
Quality of Open Source Systems from Product Metrics

Perspective

Mamdouh Alenezi1 and Ibrahim Abunadi2

1 2 College of Computer & Information Sciences

 Prince Sultan University, Riyadh, Saudi Arabia.

Abstract
Software engineering and information systems practices seek

ultimately to create the flawless product. One of the tools used to

improve the quality of software development is the use of metrics.

In this paper, metrics retrieved from open source software were

analyzed for quality attributes. Defect density is considered a

strong indication of the quality of software product. Few studies

have taken into consideration the density of defects while looking

into quality of software and proneness to defects. Analysis of this

study has shown that defect density is relevant to different

developers and different product sizes. Thus, open source project

has shown to have low defect density and the larger the product

the lower the defect density is. In addition, this study has shown

that there are different metrics that correlate with each other

indicating that some of these metrics have conceptual and

practical relevance to each other. Another relationship was tested

between the number of bugs and the metrics. Results indicated

that most attributes had positive correlation with the number of

bugs with exception to coupling between cohesion among

methods of class.

Keywords: Software Quality, Software Metrics, Open Source,

Defect Density

1. Introduction

One of the essential objectives of the software engineering

and information systems discipline is to develop

techniques and tools for high-quality software solutions

that are stable and maintainable. Software managers and

developers use several measures to measure and improve

the quality of a software solution throughout the

development process. These measures assess the quality of

different software attributes, such as product size, cohesion,

coupling, and complexity. Researchers and practitioners

use software metrics to understand and improve software

solutions and the processes used to develop them.

Determining the relationship between software metrics

aids in clarifying practical issues with regard to the

relationship between the quality of internal and external

software attributes. Moreover, this understanding helps

software practitioners and engineers to determine the

factors that should be considered during the quality-

assessment process.

The attributes of software quality can be categorized into

two main types: internal and external. Internal quality

attributes can be measured using only the knowledge of

the software artifacts, such as the source code, whereas the

measurement of external quality attributes requires the

knowledge of other factors, such as testability and

maintainability. The attributes of software quality, such as

defect density and failure rate, are external measures of the

software product and its development process. The focus of

this paper is on internal attributes.

The field of software metrics has two main requirements: 1)

enabling software developers to manage the software

development process. For example, developers need to

determine the resources or time needed to deliver; and 2)

enabling researchers to define and measure software

attributes objectively in order to gain a better

understanding of software engineering [1]. The concepts of

software metrics are coherent, understandable, and well

established. Therefore, it is useful to develop and evaluate

the quality of software solutions using these metrics. Metrics

are measures of different aspects of an endeavor, and they

help software engineers to determine whether they are

progressing toward the goal of that endeavor.

Software metrics are used to measure the degree to which

a software system possesses a certain property. There are

three categories of software metrics. This classification is

based on what they measure and the area of software

development on which they focus. At a very high level,

software metrics can be classified as process metrics,

project metrics, and product metrics [2]: 1) process metrics

a r e used to improve software development and

maintenance; 3) project metrics describe the project’s

characteristics and execution, such as explaining the cost,

schedule, productivity the number of software developers,

and the staffing pattern over the life cycle of the software; 3)

product metrics describe the characteristics of the product,

such as size, complexity, design features, performance, and

quality level.

One of the main goals of software engineering research is

to provide evidence to support practitioners and facilitate

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 143

2015 International Journal of Computer Science Issues

them in making correct decisions during the development

of the software [1]. Reaching these decisions always depends

on how the data are analyzed and which information is

extracted from the data during the analysis. In this paper,

we examine the product metrics of several open source

systems in order to determine the quality of these systems

and how they compare to each other.

In this work, we empirically analyze the quality of several

open source software systems. The remainder of this paper

is organized as follows. Section 2 discusses quality

definitions. Section 3 describes the data used in this study.

Section 4 discusses the methodology, and Section 5

evaluates the experimental data. The empirical study is

described in Section 5. Related work is discussed in

Section 6. The conclusions are presented in Section 7.

2. Quality

Quality is defined variously depending on the context. We

survey the definitions that are the best understood by the

following international organizations:

 The German Industry Standards DIN 55350 Part

11 defines quality as “Quality comprises all

characteristics and significant features of a

product or an activity which relate to the

satisfying of given requirements.”

 The ANSI Standard ANSI/ASQC A3/1978

defines quality as “the totality of features and

characteristics of a product or a service that bear

on its ability to satisfy the given needs.”

 The IEEE Standard (IEEE Std. 729-1983) defines

quality as “The totality of features and

characteristics of a software product that bear on

its ability to satisfy given needs: for example, to

conform to specifications; the degree to which

software possesses a desired combination of

attributes; the degree to which a customer or user

perceives that software meets his or her

composite expectations; the composite

characteristics of software that determine the

degree to which the software in use will meet the

expectations of the customer.”

 Pressman [3] defines the software quality in terms

of the conformance to explicitly stated functional

and performance requirements, explicitly

documented development standards, and implicit

characteristics that are expected of all

professionally developed software

 The IEEE definition of Software Quality focuses

on customer satisfaction, and the degree to which

a system, component, or process meets specified

requirements

 The IEEE definition of “Software Quality”

focuses on the fulfillment of requirements, that is,

the degree to which a system, component, or

process meets the customer’s or user’s needs or

expectations

 In addition to these definitions, software quality

is usually dependent on the context in which it is

required. Hence, in this work, we use the quality

measure of defect density, which is usually

defined as the number of defects found divided

by size. One of the measures of the software size

that is widely used in the open source community

is the number of lines of codes in thousands, Kilo

Lines of Codes, or KLOC, which is used in this

paper.

3. Dataset

We conducted an empirical study on eight open source

systems. We used several criteria to select the systems: 1)

well-known systems that are used very widely; 2) sizable

systems that yield realistic data; 2) actively maintained

systems; 4) systems with publically available data, which

is crucial in empirical studies. Table 1 shows the

descriptive statistics of the dataset.

Table 1. Selected Software Systems

System Ver Classes KLOC # of Bugs

Camel 1.6 965 113 500

Xalan 2.7 909 428.5 1213

Tomcat 6.0.389418 858 300.6 114

Ant 1.7 745 208.6 338

Xerces 1.4.4 588 141.2 1596

jEdit 4.3 492 202.3 12

POI 3.0 442 129.3 500

Velocity 1.6.1 229 57 190

In this study, we used the dataset collected by [4], which is

available online at the PROMISE repository. The systems

in this dataset are as follows: Camel, Xalan, Tomcat, Ant,

Xerces, jEdit, POI, and Velocity. Apache Camel is a

powerful open source integration framework based on

known Enterprise Integration Patterns with powerful Bean

Integration. Xalan is a software library that implements the

XSLT 1.0 XML transformation language and the XPath

1.0 language. The Xalan XSLT processor is available for

both the Java and C++ programming languages. Tomcat is

web server and servlet container. It implements several

Java EE specifications, including Java Servlet, JavaServer

Pages (JSP), Java EL, and WebSocket. Ant is a software

tool used to automate software-building processes. It is

similar to Make, but it is implemented using the Java

language and requires the Java platform; it is best suited

for building Java projects. Xerces is a parser that supports

the XML 1.0 recommendation and contains advanced

parser functionality, such as support for XML Schema 1.0,

DOM level 2, and SAX version 2. jEdit is a mature

programmer’s text editor supported by hundreds

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 144

2015 International Journal of Computer Science Issues

(including the time-developing plugins) of person-years of

development. It is written in Java and runs on any

operating system that supports Java, including Windows,

Linux, Mac OS X, and BSD. The POI project consists of

APIs that are used to manipulate various file formats based

on Microsoft’s OLE 2 Compound Document format, and

the Office OpenXML format, which uses pure Java.

Velocity is a Java-based template engine that provides a

template language that is used to reference objects defined

in Java code. It aims to ensure the clean separation

between the presentation tier and business tiers in a Web

application.

The metrics are categorized as follows: coupling, cohesion,

inheritance, and product size. The metrics were derived

from several suites of metrics. We focus on object-oriented

metrics because they are accessible in the early stages of

software development. The selected metrics of open

source software systems are shown in Table 2. These

metrics have been widely studied in the literature [5, 6, 7,

8, 9].

Table 2. Metrics Names

Metric Name

Weighted methods per class (WMC)

Depth of Inheritance Tree (DIT)

Number of Children (NOC)

Coupling between object classes (CBO)

Response for a Class (RFC)

Lack of cohesion in methods (LCOM)

Lack of cohesion in methods (LCOM3)

Afferent couplings (Ca)

Efferent couplings (Ce)

Number of Public Methods (NPM)

Data Access Metric (DAM)

Measure of Aggregation (MOA)

Measure of Functional Abstraction (MFA)

Cohesion Among Methods of Class (CAM)

Inheritance Coupling (IC)

Coupling Between Methods (CBM)

Average Method Complexity (AMC)

McCabe’s cyclomatic complexity (CC)

Lines of Code (LOC)

4. Methodology

4.1 Correlations of the Metrics

To understand the relationships between software metrics,

their correlation coefficients (i.e., the strength of

relationships among their counterparts) are measured. We

use the correlation between the metrics in order to find

redundant metrics. Metrics that correlate measure similar

aspects of software modules. We used Kendall’s

nonparametric measure of rank correlation [10]. Our

choice is justified as follows: Pearson’s correlation

coefficients are highly influenced by outliers; and

Spearman’s rank correlation coefficient includes many

equal values found in integer data [11].

4.2 Defect Density Evaluation

 Defect density is one of the most established

measures of software quality [12]. Defect density consists

of post-release defects per thousand lines of a delivered

code [13]. This definition is used mainly among practitioners

to calculate and evaluate the quality of their projects at a

certain phase of development. Defect density is used to

measure the quality of the software product. It indicates the

improvements in the quality of the successive releases of

certain software. The lower the number of defect densities,

the better the software quality is. Defect density can be

computed using Eq 1 as follows:

Defect Density =
Number of Defects

KLOC
 (1)

Defect density is jointly correlated with several developers

and software sizes [14]. The size of the project is an

influential factor (i.e., large projects have lower defect

density). The mode of development mode is another factor

that affects the defect density rate (i.e., open source projects

have a lower defect density) [13].

5. Experimental Evaluation

5.1 Correlations of the Metrics

To study the relationships and correlations among the 19

metrics, we computed their cross-correlation values. The

results are shown in Table 3 where the absolute values

above 0.6 are highlighted in bold. We found a high

correlation between several pairs of metrics. RFC was

fairly correlated with WMC, LCOM was fairly correlated

with WMC, NPM was correlated with WMC, and DIT

was highly correlated with MFA. RFC was correlated with

LOC, LOC was fairly correlated with AMC, and IC was

strongly correlated with CBM. These correlations did not

indicate that some metrics could be easily substituted by

others. However, they were a good starting point to reduce

the number of metrics used in the study.

Based on common knowledge about object-oriented metrics

and the correlations studied, the following metrics were

considered candidates to be overlooked or substituted by

other metrics:

 WMC was correlated with RFC, LCOM, and

NPM. The information conveyed by this metric

was found also in LOC (the more methods in a

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 145

2015 International Journal of Computer Science Issues

class, the more lines of codes) and RFC (which

includes WMC in its computation).

 DIT was strongly correlated with MFA. This

correlation was strong because DIT and MFA are

measures of inheritance.

 RFC strongly correlated with WMC and LOC.

 LCOM was correlated with WMC. This

correlation was strong because these measures are

used to explore the cohesion of methods and

attributes inside a class.

 IC was strongly correlated with CBM. This

correlation was strong because a class is coupled

to its parent class (in the case of IC) if one of its

inherited methods is functionally dependent on

the new or redefined methods, while CBM is the

total number of new or redefined methods.

 We then analyzed the behavior of the following

ten metrics: NOC, CBO, RFC, LCOM, Ca, Ce,

LCOM3, MOA, MFA, CAM, IC, and CC.

5.2 Correlating Metrics with Bugs

To test the relationship between the metrics and the

number of bugs, we conducted a correlation analysis. The

correlation analysis is used to find the degree to which

changes in the value of an attribute (one of the modularity

measures) are associated with the changes in another

attribute (the number of faults in a version).

If the measure tends to increase when the number of bugs

increases, the Kendall correlation coefficient is positive. If

the measure tends to decrease when the number of faults

increases, the Kendall correlation coefficient is negative.

Table 4 shows that CBO, RFC, Ce, MFA, and IC had low

positive correlations with the number of bugs, whereas

CAM had low negative correlations with the number of

bugs.

5.3 Defect Density

In this subsection, we report the results of correlating the

selected metrics with the number of bugs. Table 5 shows

the defect densities found in the selected systems.

Comparing the results obtained here and the numbers

indicated in the literature [15, 16, 17], we can see that all

selected open source systems have very low defect density

which indicates a good quality products. jEdit has the best

defect density rate (0.06) and comes second is Tomcat

with (0.38). These two projects are very popular and

widely used in several communities.

6. Related Work

Several previous researchers reported their answers to the

question, “What is the typical defect density of a project?”

Akiyama [15] reported that for each thousand lines of code

(KLOC), there were 23 defects. McConnell [16] reported 1

to 25 defects, and Chulani [17] reported 12 defects.

The review of the relevant literature revealed several

definitions of defect density. A recent overview study of

defect density used the cumulative defects of all releases

and the size of the last release to define defect density [13].

Their main argument was that the code base usually

undergoes complex transformations, which makes it

difficult to match a defect to the corresponding code base.

In another study, Zhu and Faller [18] assessed defect

density in evolutionary product development by using the

aggregated churned LOC to measure size in calculating

defect density. Their main argument was that the same

code repository can have different numbers of defects

regardless of whether those defects are in previous or

future releases. Mohagheghi, et al. [19] studied a large,

distributed system developed by Ericsson and compared

the defect density of the system considering the re-used

components and non-reused components. They found that

reused components had lower defect density than the non-

reused components. Raghunathan, et al. [20] compared the

quality of open source, closed source software, and found

no difference between them. Phipps [21] compared C++

and Java programs and found that C++ programs had two

to three times as many defects per line of code as Java

programs had.

In most of the related work, product metrics were used to

study the proneness to defects without considering defect

density. This gap in the literature indicates the need for

research that characterizes product metrics based on defect

density.

7. Conclusion

Building software that is of high quality is an essential aim

for software engineering and information systems

practitioners. To measure quality of software, different

metrics are used and are available especially in open

source software projects. Open source systems that are

used in this study include Camel, Xalan, Tomcat, Ant,

Xerces, jEdit, POI and Velocity. Many product metrics for

the mentioned systems were used in this study including:

weighted methods per class, depth of class, number of

children, coupling between object classes, response for a

class and others. This study has shown that defect density

correlates disproportionally with open source software

products and proportionally with the size of the product.

Additionally, different metrics were found to be related to

each other and bugs were found to be positively related to

most metrics while only negatively related to cohesion

among methods of class. Future work will focus on usage

of more types of software metrics and building defect

density prediction models.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 146

2015 International Journal of Computer Science Issues

Table 3. The Kendall rank cross-correlation coefficients of the considered metrics

Table 4. Correlation coefficient of Metrics and Bugs

 NOC CBO RFC LCOM Ca Ce LCOM3 MOA MFA CAM IC CC
Bugs 0.06 0.12 0.13 0.09 0.04 0.21 0.03 0.09 0.11 -0.14 0.12 0.09

Table 5. Defect Density Results

System Defect Density

Camel 4.43

Xalan 2.82

Tomcat 0.38

Ant 1.62

Xerces 11.30

jEdit 0.06

POI 3.87

Velocity 3.33

 wmc dit Noc cbo rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc avg
cc wmc 1.00 -0.02 0.17 0.34 0.69 0.65 0.24 0.26 0.80 -0.26 0.52 0.35 0.37 -0.16 -0.65 0.18 0.19 0.17 0.41

dit -0.02 1.00 0.00 0.08 0.08 0.00 -0.14 0.25 0.00 -0.03 0.11 0.04 0.02 0.82 0.01 0.58 0.53 0.15 -0.11
noc 0.17 0.00 1.00 0.18 0.13 0.15 0.26 0.09 0.13 -0.06 0.09 0.11 0.14 -0.02 -0.12 0.02 0.02 -0.01 0.07
cbo 0.34 0.08 0.18 1.00 0.42 0.25 0.53 0.58 0.29 -0.16 0.29 0.22 0.35 0.02 -0.35 0.25 0.24 0.19 0.26
rfc 0.69 0.08 0.13 0.42 1.00 0.46 0.17 0.40 0.53 -0.29 0.71 0.37 0.40 -0.04 -0.59 0.26 0.26 0.43 0.45

lcom 0.65 0.00 0.15 0.25 0.46 1.00 0.18 0.21 0.54 0.03 0.33 0.10 0.16 -0.09 -0.46 0.10 0.11 0.07 0.26
ca 0.24 -0.14 0.26 0.53 0.17 0.18 1.00 0.13 0.19 -0.08 0.09 0.10 0.18 -0.17 -0.22 -0.01 -0.01 -0.04 0.18
ce 0.26 0.25 0.09 0.58 0.40 0.21 0.13 1.00 0.19 -0.15 0.28 0.19 0.30 0.19 -0.30 0.37 0.36 0.23 0.20

npm 0.80 0.00 0.13 0.29 0.53 0.54 0.19 0.19 1.00 -0.23 0.38 0.29 0.32 -0.12 -0.54 0.17 0.18 0.07 0.32
lcom

3
-0.26 -0.03 -0.06 -0.16 -0.29 0.03 -0.08 -0.15 -0.23 1.00 -0.24 -0.67 -0.32 0.03 0.22 -0.15 -0.14 -0.21 -0.19

loc 0.52 0.11 0.09 0.29 0.71 0.33 0.09 0.28 0.38 -0.24 1.00 0.29 0.35 0.02 -0.46 0.17 0.17 0.65 0.39
dam 0.35 0.04 0.11 0.22 0.37 0.10 0.10 0.19 0.29 -0.67 0.29 1.00 0.40 -0.04 -0.29 0.15 0.14 0.19 0.21
moa 0.37 0.02 0.14 0.35 0.40 0.16 0.18 0.30 0.32 -0.32 0.35 0.40 1.00 -0.05 -0.36 0.15 0.15 0.22 0.26
mfa -0.16 0.82 -0.02 0.02 -0.04 -0.09 -0.17 0.19 -0.12 0.03 0.02 -0.04 -0.05 1.00 0.12 0.48 0.45 0.14 -0.20
cam -0.65 0.01 -0.12 -0.35 -0.59 -0.46 -0.22 -0.30 -0.54 0.22 -0.46 -0.29 -0.36 0.12 1.00 -0.18 -0.19 -0.19 -0.32
ic 0.18 0.58 0.02 0.25 0.26 0.10 -0.01 0.37 0.17 -0.15 0.17 0.15 0.15 0.48 -0.18 1.00 0.92 0.16 0.10

cbm 0.19 0.53 0.02 0.24 0.26 0.11 -0.01 0.36 0.18 -0.14 0.17 0.14 0.15 0.45 -0.19 0.92 1.00 0.14 0.10
amc 0.17 0.15 -0.01 0.19 0.43 0.07 -0.04 0.23 0.07 -0.21 0.65 0.19 0.22 0.14 -0.19 0.16 0.14 1.00 0.31
avg
cc

0.41 -0.11 0.07 0.26 0.45 0.26 0.18 0.20 0.32 -0.19 0.39 0.21 0.26 -0.20 -0.32 0.10 0.10 0.31 1.00

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 147

2015 International Journal of Computer Science Issues

8. References

[1] N. Fenton and J. Bieman, Software metrics: a rigorous

and practical approach: CRC Press, 2014.

[2] S. H. Kan, Metrics and Models in Software Quality

Engineering: Addison-Wesley Professional, 2014.

[3] R. S. Pressman, Software engineering: a practitioner's

approach, 7th ed. New York, NY, USA: McGraw-Hill,

Inc., 2005.

[4] M. Jureczko and L. Madeyski, "Towards identifying

software project clusters with regard to defect

prediction," in Proceedings of the 6th International

Conference on Predictive Models in Software

Engineering, 2010, p. 9.

[5] R. Malhotra and Y. Singh, "On the Applicability of

Machine Learning Techniques for Object Oriented

Software Fault Prediction," Software Engineering: An

International Journal, vol. 1, pp. 24-37, 2011.

[6] S. M. A. Shah and M. Morisio, "Complexity Metrics

Significance for Defects: An Empirical View," in

Proceedings of the 2012 International Conference on

Information Technology and Software Engineering,

2013, pp. 29-37.

[7] M. Alenezi and K. Magel, "Empirical evaluation of a

new coupling metric: Combining structural and

semantic coupling,"" International Journal of

Computers and Applications, vol. 36, 2014.

[8] M. Alenezi, S. Banitaan, and Q. Obeidat, "Fault-

proneness of open source systems: An empirical

analysis," in International Arab Conference on

Information Technology (ACIT 2014), 2014, pp. 164–

169.

[9] N. Bettenburg, M. Nagappan, and A. E. Hassan,

"Towards improving statistical modeling of software

engineering data: think locally, act globally!,"

Empirical Software Engineering, vol. 20, pp. 294-335,

2015.

[10] H. Abdi, "The Kendall rank correlation coefficient,"

Encyclopedia of Measurement and Statistics. Sage,

Thousand Oaks, CA, pp. 508-510, 2007.

[11] G. Concas, M. Marchesi, G. Destefanis, and R. Tonelli,

"An empirical study of software metrics for assessing

the phases of an agile project," International Journal of

Software Engineering and Knowledge Engineering,

vol. 22, pp. 525-548, 2012.

[12] S. M. A. Shah, M. Morisio, and M. Torchiano,

"Software defect density variants: A proposal," in 4th

International Workshop on Emerging Trends in

Software Metrics (WETSoM) 2013, pp. 56-61.

[13] S. M. A. Shah, M. Morisio, and M. Torchiano, "An

Overview of Software Defect Density: A Scoping

Study," in 19th Asia-Pacific Software Engineering

Conference (APSEC), Hong-Kong, 2013, pp. 406-415.

[14] C. Rahmani and D. Khazanchi, "A study on defect

density of open source software," in IEEE/ACIS 9th

International Conference on Computer and

Information Science (ICIS), 2010, pp. 679-683.

[15] F. Akiyama, "An Example of Software System

Debugging," in IFIP Congress, 1971, pp. 353-359.

[16] S. McConnell, Code complete: Pearson Education,

2004.

[17] S. Chulani, "Constructive quality modeling for defect

density prediction: Coqualmo," IBM Research, Center

for Software Engineering, 1999.

[18] Y.-M. Zhu and D. Faller, "Defect-Density Assessment

in Evolutionary Product Development: A Case Study in

Medical Imaging," IEEE Software, vol. 30, pp. 81-87,

2013.

[19] P. Mohagheghi, R. Conradi, O. M. Killi, and H.

Schwarz, "An empirical study of software reuse vs.

defect-density and stability," in 26th International

Conference on Software Engineering, 2004, pp. 282-

291.

[20] S. Raghunathan, A. Prasad, B. K. Mishra, and H.

Chang, "Open source versus closed source: software

quality in monopoly and competitive markets,"

Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 35, pp. 903-918,

2005.

[21] G. Phipps, "Comparing observed bug and productivity

rates for Java and C++," Software Practice &

Experience, vol. 29, pp. 345-358, 1999.

Mamdouh Alenezi is the chairman of the computer science
department in the Collage of Computer and Information Sciences
at Prince Sultan University. He received his Ph.D. degree in
Software Engineering from Department of Computer Science at
North Dakota State University, Fargo, ND in 2014. He got a
Master's degree from DePaul University and got a Bachelor's
degree from Prince Sultan University. Dr. Alenezi taught many
software engineering courses including Software Construction,
Software Requirements, and Group Dynamics. His research
interests include Mining Software Repositories, Software
Maintenance, Software Testing, and Machine Learning. He has
numerous publications in the field of Software Engineering and
continually conducts reviews for many conferences in the same
field.

Ibrahim Abunadi is Assistant Professor and website content
director in the Collage of Computer and Information Sciences at
Prince Sultan University in Saudi Arabia. He received his Ph.D. in
Information Systems from the School Information Communication
Technology at Griffith University in Australia. Dr. Abunadi taught
many courses including Human Computer Interaction, Business
Process Management, Enterprise Architecture, Technology
Innovations, Business Analysis, Computer Databases and
Computer Applications for Business. He has worked as an IT
analyst for Computer Associates and as a strategic consultant for
the Saudi Computer Association. His research focuses on software
engineering, technology adoption, e-government and human-
computer interaction. He has numerous publications in the field of
Information Systems and Software Engineering and continually
conducts reviews for many conferences and journals in the same
fields. Dr. Abunadi is a member of the following associations:
Saudi and Australian Computer Societies, ACM, Association of
Information Systems and IEEE.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 148

2015 International Journal of Computer Science Issues

