-PageRank for the 

Google matrix of 100 x 100 by Adaptive  

Method: 

Table 4 Google matrix of 100 x 100 for  𝜶 = 𝟎. 𝟖𝟓 with tolerance 

value of 0.001. 

(a) 

Page Initial value Iteration 1 

N 𝜋𝑓
(0)

 𝜋𝑓
(1)

 

1 0.0100 0.0100 

2 0.0100 0.0100 

3 0.0100 0.0099 

4 0.0100 0.0100 

5 0.0100 0.0101 

. . . 

. . . 

. . . 

96 0.0100 0.0100 

97 0.0100 0.0100 

98 0.0100 0.0100 

99 0.0100 0.0100 

100 0.0100 0.0100 

(b) 

Page Initial 

value 

Iteration 

1 

Iteration 

2 

Iteration 

3 

Iteration 

4 

N 𝜋(0) 𝜋(1) 𝜋(2) 𝜋(3) 𝜋(4) 

1 0.0100 0.0088 0.0090 0.0089 0.0089 

2 0.0100 0.0088 0.0090 0.0089 0.0089 

3 0.0100 0.0517 0.0463 0.0470 0.00469 

4 0.0100 0.0088 0.0090 0.0089 0.0089 

5 0.0100 0.0431 0.0388 0.0394 0.0393 

. . . . . . 

. . . . . . 

. . . . . . 

96 0.0100 0.0088 0.0090 0.0089 0.0089 

97 0.0100 0.0088 0.0090 0.0089 0.0089 

98 0.0100 0.0088 0.0090 0.0089 0.0089 

99 0.0100 0.0088 0.0090 0.0089 0.0089 

100 0.0100 0.0088 0.0090 0.0089 0.0089 

 

12. PageRank vs Fuzz-PageRank for the 

Google matrix of 100 x 100 by Aitken’s  

Method: 

Table 5 Google matrix of 100 x 100 𝜶 = 𝟎.𝟖𝟓 with tolerance 

value of 0.001. 

(a) Fuzz-PageRank vector coverge in 1st iteration by 

Aitken’s method in 0.00098 seconds. 

Page Initial value Iteration 1 

N 𝜋𝑓
(0)

 𝜋𝑓
(1)

 

1 0.0100 0.0100 

2 0.0100 0.0100 

3 0.0100 0.0099 

4 0.0100 0.0100 

5 0.0100 0.0101 

. . . 

. . . 

. . . 

96 0.0100 0.0100 

97 0.0100 0.0100 

98 0.0100 0.0100 

99 0.0100 0.0100 

100 0.0100 0.0100 

 

(b) Whereas PageRank vector converges by Aitken’s 

Method in 65 iterations in 0.0632 seconds. 

Page Initial 
value 

Iteration 
1 

Iteration 
2 

… Iteration 
64 

Iteration 
65 

N 𝜋(0) 𝜋(1) 𝜋(2) … 𝜋(64) 𝜋(65) 

1 0.0100 0.0097 0.0105 … 0.0201 0.0201 

2 0.0100 0.0097 0.0105 … 0.0201 0.0201 

3 0.0100 0.0522 0.0520 … 0.1052 0.1052 

4 0.0100 0.0097 0.0105 … 0.0201 0.0201 

5 0.0100 0.0437 0.0437 … 0.0882 0.0882 

. . . . . . . 

. . . . . . . 

. . . . . . . 

96 0.0100 0.0097 0.0105 … 0.0201 0.0201 

97 0.0100 0.0097 0.0105 … 0.0201 0.0201 

98 0.0100 0.0097 0.0105 … 0.0201 0.0201 

99 0.0100 0.0097 0.0105 … 0.0201 0.0201 

100 0.0100 0.0097 0.0105 … 0.0201 0.0201 

 

Page Initial 

value 

Iteration 

1 

Iteration 

2 

………… Iteration 

64 

Iteration 

65  

N 𝜋(0) 𝜋(1) 𝜋(2) ………… 𝜋(64) 𝜋(65) 

1 0.0100 0.0097 0.0105 ……….. 0.0201 0.0201 

2 0.0100 0.0097 0.0105 ……….. 0.0201 0.0201 

3 0.0100 0.0522 0.0520 ……….. 0.1052 0.1052 

4 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

5 0.0100 0.0437 0.0437 ………… 0.0882 0.0882 

. . . . . . . 

. . . . . . . 

. . . . . . . 

96 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

97 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

98 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

99 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

100 0.0100 0.0097 0.0105 ………… 0.0201 0.0201 

 

13. Contrasting iterations(Elapsed time) 

for PageRank and Fuzz-PageRank by 

Standard Power Method: 

Table 6 Google matrix of 100 x 100 for different values of 𝜶 with 

tolerance value of 0.001. 

𝛼 PageRank Fuzz-PageRank 

0.7 6(0.000694) 1(0.000312) 

0.85 7(0.000659) 1(0.000449) 

0.9 8(0.000673) 1(0.000305) 

0.99 9(0.000683) 1(0.000400) 

14. Contrasting iterations(Elapsed time) 

for Adaptive PageRank and Fuzz-

Adaptive PageRank by Adaptive method: 

Table 7 Google matrix of 100 x 100 for different values of 𝜶 with 

tolerance value of 0.001. 
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𝛼 Adaptive PageRank Fuzz-Adaptive 

PageRank 

0.7 6(0.004634) 1(0.000580) 

0.85 7(0.001029) 1(0.000551) 

0.9 8(0.001104) 1(0.000513) 

0.99 25(0.002613) 1(0.000461) 

 

15. Contrasting iterations(Elapsed time) 

for Aitken PageRank and Fuzz-Aitken 

PageRank by Aitken’s method: 

Table 8 Google matrix of 100 x 100 for different values of 𝜶 with 

tolerance value of 0.001. 

𝛼 Aitken PageRank Fuzz-Aitken 

PageRank 

0.7 18(0.00900) 1(0.00096) 

0.85 65(0.06320) 1(0.00098) 

0.9 98(0.09160) 1(0.00097) 

0.99 NAN 1(0.00099) 

 

16. Conclusion: 

Throughout the world, the titanic of web comprises of 

numerous webpages that are hooked and deliver data 

material to surfer visiting webpage. With the passage 

of time, the webpages are continuously undergoing 

augmentation and amplification that is leading to 

complications on part of understanding ability of the 

surfer. Therefore in order to achieve highly pertinent 

results to our desired search data, the significance of 

mathematical mysteries behind the Google search 

engine cannot be overlooked.     

The new technique for the computation of Google 

PageRank is Fuzz-PageRank approach (FUPRA).  In 

this novel approach, comparison is done between this 

new technique and the previously used techniques for 

the analysis of Google PageRank vector. It is observed 

that there is massive particularity in terms of 

converging acceleration and computational time in 

between PageRank vector and Fuzz-PageRank vector. 

Hence fuzz-PageRank vector is superior to PageRank 

vector as computed by Standard Power method, 

Adaptive method and Aitken’s method. Through fuzzy 

concept, we have also treated dangling nodes by 

giving weightage to them known as Fuzz-dangling 

nodes collectively with non-dangling nodes known as 

Fuzz-non-dangling nodes. 
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