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Abstract 

In this paper, we present the study of image segmentation 
using compound normal with gamma mixture(CNGM) 
distribution, derivation of the estimates of model parameters, 
construction of Expectation-Maximization(EM) algorithm and 
its performance analysis in comparison to the current 
model(statistical) and structural(organization and relationship 
among pixels) based image analysis approaches. In this model, 
the pixel intensities in each image region  are assumed to 
follow Gaussian distribution in which the rate parameter(ିߪଶ) 
is random and follows gamma distribution. Hence it has the 
advantage of dealing with a mixture of mesokurtic and 
leptokurtic distributions that may be inherent in some images. 
Thus, it generally fares better than a finite normal 
mixture(NM) based model since the latter assumes that all 
components follow normal distribution and normal 
distribution is mesokurtic in general. Also it includes image 
segmentation based on Gaussian mixture model as a particular 
case. 
Keywords: ܰߤ)݈ܽ݉ݎ݋, (ଶߪ Λ

 EM              ,(௩ଶ߯ܿ)ܽ݉݉ܽܩଶିߪ
algorithm, statistical image analysis, image segmentation, 
pixel classification 
 
1. Introduction 
 
Image analysis falls under the broad category of pattern 
analysis of which image segmentation is an important step to 
subdivide an image into its constituent parts. Pixel intensity 
value discontinuity and  similarity in the local neighborhood 
are the basis for edge detection and separating parts of the 
whole image respectively[1],[2]. Region segmentation is 
considered more useful than edge detection since regions 
contain more information than edges and thus has been still 
actively pursued by research community in general[3].  

 
However, image segmentation is an ill posed problem because 
it may be subjective or objective within the perspective of the 
end application. For example, homogeneous regions can be 
easily separated and thus segmentation here is more objective 

and is easily accomplished as is done  in medical imaging. But 
the more general problem of image segmentation involving 
natural images is more subjective since for natural images 
region homogeneity is not well defined  due to natural and 
environmental reasons[3],[4]. 

  
Ground truth segmentation conditions  for natural images  can 
not be precisely defined and these may vary from one 
perceptual view to the other. If we consider humans to be the 
qualitative judges for segmentation, we may consider the 
segmentation data produced by them as a benchmark against 
which any proposed  segmentation method  is compared and 
its segmentation quality assessed[4],[6],[9]. 
  
As stated in [3], image analysis techniques can be classified 
into two major groups: 1)statistical, which uses probability 
distribution functions of pixels and regions to characterize the 
image, and 2) structural, which analyzes the image in terms of 
organization and relationship of pixels and regions by the 
specified relations. 
 
The current literature on statistical image segmentation 
techniques mostly assumes the data describing the image as a 
mixture of components each of which following normal 
distribution i.e., ܰ(ߤ,  ଶ) with some weight. And the wholeߪ
image is thought of as following the weighted distribution 
where weighted distribution implies weighted average of the 
constituent components[3],[6],[7],[8].  However, in many 
natural images, the pixel intensity distributions may not be 
mesokurtic as we have noticed in several image data 
distributions collected from BSD image dataset[5]. This may 
be due to random nature of scale parameter involved in the 
normal mixture model. If we assume that the scale parameter 
of the normal model in each image region is random and 
follows a gamma distribution, the pixel intensities can be well 
characterized by compounding normal distribution with 
gamma distribution. 
 
In our work, we propose the usefulness of compounding 
normal distribution with gamma distribution i.e., 
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,ߤ)݈ܽ݉ݎ݋ܰ (ଶߪ Λ
 which keeps intact the(௩ଶ߯ܿ)ܽ݉݉ܽܩଶିߪ

characteristics of  normal distribution and at the same time 
accommodates deviations from normal distribution controlled 
by scale( c ) and shape(v) parameters in addition to 
location (ߤ). This is normally referred to as being equivalent 
to Pearson’s type VII distributions.  Thus, the proposed model 
effectively deals with mesokurtic  and  leptokurtic deviations 
as shown in Fig. 1 of normal distribution[10]. These factors 
weigh the proposed model’s usefulness for segmentation of 
natural images more than the prevalent normal distribution. 
Accordingly we rephrase the previous paragraph to suggest 
this change. Thus, we assume the image data as a mixture of 
components each of which following compound normal with 
gamma distribution i.e.,  
,ߤ)݈ܽ݉ݎ݋ܰ (ଶߪ Λ

 with some weight. And the(௩ଶ߯ܿ)ܽ݉݉ܽܩଶିߪ
whole image is thought of as following the weighted 
distribution where weighted distribution implies weighted 
average of the constituent components. We bring to the notice 
of the reader that in [11], the authors addressed the estimation 
of generalized mixtures in Pearson’s system of distributions in 
general.  
 
This paper is organized as follows. Section 2 covers 
compound normal with gamma mixture(CNGM) distribution, 
introduces estimation of model parameters via Expectation 
Maximization, and explains the derivation of estimates of the 
model parameters. In section 3, we treat image segmentation 
using EM framework, construct EM algorithm[12] for 
computing updated parameter estimates and discuss the 
experimental setup and give the results. In section 4, we 
evaluate the segmentation performance of the model vis-à-vis 
Gaussian mixture(NM) model and K-means clustering using 
different performance metrics[4],[14]. In  section 5, we place 
our concluding remarks and suggest for further study.

 
Fig. 1 

 
 

 
 
 
 
2. The Model 

 
2.1 Compound normal with gamma mixture(CNGM) 
distribution  
 

As given in[10], compound normal with gamma distribution 
or ܰߤ)݈ܽ݉ݎ݋, (ଶߪ Λ

 is formed by ascribing a (௩ଶ߯ܿ)ܽ݉݉ܽܩଶିߪ
distribution to ߪଶ  i.e., variance by considering it as a random 
variable and fitting a new distribution. The corresponding 
distribution is defined to have a density function as 
 
 

(ݔ)݂ =       (2ܿ)
ି௩
ଶ ቂΓ ቀ

ݒ
2
ቁቃ
ିଵ
න ൧ߪߨ2√ൣ

ିଵ
ቀ(ଶିߪ)

௩
ଶିଵቁ

∞

଴
 . 

ݔ)ଵି(ଶߪ2)ଵି(ଶߪ2ܿ)−]݌ݔ݁                                         
−  ଶିߪ݀[ଶ(ߤ

 

 =   ଵ
௖ భ మ⁄ ஻(ଵ ଶ⁄  ,௩ ଶ⁄ )

ቂ1 + (௫ିఓ )మ

௖ 
ቃ
ି(௩ ାଵ) ଶ⁄

                                  (1)  
 
We use the above distribution model as the basis for our work 
and now define a mixture model based on this. 
  
 The probability density function of the mixture model[12] is 

(ߠ|ݔ)݌ =  ෍ߙ௟

ெ

௟ୀଵ

 (2)                                                             (௟ߠ|ݔ)௟݌

       
where the parameters are  Θ = ,ଵߙ)  … ெߙ, ,ଵߠ,  … ,  ெ) suchߠ
that 
௟ߙ   = ߠ)ܲ =  (௟ߠ
with  0 < ௟ߙ < 1  and 
 

෍ߙ௟

ெ

௟ୀଵ

= 1                                                                                        (3) 

and each ݌௟ is probability density function parameterized by ߠ௟ 
where ߠ௟ = ௟ߤ)  , ܿ௟ ,  ௟). In other words, we assume we have Mݒ
component densities mixed together with M mixing 
coefficients or weights  ߙ௟  . 

 
The probability density function ݌௟  is defined according to (1) 
as   
      

(௟ߠ|ݔ)௟݌  =   
1

ܿ௟
ଵ ଶ⁄ 1)ܤ 2⁄ ௟ݒ,  2⁄ )

ቈ1 +
ݔ) − ௟)ଶߤ

ܿ௟
቉
ି(௩೗ାଵ) ଶ⁄

 

               (4) 
where x refers to each observation(individual pixel intensity 
here),  ߤ௟ , ܿ௟ ,  ௟  are location, scale, and shape  parameters ofݒ
lth component of the mixture respectively and 1)ܤ 2⁄ ௟ݒ, 2⁄ ) 
is the beta function. 
 
The above distribution  has the following characteristics  
݊ܽ݁ܯ =  (5)                                                                                 ߤ
Second central moment about mean,  ߤଶ i.e., variance is  
= ଶߤ  ݁ܿ݊ܽ݅ݎܸܽ  =   

ܿ
ݒ) − 2)     ,     

ݒ ≥  (6)                                                  ݁ܿ݊ܽ݅ݎܽݒ ݁ݐ݂݅݊݅ ݎ݋݂ 3
Third central moment about mean, ߤଷ is 0 since all odd 
moments about mean are zero. 
 
Fourth central moment about mean, ߤସ is 
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ସߤ =  
3ܿଶ

ݒ) − ݒ)(4 − 2)                                                            (7) 

  
Pearson’s  ߚ  coefficients: 
 
Coefficient of skewness 

ଵߚ =  
ଷଶߤ

ଶଷߤ
= 0                                                                            (8)  

 
Coefficient of kurtosis 

ଶߚ =  
ସߤ
ଶଶߤ

=  
ݒ)3 − 2)
ݒ) − 4)                                                             (9) 

ݒ > 4 for finite kurtosis. 
 

For different values of  ݒ, this distribution has different shapes 
of frequency curves. As ݒ increases  ߚଶ tends to 3; thus it 
includes mesokurtic distribution. 

  
2.2 Estimation of Model Parameters via Expectation 
Maximization 
 
Before we attempt estimation of model parameters via 
Expectation Maximization for our model, we shall briefly 
discuss Maximum-likelihood and Expectation Maximization. 
The interested readers are encouraged to refer to [12] and also 
the references therein for a rigorous treatment of EM 
algorithm. 
 
The likelihood of the ML estimate of the model parameters is 
given by  

ℒ(Θ|ܺ) = ෑ݌(ݔ௜|Θ)
ே

௜ୀଵ

                                                            (10) 

 
Often we maximize log-likelihood of the model parameters, 
 .because it is analytically easier ( ℒ(Θ|ܺ))݃݋݈
If we assume that ܼ = (ܺ,ܻ) is complete data where X is 
known and Y is unknown, a joint density function may be 
defined for  ݖ as  
(Θ|ݖ)݌ = ,ݔ)݌ (Θ|ݕ =  (11)                              (Θ|ݔ)݌(Θ,ݔ|ݕ)݌
which further leads  to define the complete-data likelihood 
function, 
ℒ(Θ|ܼ) = ℒ(Θ|ܺ,ܻ) =  (12)                                         (Θ|ܻ,ܺ)݌
 
Expectation step: 
 
The EM algorithm first finds the expected value of the 
complete-data log-likelihood   log  with respect to  (Θ|ܻ,ܺ)݌
the unknown data Y given the observed data X and the current 
parameter estimates.  
That is we define 
ܳ൫Θ,Θ(௜ିଵ)൯ = Θ(௜ିଵ)൯൧,ܺ|(Θ|ܻ,ܺ)݌൫logൣܧ

= ∫௬∈Υ log ݌(ܺ, Θ(௜ିଵ)൯,ܺ|ݕΘ)݂൫|ݕ         ݕ݀
                         (13)                  
where Θ(௜ିଵ)are the current parameters estimates that we use 
to evaluate the expectation and Θ are the new parameters that 
we optimize to increase ܳ. Note that ݂൫ݕ|ܺ,Θ(௜ିଵ)൯is the 
marginal distribution of the unobserved data and is dependent 

on both the observed data X and on the current parameters, 
and Υ is the space of values y can take on. 
 
Maximization step: 
 
Here we maximize the expectation we computed in the 
previous step. That is we find: 
  
Θ௜ =   argmax

Θ
ܳ൫Θ,Θ(௜ିଵ)൯                                                      (14) 

         
The above two steps are repeated as necessary. Each iteration 
is guaranteed to increase the log-likelihood and the algorithm 
is guaranteed to converge to a local maximum of the 
likelihood function. 
 
2.3 Derivation of estimates of model parameters: 
 
Equation (12) takes the form 

ܳ(Θ,Θ௚) =  ෍ log൫ℒ(Θ|ܺ,ݕ)൯݌(ݕ|ܺ,Θ௚)
௬∈Υ

 

 solution of which yields 

ܳ(Θ,Θ௚) = ෍෍ log൫ߙ௟݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚) 

 

=  ෍෍ log(ߙ௟)
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)

+  ෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)                                 (15)

 
 
where ߙ௟ is the prior probability of lth component, ݌௟(ݔ௜|ߠ௟) is 
the conditional probability of ݔ௜ belonging to l and is defined 
for our model as in (4) , and ݔ|݈)݌௜ ,Θ

௚) is the posterior 
probability of component  l given ݔ௜ and current estimates of 
parameters Θ௚ and  is defined as 

௜ݔ|݈)݌ ,Θ
௚) =  

(௟ߠ|௜ݔ)௟݌௟ߙ
∑ ெ(௟ߠ|௜ݔ)௟݌௟ߙ
௟ୀଵ

                                              (16) 

      
 

To maximize (15), we maximize the term containing ߙ௟ and 
the term containing ߠ௟ independently since they are not 
related. 
 
Analytical expressions for ߙ௟ and  ߠ௟ : 
 
To find the expression for ߙ௟, we introduce the Lagrange 
multiplier  (optimization constrained by ߙ௟) with the 
constraint that ∑ ௟௟ߙ = 1, and solve the following equation  
߲
௟ߙ߲

൥෍෍ log(ߙ௟)
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚) + ߣ  ൭෍ߙ௟ − 1

௟

൱൩ = 0          

  
                        (17) 
     

Solution of which yields 

௟ߙ =  
1
ܰ
෍ݔ|݈)݌௜ ,Θ

௚)  
ே

௜ୀଵ

                                                           (18) 
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To find the expression for   ߤ௟ , ܿ௟ ,  ௟ we maximize theݒ ݀݊ܽ 
term containing ߠ௟( ߤ௟ , ܿ௟ ,  ௟) in (15)  and solve by takingݒ
partial derivatives with respect to   ߤ௟ , ܿ௟ ,  ௟  and equateݒ ݀݊ܽ 
them to zero. That is we have to solve the following three 
equations 
߲
௟ߤ߲

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0  

                                    (19) 
߲
߲ܿ௟

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0                   

                        (20) 
߲
௟ݒ߲

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0                

                         (21)                          
     
  

The solution for equations (19), (20), and (21) is derived in 
Appendix and is given as 
   

௟ߤ =  
∑ ௜ݔ|݈)݌௜ݔ ,Θ௚)ே
௜ୀଵ

௟ߙܰ
                                                           (22)  

   

ܿ௟ =  
௟ݒ) + 1)
௟ߙܰ

  ෍(ݔ௜−ߤ௟)ଶݔ|݈)݌௜ ,Θ
௚)

ே

௜ୀଵ

                             (23)    

       

௟ݒ =
௟ߙܰ

∑ log ൤1 + ௜ݔ) − ௟)ଶߤ
ܿ௟

൨ ௜ݔ|݈)݌ ,Θ௚)ே
௜ୀଵ

− 1  

                      (24) 
 
3. Experimentation 

 
3.1 Image segmentation  
 
In this section, we describe how image segmentation is 
performed using EM algorithm for the mixture model defined 
by   compound normal with gamma distribution i.e.,  
,ߤ)݈ܽ݉ݎ݋ܰ (ଶߪ Λ

 The basic steps here are .(௩ଶ߯ܿ)ܽ݉݉ܽܩଶିߪ
 
Step1: Decide M, the number of segments based on the 
number of components of the mixture   i.e., fix   Θ =
,ଵߙ)  … ெߙ, ,ଵߠ,  …  .(ெߠ,
 
Here we decide M, the number of segments, by looking at the 
number of peaks in the   histogram of the image data. The 
decision on M is highly subjective for natural images. Though 
our approach for deciding M is purely heuristic in nature and 
involves some degree of randomness, we have relied on this 
approach since our main goal is to study the efficacy of the 
proposed model in comparison to the established methods 
under similar experimental settings.  However, it is possible to 
obtain the number of image regions by optimizing model 
criterion like minimum description length(MDL)[3] which 
will be considered elsewhere. 

 

Step2: Initialize Θ. 
 
Here we initialize Θ using K-means clustering where K is set 
to M as decided in step 1. Since K-means gives mean and 
variance for all K, we use this variance , ߪଶ , and some initial 
value for  ݒ௟ to compute initial value for ܿ௟ by using (6). 
 
Step3: Invoke EM algorithm. 
 
EM Algorithm:  
 
E-step: Compute the expectation as 
 
௜ݔ|݈)(௤)݌ ,Θ

௚) = 
௟ߙ

(௤)݌௟ ቀݔ௜|ߠ௟
(௤)ቁ

∑ ௟ߙ
(௤)݌௟ ቀݔ௜|ߠ௟

(௤)ቁெ
௟ୀଵ

ݍ)   = 0,1,2, … )                    

 

M-step: Compute the updated parameter estimates 
   

௟ߙ
(௤ାଵ) =  

1
ܰ
෍݌(௤)(݈|ݔ௜ ,Θ

௚)  
ே

௜ୀଵ

           

 
௟ߤ

(௤ାଵ) =  
∑ ௜ݔ|݈)(௤)݌௜ݔ ,Θ௚)ே
௜ୀଵ

௟ߙܰ
(௤ାଵ)                 

 

௟ݒ
(௤ାଵ) =

௟ߙܰ
(௤ାଵ)

∑ log ቎1 +
ቀݔ௜ − ௟ߤ

(௤ାଵ)ቁ
ଶ

ܿ௟
(௤) ቏݌(௤)(݈|ݔ௜ ,Θ௚)ே

௜ୀଵ

− 1 

 

ܿ௟
(௤ାଵ) =  

ቀݒ௟
(௤ାଵ) + 1ቁ

௟ߙܰ
(௤ାଵ)   ෍ቀݔ௜ − ௟ߤ

(௤ାଵ)ቁ
ଶ
௜ݔ|݈)௤݌ ,Θ

௚)
ே

௜ୀଵ

 

 
ݍ) = 0,1,2, … )                                                                     
 
The stopping criterion is 
 

หlogℒ(௤ାଵ) − logℒ(௤)ห <  ߳                                             
 
where ℒ, given by (10), is the likelihood of the parameter 
estimates, ߳ is error tolerance. 
 
3.2 Implementation 
 
We have implemented the EM algorithm[12], [13] for our 
model in MATLAB and tested its efficacy for image 
segmentation using a collection of randomly picked images of 
80x120 and 120x80 resolution from Berkeley Segmentation 
Image Dataset[5]. We have obtained fruitful segmentation 
results as shown in Fig. 2 and Table 1. In our experiment, we 
have used initial value for  ݒ௟ as 100. Fig. 2 shows the original 
and its constituent segments for the images under study as 
obtained by our model based approach. Table 1 lists the 
corresponding EM estimates of ߙ௟ , ௟ߠ , logℒ,  and probability 
density  plots for our model under varying conditions. 
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Snake (Image5), Resolution: 80x120; K=2 

                                                          
Sunset (Image2), Resolution: 80x120; K=3 

 
Fox (Image7), Resolution: 80x120; K=3 

 
Eagle (Image9), Resolution: 80x120; K=4 

 
Church (Image1), Resolution: 80x120; K=5 

 
Man (Image6), Resolution: 80x120; K=5 

 
Horse (Image8), Resolution: 80x120; K=7 

 
Lady (Image4), Resolution: 120x80; K=4 

 
Crane (Image3), Resolution: 120x80; K=7 
 
 
 
 
 
 

Fig. 2 
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Table 1: EM Estimates of CNGM  

Image# Image 
 
αl 

Θl 
Log L 

 
Probability Density Plot 

 μl cl vl 

1 Church 

0.0295 43.5217 12225.3623 116.4324 

-46062.0042 
(K=5) 

 

0.4354 91.2925 6728.5108 113.7220 
0.1269 191.0480 120591.9695 110.2610 
0.1232 123.7056 40050.4402 112.7671 
0.2850 247.3454 3337.0373 115.9901 

2 Sunset 

0.0072 158.3989 580883.8869 106.2480 

-37155.9503 
(K=3) 

 

0.3231 35.1944 18903.8470 111.2617 
0.6697 78.6328 2050.9579 118.1042 

3 Crane 

0.2048 56.6862 7283.4899 119.4648 

-46956.8852 
(K=7) 

 

0.0352 244.8573 25907.0627 130.2524 
0.0953 174.8296 7281.1083 132.4431 
0.1390 43.6292 9333.7853 125.0380 
0.1750 91.3805 13429.9703 120.4027 
0.2567 72.9626 7739.0791 119.6287 
0.0940 119.0308 52827.3095 120.1271 

4 Lady 

0.2230 77.0914 129189.4002 116.3851 

-50285.3551 
(K=4) 

 

0.2072 13.2193 4654.2967 121.8693 
0.2498 141.7001 83307.6606 117.1899 
0.3200 196.6597 14763.2779 118.7747 

5 Snake 

0.0611 77.3038 14822.8433 102.3654 

-35050.7860 
(K=2) 

 

0.9389 130.6413 5321.0720 103.1120 

6 Man 

0.1315 79.5459 19409.0749 106.4885 

-46671.8175 
(K=5) 

 

0.5040 106.7774 8763.3540 107.0155 
0.0808 231.5389 50469.6160 106.7767 
0.0950 132.7610 26062.3880 109.0858 
0.1887 49.7040 12322.8847 107.9518 

7 Fox 

0.3179 253.2695 606.8151 123.5622 

-37555.2564 
(K=3) 

 

0.5726 13.6695 2698.5352 120.9752 
0.1095 122.5523 681368.7795 107.1093 

8 Horse 

0.1428 130.8440 12285.8134 111.6455 

-48789.2925 
(K=7) 

 

0.0969 56.9269 6979.7405 112.4993 
0.1185 188.0797 10154.2553 111.2398 
0.2483 147.7071 6948.1514 110.8624 
0.0904 212.5953 15868.9668 114.9683 
0.1233 91.8103 19171.3258 110.8071 
0.1798 166.9797 8381.3243 110.8406 

9 Eagle 

0.1352 112.9531 64739.0988 126.1231 

-44258.9502 
(K=4) 

 

0.5649 196.2245 4861.7583 134.3927 
0.1208 50.4070 46687.0443 122.4253 
0.1791 176.1212 48108.4469 129.7354 
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4. Performance Analysis of the model 
 

4.1 Segmentation performance of the model  
 
In this section, we compare the segmentation performance of 
the model studied against Gaussian mixture model and K-
means clustering using three performance metrics, viz., Global 
Consistency Error(GCE), Probabilistic Rand Index(PRI), and 
Variation of Information(VoI) which are widely used in the 
current literature[4],[14]. All the three metrics compare two 
segmentation techniques by finding classification errors in the 
proposed method with respect to pixel labeling in the bench 
mark classifier.  
 
In particular, the GCE is a measure of overlap between the 
segments produced by two segmentation methods. It is the 
average of  minimum of the sums of the  local refinement 
error(LRE) in both directions of the two segmentation 
methods for all pixels, where LRE is the degree of overlap 
between two sets; it is 0 if there is complete overlap in the 
given direction, and is 1 if there is no overlap at all. Thus GCE 
ranges between 0 and 1 and lower GCE values for test 
segmentation vis-à-vis the benchmark segmentation suggest 
their closeness with each other.   
 
The PRI is defined based on the assumption that the test 
segmentation follows Bernoulli distribution given benchmark 
segmentation yielding values between 0 and 1, higher values 
being better.  
 
The VoI is based on information theory and is a function of 
individual entropies of both the segmentations and mutual 
information between them yielding values between 
(0..VoI_max], lower values being better. 
 
Mainly, we have considered the Gaussian mixture model and 
the agglomerative K-means clustering based segmentation 
methods to evaluate the performance of our model. The 

performance comparison is done on BSD image data set under 
varying conditions. Table 2 shows comparison of our 
model(CNGM)        vis-à-vis Gaussian mixture(NM) and K-
means clustering for different K values. Classification errors 
are almost zero in our model in comparison to the popular 
Gaussian mixture model. Even it is expected to perform better 
in case the pixel distribution in images is highly influenced by 
scale and shape parameters. Our model is shown to be more  
closer to K-means clustering than Gaussian mixture model. 
This is probably due to the reason that local distributions are 
more correctly modeled by our model than Gaussian mixture 
model. A scatter plot comparison of CNGM/NM/K-means for 
PRI, GCE, and VoI values on test images is shown in Fig. 3. 
These figures also testify the closeness of our model with 
Gaussian mixture model and relatively more closeness with K-
means clustering    than Gaussian mixture for the images we 
have considered for experimentation. Majority of the images, 
viz., Church, Sunset, Crane, Lady, Snake, and Fox have 
component distributions which are seemingly  leptokurtic. For 
these images, we have observed that our model(CNGM) is 
more closer than Gaussian mixture(NM) model vis-à-vis K-
means clustering. For the other images, viz., Man, Horse, and 
Eagle, NM is more closer to K-means. This may be due to the 
reason that CNGM is more correctly modeling leptokurtic 
distributions than NM.   
 
4.2 Convergence Performance of the model 
 
In our work, we have also addressed the convergence of EM 
algorithm of the model studied vis-à-vis Gaussian mixture 
model and found that the number of iterations taken by our 
model is almost always less than  Gaussian mixture based one, 
and the Log-likelihood for our model is found to be always 
better. The segmentation time in seconds has been recorded 
for our model and Gaussian mixture model and found that our 
model is a competing one. These results are presented in Table 
3 and Fig. 4. 
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Table 2: Segmentation Performance(CNGM/NM/K-means)  

Image# Image 
 

CNGM/NM 
 

CNGM/K-means 
 

NM/K-means K 
PRI GCE VoI PRI GCE VoI PRI GCE VoI 

1 Church 0.9545 0.1118 0.6019 0.8352 0.2156 1.2237 0.8210 0.2332 1.3803 5 
2 Sunset 1 0 0 0.8941 0.0837 0.5760 0.8941 0.0837 0.5760 3 
3 Crane 0.9908 0.0350 0.2147 0.9075 0.2167 1.0412 0.9092 0.2215 1.0633 7 
4 Lady 0.9668 0.0603 0.3746 0.9169 0.1526 0.7778 0.8896 0.1948 0.9674 4 
5 Snake 0.9988 0.0012 0.0125 0.9996 0.0004 0.0048 0.9983 0.0016 0.0160 2 
6 Man 0.9026 0.1314 0.7178 0.9250 0.1406 0.7207 0.9232 0.1186 0.6891 5 
7 Fox 0.9938 0.0088 0.0657 0.9350 0.0650 0.4812 0.9295 0.0676 0.5050 3 
8 Horse 0.8685 0.3219 1.4234 0.9098 0.2198 1.1102 0.9241 0.2023 0.9998 7 
9 Eagle 0.9622 0.0518 0.3236 0.9519 0.0734 0.4206 0.9869 0.0343 0.2144 4 

 

 
(a)                                                                                         (b) 

 
(c) 

Fig. 3 Plots of Segmentation Performance: CNGM/NM/K-means; (a) PRI, (b) GCE, and (c) VoI 
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Table 3: Convergence Performance(CNGM/NM)  

 
Image# Image 

 
No of Iterations 

 

 
Log Likelihood 

 

 
Segmentation Time 

(Seconds) K 

CNGM NM CNGM NM CNGM NM 
1 Church 9 16 -46062.0042 -1140379.3523 99.63 70 5 
2 Sunset 8 10 -37155.9503 -162034.2116 52.03 28.16 3 
3 Crane 14 23 -46956.8852 -307538.0757 210 131.7 7 
4 Lady 13 27 -50285.3551 -658283.3970 113 95 4 
5 Snake 1 4 -35050.7860 -53241.4023 5.9 6.95 2 
6 Man 5 19 -46671.8175 -166267.4362 59.48 86.66 5 
7 Fox 8 13 -37555.2564 -4016587.1177 53.4 34.55 3 
8 Horse 7 49 -48789.2925 -81818.7168 109.48 298.94 7 
9 Eagle 13 7 -44258.9502 -308081.3139 155.9 36.77 5 

 

 
(a)                                                                                            (b) 

 
(c) 

Fig. 4 Plots of Convergence Performance: CNGM/NM; (a) Number of Iterations,(b) Log-likelihood, and (c)Segmentation Time 
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5. Conclusions 
 

In this work, we have studied the efficacy of the compound 
normal with gamma mixture distribution model  for solving  
image segmentation problem. We have derived the updated 
equations for  model parameters(closed form ones for  
௟ߤ , ܿ௟  ௟ which appears to be aݒ ௟; surprisingly forݒ ݀݊ܽ,
possible novelty) and constructed EM algorithm for the 
proposed model. We experimented the model using 
MATLAB. We have rigorously tested the performance of the 
model vis-à-vis Gaussian mixture model and K-means 
clustering  on several images collected from BSD image data 
set[5] under  varying conditions. Classification errors are 
almost zero in our model in comparison to the popular   
Gaussian mixture model. Even it appears to perform better in 
case the pixel distribution in images is highly influenced by 
scale and shape parameters. Our model is shown to be more 
closer than Gaussian mixture model to K-means clustering. 
This is probably due to the reason that local distributions are 
more correctly modeled by our model than Gaussian mixture 
model. We have also studied convergence properties of EM 
algorithm based on  our model with respect to number of 
iterations and log likelihood and found that it is relatively 
better than Gaussian mixture model. We have also given 
segmentation time that our algorithm takes in comparison to 
Gaussian mixture model based one and found that ours is a 
competing one. In our work, the decision on the number of 
segments, since it is more subjective for natural images, is 
based on identification of the number of peaks in the 
histogram plot of the image data. This approach is purely 
heuristic in nature and involves some degree of randomness. 
However, it is possible to obtain the number of image regions 
by optimizing model criterion like minimum description 
length(MDL)[3] which will be considered elsewhere. 
 
 
 
Appendix 
 
Aim: To derive solution for estimates of the model 
parameters, ߠ௟(ߤ௟ ,ܿ௟ ,   .(௟ݒ
 We know that 

௟ߙ =  
1
ܰ
෍ݔ|݈)݌௜ ,Θ

௚)  
ே

௜ୀଵ

                                                             (1) 

 Here, we present the derivation of  model parameters’ 
estimates, ߠ௟(ߤ௟ , ܿ௟  ௟), by solving the following threeݒ,
equations. 
߲
௟ߤ߲

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0  

                                     (2)       
߲
߲ܿ௟

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0                   

                         (3) 
߲
௟ݒ߲

൥෍෍ log൫݌௟(ݔ௜|ߠ௟)൯
ே

௜ୀଵ

ெ

௟ୀଵ

௜ݔ|݈)݌ ,Θ
௚)൩ = 0                

                          (4)   
where    ݌௟(ݔ௜|ߠ௟) is the probability   density function 

governed by   compound normal with Gamma distribution and 
is given by 
      

(௟ߠ|௜ݔ)௟݌  =   ଵ

௖೗
భ మ⁄ ஻(ଵ ଶ⁄  ,௩೗ ଶ⁄ )

ቂ1 + (௫೔ିఓ೗)మ

௖೗
ቃ
ି(௩೗ାଵ) ଶ⁄

    

After substitution of the RHS of the above equation in (2) and 
expanding log term, it yields 
 
߲
௟ߤ߲

൥෍෍൥log
1

ܿ௟
ଵ ଶ⁄ 1)ܤ 2⁄ ௟ݒ,  2⁄ )

ே

௜ୀଵ

ெ

௟ୀଵ

− ൬
௟ݒ + 1

2
൰ log ቈ1

+
௜ݔ) − ௟)ଶߤ

ܿ௟
቉቉ ௜ݔ|݈)݌ ,Θ

௚)൩ = 0 

Taking linear term as approximation for the second ‘log’ term 
expansion in the above equation, it becomes 

߲
௟ߤ߲

቎෍෍቎log
1

ܿ௟
ଵ ଶ⁄ 1)ܤ 2⁄  , ௟ݒ 2⁄ )

ே

௜ୀଵ

ெ

௟ୀଵ

− ൬
௟ݒ + 1

2
൰ ቈ

௜ݔ) − ௟)ଶߤ

ܿ௟
቉቏ ௜ݔ|݈)݌ ,Θ

௚)቏ = 0 

           (5) 
since for any real no z that satisfies 0<z<2, the following 
formula holds: 
 

          .....
4
1

3
1

2
11ln

432











zzzzz  

Taking linear term as approximation,  1ln  zz . 
Solution of (5) for component l after ignoring constant terms 
with respect to ߤ௟  , it becomes 
 

෍൤−൬
௟ݒ + 1

2
൰ (−2) ൬

௜ݔ − ௟ߤ
ܿ௟

൰൨
ே

௜ୀଵ
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The above equation leads to ߤ௟ as 
 

௟ߤ =  
∑ ௜ேݔ
௜ୀଵ ௜ݔ|݈)݌ ,Θ௚)

௟ߙܰ
                                                         (6) 

 
A similar treatment of (3) yields 
߲
߲ܿ௟
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1
2 log ܿ௟
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௜ୀଵ
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= 0                   
Solving the above equation for component l after ignoring 
constant terms with respect to ܿ௟  , it becomes 
 

෍ቈ
1
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ܿ௟ଶ
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The above equation further leads to ܿ௟ defined as 
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ܿ௟ =  
௟ݒ) + 1)
௟ߙܰ
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A similar treatment of (4) yields 
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Solving the above equation for component l after ignoring 
constant terms with respect to ݒ௟  , it becomes 
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               (8) 
The solution for the first term in the above equation is as 
follows: 
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Taking linear approximation of log x as (x-1) in (10), it takes 
the form  
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Hence (9) takes the form 
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Therefore, solution for (8) may be rewritten as 
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Solving for  ݒ௟ , the above equation yields 
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