
1 

Localization for Fire Rescue Applications by Using Wireless 

Sensor Networks  

Ahmed E. Abo-Elhassab
1
, Sherine M.Abd El-Kader

2
 Salwa Elramly 

3
 and Hussein S. Eissa

4
 

1
 Researcher at Electronics and Communication Eng. Department, Ain-Shams University, Cairo, Egypt and 

Network Operation Center Engineer at TEDATA Company, Cairo, Egypt. 

2
 Professors at Computers and Systems Department, Electronics Research Institute, Cairo, Egypt and 

 Head of Technology Innovation Support Center (TISC) at ERI, Cairo, Egypt 

3
 Professors at Electronics & Communication Eng. Department Ain-Shams University, Cairo, Egypt, was the 

Head of Electronics & Communication Eng. Department Ain-Shams University, Cairo, Egypt, and 

IEEE Senior Member 

4
 Associate Professor at Computers and Systems Department, Electronics Research Institute, Cairo, Egypt and Director of 

Information Systems & Crisis management dept. at ministry of communications & information technology. Cairo, Egypt 

Abstract 
Localization in Wireless Sensor Networks (WSNs) is very 
important. It can be used in various applications one of these 
applications is the Fire Rescue system. Localization means the 
determination of geographical locations of sensor nodes, 
consequently detecting the event location and to initiate a prompt 
action whenever necessary. The localization process passes with 
three phases which are distance and/or angle estimation phase, 
position phase, and algorithm phase. There are many techniques 
can be used in each phase, some of these techniques that may add 

additional devices, cost, power consumption, or delay to the 
network. This paper studied the most popular localization 
algorithms for WSN in each phase then demonstrated their 
problems with some suggestions for their solutions. Finally, the 
suitable Localization techniques for different categories of fire 
rescue system application will be recommended. 

Keywords: Wireless Sensor Networks, Localization Algorithms, 

Position Estimation, Fire Rescue.      

1. Introduction

WSNs consist of many sensors deployed in a certain area to 

monitor or detect an event(s) depending on the used 

application. WSNs are composed of hundreds, possibly 

thousands, of tiny low-cost and smart devices called Sensor 

Nodes (SN) that are capable of measuring various physical 

values they can detect temperature, sound, pressure, etc., 
this sensors are deployed in large numbers, and they are 

communicating with each other and organizing themselves 

in order to cooperatively achieve a desired task It can 

provide opportunities for monitoring and controlling homes, 

cities, and the environment. WSNs can be used in many 

applications such smart home  [4], precision agriculture 

[35], habitat monitoring [6], environmental monitoring [6], 

animal migratory patterns [27], volcano monitoring [39], 

structural monitoring [13], vehicle tracking [22];[34], traffic 

control [14] and natural disaster detection [16]. 

The main challenges of a WSN design and implementation 
are power consumption constrain for nodes using batteries, 

scalability to large scale of deployment, Ability to withstand 

harsh environmental conditions and ease of use. An 

important aspect in most of the sensor networks application 

is the localization of the individual nodes, localization 
capability is a highly desirable characteristic of wireless 

sensor networks in environmental monitoring applications 

such as bush fire surveillance, water quality monitoring and 

precision agriculture, and other applications. The 

measurement data are meaningless without knowing the 

location from where the data are obtained. Moreover, 

location estimation may enable a myriad of applications 

such as intrusion detection, road traffic monitoring, health 

monitoring, reconnaissance and surveillance. Localization 

enables the efficient routing: A typical sensor network has 

large number of nodes which communicate at very short 
distance (a few meters). The data sensed by a node has to be 

communicated to the central unit through several other 

nodes. Thus multi-hop routing is a must. In order to 

impellent multi-hop routing it is necessary that nodes are of 

their locality, namely, they know their relative position with 

respect to their neighbors. Consequently localization 

becomes very important. Localization helps also in saving 

WSN energy, for example; in case of deploying a sensor 

network for pollution monitoring, the neighbor sensor nodes 

will have data which will not be dramatically different from 

each other. Thus to save power it makes sense to combine 

the data from neighboring nodes and then communicate the 
combined, reduced data set, thereby conserving power 

(since communication takes lot more power than local 

processing). In order to do this local data fusion, we will 

need the location information. Localization useful in 

locating the source of the data: In many applications, an 

event based sensor network is used. Here, the nodes are 

normally in sleep mode and when an event occurs (say 

sudden vibrations take place) the nodes are awakened. The 

nodes than sense and transmit the data. Such data requires a 

location stamp and therefore localization becomes 

necessary. From the previous examples we see that 
localization is indeed a necessity for sensor networks. 

Moreover, localization techniques vary depending on 

applications. [30]. Localization systems can be divided into 

three distinct components as shown in Fig. 1:  
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Distance/angle estimation: This component is responsible 

for estimating information about the distances and/or angles 

between two nodes. This information will be used by the 
other components of the localization system. Position 

computation: This component is responsible for computing 

a node’s position based on available information concerning 

distances/angles and positions of reference nodes, reference 

nodes are nodes which it is positions is known.   

Localization algorithm: This is the main component of a 

localization system. It determines how the available 

information will be manipulated in order to allow most or all 

of the nodes of a WSN to estimate their positions. 

 

 

 

                Fig. 1  Localization systems components.  

The rest of this paper is organized as follows. In section 2, 

Fire rescue environment is described. In section 3 Angle 

estimation techniques are explained. Section 4 describes an 

overview about distance estimation techniques. A 

classification about position estimation techniques are 

presented in Sections 5. Localization algorithm phase is 
explained in section 6. Using wireless sensor networks for 

fire rescue applications and the importance of localization in 

this application is tabulated in section 7. Conclusions and 

future work are introduced in Section 8, 9 respectively. 

 

2.  Localization for Fire Rescue Applications 

by Using Wireless Sensor Networks  

Fire rescue is one of the most important public safety 

activities. A typical scenario of the fire rescue process is 

depicted as follows. After a fire department gets a fire alarm 

call, it will send a fire rescue team to the fire field. 

Normally, a fire rescue team consists of one incident 

commander vehicle, two engine vehicles, one ladder 

vehicle, and the most important role, a set of firefighters, 

who are grouped as squads associating with one of the 

above vehicles. During the process of fire rescue, the 

incident commander is in charge of the whole fire rescue 
situation, including monitoring the fire field and making 

real-time schedule on firefighter assignment. The two 

engine vehicles carry water which will be used in the case 

when water is lack near the fire field. And the ladder vehicle 

holds the utilities like ladders that are needed by the 

firefighters. The firefighters are organized into different 

squads based on their specialty and fight cooperatively to 

eliminate fire in the fire field. This fire rescue operation 

mode has several shortages. First of all, the incident 

commander could not have a clear view of neither the status 

of firefighters after the rescue work starts nor the accurate 

situation of the fire field, so that it is difficult for him to 
make an optimized schedule. Second, the fire fighters in the 

fire field do not know the dangerous situation around him in 

time, which increases the danger to the firefighter as well. 

Finally, it is inflexible for the fire departments headquarter 

located far away from the fire field to get fresh and timely 
fire rescue information, which is particularly important for 

big cities which might have multiple fires at the same time. 

More real-time information about the firefighter and fire 

field is wanted by the incident commander and the fire 

department. First, the incident commander needs the real-

time location information of firefighters, because the 

firefighters keep moving according to the fire situation 

during the process of fire rescue. Having the location 

information, the incident commander can make better 

schedule, e.g., he can find firefighters with some specialty 

and send them to where they are needed. In addition to the 
information about firefighters, the fire field information is 

also very useful for the incident commander to judge the 

real situation of the fire rescue and make real time decision 

and schedule. Thus, the WSN could be used to collect the 

environment information of the fire field, including the 

humidity and temperature of the fire field, the wind speed, 

the density of the smoke, and so on. Furthermore, the 

information about some vital events in the fire field need to 

be monitored as well, e.g., the death of the firefighters and 

the dramatic changing of the environment parameters, such 

as temperature, chemical and biological leak. Based on this 

information, the incident commander and fire department 
will have a clear view of the fire situation and make 

effective schedule to fight the fire. Not only does the 

incident commander sitting near the fire field need the 

information collected by the WSN, but also the officers 

sitting in the fire department, which is located far away from 

the fire field. In a big city like New York, there may be 

several fires happened at the same time, so the officers in 

the fire department need to make schedule on how to control 

these fires effectively and concurrently. Thus the real-time 

information from different fire fields is needed by the fire 

department, and the optimized schedule will be made based 
on this global information. Web based service is one of the 

most convenient ways to provide these information to these 

officers. By doing so, the real-time information from each 

fire field is wrapped as a web-enabled service, accessible 

through regular Web browsers. Because the fire department 

is located far away to the fire field, the traditional Internet 

will act as the bridge to connect the fire field and fire 

department. First, the web-enabled service should provide 

the information that the fire department interested via the 

network, e.g., it continuously reports the live situation of 

each fire field. Second, it will automatically generate some 

events to the fire department to ask aid when more 
firefighters or vehicles are needed. Moreover, the collected 

data can bestride and analyzed later to find some good 

rescue models to support the future fire fight.  

 

3. Angle Estimation 
Angle estimation based on AOA techniques estimates the 

angle at which signals are received depending on either 

amplitude or phase. It can be divided into two subclasses; 

technique that uses the receiver antenna’s amplitude 

response and technique that uses the receiver antenna’s 

phase response. 

 

Distance and/or 
angle Estimation 

Position 

Estimation 

Localization algorithm 
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3.1. Technique uses the receiver antenna’s amplitude 
response 
 

It considers that the beam of the receiver antenna is rotated, 

and the direction corresponding to the maximum signal 

strength is taken as the direction of the transmitter, from Fig. 

2 if the arrow is referring to the transmitter direction which 

is in direction with maximum signal strength [23]. 

 

 

 

 

 
       Fig. 2  Receiver antenna pattern with varying amplitude. 

 

A technical problem to be faced and overcome arises when 

the transmitted signal has varying signal strength, the 

receiver cannot differentiate the signal strength variation due 

to the varying amplitude of the transmitted signal and the 

signal strength variation caused by the anisotropy in the 

reception pattern, from Fig. 1 if the side lobe strength is 

almost equal to the main lobe strength this problem will 
occur [23]. To deal with the problem we can use a second 

non-rotating and Omni directional antenna at the receiver. 

By normalizing the signal strength received by the rotating 

anisotropic antenna with respect to the signal strength 

received by the non-rotating Omni directional antenna, the 

impact of varying signal strength can be largely removed. 

 

3.2 Technique uses the receiver antenna’s phase 

response 
 

It derives the AOA measurements from the measurements of 

the phase differences in the arrival of a wave front; it 

typically requires a large receiver antenna relative to the 

wavelength of the transmitter signal or an antenna array. 

Fig. 3 shows an antenna array of 𝑁 antenna elements, the 

adjacent Antenna elements are separated by a uniform 

distance 𝑑. 

 

 

 

 
 

  

        

                     Fig. 3  Antenna array used in AOA measurement. 

 

The distance between a transmitter far away from the 

antenna array and the ith antenna element can be 

approximated by 

𝑅 𝑖 ≈  𝑅0  −  𝑖𝑑  𝑐𝑜𝑠 𝜃                                                        (1)                                        

WhereӨ is the bearing of the transmitter with respect to the 

antenna array. The transmitter signals received by adjacent 

antenna elements have a phase difference of: 2𝜋
 dcos𝜃

𝜆
 . This 

allows obtaining the bearing of the transmitter from the 

measurement of the phase difference [23]. 

AOA measurement either by using the receiver antenna’s 

amplitude response or by using the receiver antenna’s phase 

response works quite well for high SNR but may fail in the 

presence of strong co-channel interference and/or multipath 

signals. The accuracy of AOA measurements is limited by 
the directivity of the antenna, by shadowing and by 

multipath reflections. The multipath component may appear 

as a signal arriving from an entirely different direction and 

can lead to very large errors in AOA measurements [23], 

[5]. Multipath problem in AOA can be solved by using the 

Maximum Likelihood (ML) algorithms. ML methods will 

estimate the AOA of each separate path in a multipath 

environment.  

4.  Distance Estimation 

Distance estimation techniques used to estimate the 

range between nodes, it can be divided into four 

subclasses; distance estimation based on one-way 
propagation time measurements, distance estimation 

based on round-trip propagation time measurements, 

distance estimation based on time-difference-of-arrival 
measurements, and distance estimation using received 

signal strength measurements. 
 

4.1. One-way propagation time measurements  
 

One-way propagation time measurements measure the 

difference between the sending time of a signal at the 
transmitter and the receiving time of the signal at the 

receiver to determine the distance between the transmitter 

and the receiver, the distance between the transmitter and 

the receiver regardless the processing delay time can be 

given by d = c×|| tT-tR ||, where tT is the transmitting time 

and tR is the receiving time, this processing happens at the 

receiver. This technique requires the local time at the 

transmitter and the local time at the receiver to be accurately 

synchronized. This requirement may add to the cost of 

sensors by demanding a highly accurate clock and/or 
increase the complexity of the sensor network by demanding 

a sophisticated synchronization mechanism. This 

disadvantage makes one-way propagation time 

measurements a less attractive option than measuring round-

trip time in WSNs. A solution for this problem is by using a 

combination of RF and ultrasound hardware on each 

transmission, a transmitter sends an RF signal and an 

ultrasonic pulse at the same time. The time difference 

between the receipt of the RF signal and the receipt of the 

ultrasonic signal is used as an estimate of the one way 

acoustic propagation time. This can be used to adjust clock 

on both the transmitter and the receiver. 
  

4.2. Round-trip propagation time measurements (RTT)  
 

It also known as time of arrival (TOA) [38], it measures the 

difference between the time when a signal is sent by a 

sensor and the time when the signal returned by a second 

sensor is received at the original sensor. Since the same 

clock is used to compute the round-trip propagation time, 

there is no synchronization problem. The major error source 
in round-trip propagation time measurements is the delay 

required for handling the signal in the second sensor. This 

N-1 

N-2 

i 

 1 

0 

𝑅𝑁−1 

𝑅𝑁−2 

𝑅 𝑖 ≈  𝑅0  −  𝑖𝑑  𝑐𝑜𝑠 𝜃 

 
 

𝑅1  

𝑅0 id 

d 

Main lobe 

Side lobe 
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internal delay is either known via a priori calibration, or 

measured and sent to the first sensor to be subtracted. The 

performance of TOA based ranging depends on the 
availability of the direct path (DP) signal. In its presence, for 

example, short distance line - of - sight (LOS) conditions, 

accurate estimates are feasible. The challenge, however, is 

ranging in non - LOS (NLOS) conditions, which can be 

characterized as site - specific and dense multipath 

environments. These environments introduce several 

challenges. The first corrupts the TOA estimates due to the 

multipath components (MPCs), which are delayed and 

attenuated replicas of the original signal, arriving and 

combining at the receiver shifting the estimate. The second 

is the propagation delay caused by the signal traveling 
through obstacles, which adds a positive bias to the TOA 

estimates. The third is the absence of the DP due to 

blockage, also known as undetected direct path (UDP). The 

bias imposed by this type of error is usually much larger 

than the first two and has a significant probability of 

occurrence due to cabinets, elevator shafts, or doors that are 

usually cluttering the indoor environment [16]. 

 

4.3. Time-difference-of-arrival measurements (TDOA) 
 

It measures the TDOA of a transmitter signal at a number of 

receivers with known location information to estimate the 

location of the transmitter. In [23] The TDOA between a 

pair of receivers i and j is given by: 

Δtij≜ ti – tj = 
1

𝑐
 ( ∥ri – rt ∥  -  ∥rj – rt ∥ ) ,𝑖 ≠ j                   (2) 

From Eq. (2) if Δtij is measured sort can be estimated. Fig. 4 

shows the localization using time-difference-of-arrival 

measurements where ti    and tj are the time when a signal is 

received at receivers i and j respectively, C is the light 

speed.The most widely used method in measuring the 

TDOA of a signal at two receivers at separate locations is 

the generalized cross correlation method, where the cross 
correlation function is given by: 

𝜌i ,j(𝜏) =
1

𝑇
∫ 𝑠i(𝑡)𝑠j(𝑡 − 𝜏)
𝑇

0
𝑑𝑡                                          (3) 

 
 
 

 

 
   Fig. 4  localization using time-difference-of-arrival measurements. 

 

Cross correlation method steps is shown in Fig. 5. From [17] 

the TDOA is given by:  

Δtij = 𝑎𝑟𝑔 𝑚𝑎𝑥 (𝜌i , j(𝜏))                                                (4) 
TDOA system requires sensors to be accurately 

synchronized among each other. Cross-correlating signals of 

a pair of sensors (ri ,rj) yields the requested TDOA by 

detecting the peak position. For an accurate estimation of 

the cross-correlation, the used time window per time 

difference estimation should be much larger than the 

maximum delay: T >>𝜏max.[17] . 

The cross-correlation function can also be obtained from an 

inverse Fourier transform of the estimated frequency domain 
cross-spectral density function. Frequency domain 

processing is often preferred because the signals can be 

filtered prior to computation of the cross-correlation 

function. The cross correlation approach requires very 

accurate synchronization among receivers but does not 

impose any requirement on the signal transmitted by the 

transmitter. The accuracy and temporal resolution 
capabilities of TDOA measurements will improve when the 

separation between receivers increases because this 

increases differences between times-of-arrival. Closely 

spaced multiple receivers may give rise to multiple received 

signals that cannot be separated. For example, TDOA of 

multiple signals that are not separated by more than the 

width of their cross-correlation peaks (whose location on the 

time-delay axis corresponds to TDOA) usually cannot be 

resolved by conventional TDOA measurement techniques. 

Yet another factor affecting the accuracy of TDOA 

measurement is multipath problem [5]. 
 

 

 

 

 

 

 

 

 
 
     Fig. 5  Block diagram of generalized cross correlation method. 

 

4.4. Multipath Problem  
 

Overlapping cross-correlation peaks due to multipath often 

cannot be resolved. Even if distinct peaks can be resolved, a 

method must be designed for selecting the correct peak 

value, such as choosing the largest or the first peak [23]. 

Multipath problem can be solved by using an ultra-wide 

band (UWB) signals for accurate distance estimation. A 

UWB signal is a signal whose bandwidth to center 
frequency ratio is larger than 0.2 or a signal with a total 

bandwidth of more than 500 MHz, UWB can achieve higher 

accuracy because its bandwidth is very large and therefore 

its pulse has a very short duration. This feature makes fine 

time resolution of UWB signals and easy separation of 

multipath signals possible [23]. 

 

4.5. Distance estimation using received signal strength 

measurements 
 

It estimates the distances between neighboring sensors from 

the received signal strength measurements. These techniques 

are based on a standard feature found in most wireless 

devices, a Received Signal Strength Indicator (RSSI). They 

are attractive because they require no additional hardware, 

and are unlikely to significantly impact local power 

consumption, sensor size and thus cost. In free space, the 

RSSI varies with the inverse square of the distance d 
between the transmitter and the receiver. 

RSSI = Pr(d) = 
𝑷𝒕𝑮𝒕𝑮𝒓𝝀

𝟐

(𝟒𝝅)𝟐𝒅𝟐
, 𝒅 = √

𝑷𝒕𝑮𝒕𝑮𝒓𝝀
𝟐

(𝟒𝝅)𝟐𝑷𝒓(𝒅)
                (5) 

where 𝑃𝑡  is the transmitted power, 𝐺𝑡  is the transmitter 

antenna gain, 𝐺𝑟  is the receiver antenna gain and 𝜆  is the 

wavelength of the transmitter signal in meters. The free-

space model however is an over-idealization, and the 

propagation of a signal is affected by reflection, diffraction 

r1 
r4 

r2 
r3 

rt 
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and scattering. Of course, these effects are environment 

(indoors, outdoors, rain, buildings, etc.) dependent. 

However, it is accepted on the basis of empirical evidence 

that it is reasonable to model the RSS=𝑃𝑟(d) at any value of 

𝑑  at aparticular location as a random and log-normally 

distributedrandom variable with a distance-dependent mean 

value, That is, 

RSSI [𝑑𝐵𝑚] = 𝑃𝑟(𝑑)[𝑑𝐵𝑚] = 𝑃𝑡  − 𝑃𝐿(𝑑0)-10𝑛𝑝 log10(
𝑑

𝑑0
) 

+ Χ𝜎                                                (6) 

Let 𝑃0(𝑑0)[𝑑𝐵𝑚]= 𝑃𝑡  − 𝑃𝐿(𝑑0)                          (7) 

Then 

RSSI [𝑑𝐵𝑚]  = 𝑃𝑟(𝑑)[𝑑𝐵𝑚]  = 𝑃0(𝑑0)[𝑑𝐵𝑚] -

10𝑛𝑝 log10(
𝑑

𝑑0
) + Χ𝜎                                                (8) 

Where𝑃𝑡 is the transmit power of the sender in dBm, 𝑃𝐿(𝑑0) 
is the power loss in 𝑑𝐵𝑚  at a reference 

distance𝑑0.𝑃0(𝑑0)[𝑑𝐵𝑚] is a known reference power value 

in 𝑑𝐵 𝑚𝑖𝑙𝑙𝑖 𝑤𝑎𝑡𝑡𝑠  at a reference distance d0 from the 

transmitter, np is the path loss exponent that measures the 

rate at which the RSS decreases with distance and the value 

of np depends on the specific propagation environment, Χ𝜎is 

a zero mean Gaussian distributed random variable with 

standard deviation σ and it accounts for the random effect of 

shadowing. It is possible to conclude from Eq. (8) that  

given the RSS measurement Pij between a transmitter i and a 

receiver j, a maximum likelihood estimate of the distance, 

dij, between the transmitter and the receiver is: 

d̂𝑖𝑗  = 𝑑0  
𝑃𝑖𝑗

𝑃0𝑑0
 
−1 𝑛𝑝⁄

                                                     (9) 

Using Eq. (8) and Eq. (9), the estimated distance d̂𝑖𝑗can be 

related to the true distance:   

�̂�𝑖𝑗  = 𝑑𝑖𝑗10
− 

𝛸𝜎
10𝑛𝑝 = 𝑑𝑖𝑗10

− 
𝑙𝑛(10)𝛸𝜎

10𝑛𝑝 𝑙𝑛(10)  =  𝑑𝑖𝑗𝑒
− 

𝛸𝜎
𝜂𝑛𝑝          (10) 

Where:   𝜂 =  
10

𝑙𝑛(10)
                                                                           

The expected value of �̂�𝑖𝑗 is: 

Thus the maximum likelihood estimate in Eq. (8) is a biased 

estimate of the true distance and an unbiased estimate is 

given by:  

𝛦(�̂�𝑖𝑗) =  
1

√2𝜋𝜎
∫ 𝑑𝑖𝑗𝑒

− 
𝛸𝜎
𝜂𝑛𝑝𝑒

− 
𝛸𝜎
2𝜎2

∞

−∞
 𝑑𝛸𝜎 = 𝑑𝑖𝑗𝑒

𝜎2

2𝜂2𝑛𝑝
2
     (11) 

Thus the maximum likelihood estimate in Eq. (9) is a biased 

estimate of the true distance and an unbiased estimate is 

given by:  

d̂𝑖𝑗  = 𝑑0  
𝑃𝑖𝑗

𝑃0𝑑0
 
−1 𝑛𝑝⁄

𝑒
− 

𝜎2

2𝜂2𝑛𝑝
2
                              (12) 

5.  Position Estimation 

Position estimation techniques use angle or distance 
estimation techniques to estimate nodes positions. Several 

methods can be used to compute the position of a node, 

trilateration and probabilistic approaches methods are 

included in this section.  

 

5.1 Trilateration  
 

Trilateration is the process of finding the position of a node 

in space based on its distance to three anchors as shown Fig. 
6. Let the positions of the three fixed anchors be defined by 

vectors: �⃗� 0, �⃗� 1, and �⃗� 2 Є ℛ 2. Further, let 𝑝  Є ℛ 2 be the 

position vector to be determined. Consider three circles, 
centered at each anchor, having radii of di meters, equal to 

the distances between 𝑝  and each anchor �⃗� i. These 

geometric constraints can be expressed by the following 

system of equations: 

║𝑝  -�⃗� 0║
2 

=𝑑0
2 ,                                                         (13) 

║𝑝  -�⃗� 1║
2 =𝑑1

2,                                                                   (14) 

║𝑝  -�⃗� 2║
2 =𝑑2

2 .                                                                  (15) 
Since 

║𝑝 -�⃗� i║
2 = ( 𝑝 − �⃗� i ) . ( 𝑝 − �⃗� i ) = ║𝑝 ║2  - 2�⃗� i. 𝑝  +║�⃗� i ║

2 ,  

Eq.s (13) , (14) and (15) can be rewritten as follows: 

║𝑝 ║2  - 2�⃗� 0. 𝑝  +║�⃗� 0║
2  =𝑑0

2,                                             (16) 

║𝑝 ║2  - 2�⃗� 1. 𝑝  +║�⃗� 1║
2 =𝑑1

2,                                             (17) 

║𝑝 ║2  - 2�⃗� 2. 𝑝  +║�⃗� 2║
2=𝑑2

2 .                                             (18) 
 

Subtracting the second and third equations from the first, 

results in the following two equations: 

 

 
 

 

 

 
 

 
Fig. 6  Trilateration. 

 

2(�⃗� 1 - �⃗� 0) .𝑝  = 𝑑0
2 - 𝑑1

2 - ║�⃗� 0║
2  +║�⃗� 1║

2  ,                        (19) 

2(�⃗� 2 - �⃗� 0) .𝑝  = 𝑑0
2 - 𝑑2

2 - ║�⃗� 0║
2  +║�⃗� 2║

2  ,                        (20) 

By solving the following linear system,𝑝  (expressed as a 

column vector) can be determined: 

A =  n⃗ 1 n⃗ 0
n⃗ 2 n⃗ 0

                                                                     (21)                                

�⃗� = 
𝑑0
2 − 𝑑1

2 − ║�⃗� 0║2  +║�⃗� 1║2  

𝑑0
2 − 𝑑2

2 − ║�⃗� 0║2  +║�⃗� 2║2
                                                      (22) 

2A .𝑝  = �⃗�                                                                            (23) 

More generally, to determine 𝑝  Є ℛN, N + 1 fixed anchors 

are required: �⃗� 0, . . . ,�⃗� N Є ℛN
. Additionally, the distances 

between 𝑝  and the N + 1 fixed anchors need to be known. 
These geometric constraints may be expressed by the 

following set of equations:  

║𝑝  -�⃗� i║
2 =𝑑𝑖

2 , 0 ≤ i ≤N                                                    (24) 
Using a similar reasoning as before, subtracting equations 2, 

. . . , N + 1 from the first, results in the following system of 

N linear equations: 

A =  

(

 

�⃗� 1
 − �⃗� 0

 

.......
�⃗� 𝑁
 − �⃗� 0

 

)

                                                                         (25) 

�⃗� = 
𝑑0
2 − 𝑑1

2 − ║�⃗� 0
 ║^2  +║�⃗� 1

 ║^2  

𝑑0
2 − 𝑑𝑁

2  − ║�⃗� 0
 ║^2  +║�⃗� 𝑁

 ║^2
                                            (26) 

2A.𝑝  =�⃗�  .                                                                           (27) 
Assuming that the distances between the fixed anchors are 

known, but the anchors absolute positions are unknown, it is 

possible to construct a generic coordinate system for 

locating𝑝 . Consider three fixed anchors:  �⃗� 0, �⃗� 1, and �⃗� 2 Є 

ℛ 2, such that only the distances between each pair of 

anchors are known. One possible way to define these 

vectors is described next: 

P⃗⃗   

 

�⃗� 2 

 

�⃗� 0 

 
�⃗� 1 

 

𝑑1 

 
𝑑0 

 

𝑑2 

 

𝑞 

𝑟 𝑠 
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n⃗ 0
 =  

0
0
  n⃗ 1

 =  
q
0
  n⃗ 2

 = (
n⃗ 2x
 

n⃗ 2y
 )            (28) 

By expanding ║�⃗� 2
  -�⃗� 1║

2 , the following is obtained: 

║ �⃗� 2
  - �⃗� 1║

2 = ( �⃗� 2
 − �⃗� 1

 )  . ( �⃗� 2
 − �⃗� 1

 )  = ║ �⃗� 2
 ║2 - 

2�⃗� 1
 . �⃗� 2

 +║�⃗� 1║
2 .                                                  (29) 

Rearranging Eq. (29) in terms of �⃗� 1
 . �⃗� 2

 , yields the 
following: 

�⃗� 1
 . �⃗� 2

  = ½ (║�⃗� 1
 ║2  +║�⃗� 2║

2  - ║�⃗� 2
  -�⃗� 1║

2 ) , 

= ½ (q2 + r2 – s2)                                                               (30) 

 

The components of vector �⃗� 2
 can now be determined as 

follows: 

(
𝑞
 
0
).(

�⃗� 2𝑥
 

�⃗� 2𝑦
 ) = ½ (q2 + r2 – s2 ),                                          (31) 

q .�⃗� 2𝑥
  = ½ (q2 + r2 – s2 ) ,                                              (32) 

�⃗� 2𝑥
 =  1/2𝑞 (q2 + r2 – s2 ),                                               (33) 

�⃗� 2𝑥
 2 + �⃗� 2𝑦

 2 = r2                                                                             (34) 

�⃗� 2𝑦
 = ±√𝑟2 − �⃗� 2𝑥

2                                                               (35) 

Assuming that  𝑛2𝑦
 ≥ 0   , then�⃗� 2

   is given by: 

�⃗� 2  = (
 1/2𝑞 (𝑞2 +  𝑟2 –  𝑠2 )

√𝑟2 − �⃗� 2𝑥
2

)                                       (36) 

Provided vectors�⃗� 1
  and �⃗� 2

  are not collinear, i.e. 𝑛1𝑥 ≠ 0 and 

𝑛2𝑦 ≠ 0, they form a basis for this two-dimensional vector 

space, and 𝑝  can be determined by substituting �⃗� 1  and �⃗� 2  

into linear system [32]. 

The main problem with this technique is that it relies on 

exact measurements to determine a position without taking 

into consideration error in distance measurement. To solve 
this problem a good path loss model should be used. 

 

5.2. Probabilistic approaches 
 

The uncertainty in distance estimations has motivated the 

appearance of probabilistic approaches for computing a 

node’s position. An example of a probabilistic approach is 

proposed in [33], where the errors in distance estimations 

are modeled as normal random variables. When an unknown 
node receives a packet from a reference node, it can be in 

any place around the reference node with equal 

probabilities. When another packet is received from another 

reference node, the unknown node computes its position 

again as depicted in Fig. 7. When new position information 

is received from other nodes, it becomes possible to identify 

the probable location of the unknown node, as depicted in 

Fig. 8. The main drawbacks of this approach are the high 

computational cost and the space required to store the 

information [26]. 

                                  
Fig. 7  Position estimation after receiving packets from two reference 

nodes. [33] 

 
Fig. 8  Position estimation after receiving packets from three reference 

nodes. [33] 

Every unknown node estimates its own position using a 

probability density function (pdf) 𝑓𝑋,𝑌(𝑥, 𝑦)  of the two-

dimensional coordinate variable (𝑋, 𝑌) . Therefore, the 

probability of an unknown being placed at the coordinate 

(𝑥𝜁  , 𝑦𝜁) is: 

𝑃𝑟𝑜𝑏(𝑥𝜁 , 𝑦𝜁) ≈ ∫ ∫ 𝑓𝑋,𝑌  (𝑥, 𝑦)𝑑𝑥𝑑𝑦    
𝑥𝜁+ ∆𝑥

𝑥𝜁− ∆𝑥

𝑦𝜁+ ∆𝑦

𝑦𝜁− ∆𝑦
            (37) 

Where 𝑥𝑚𝑖𝑛 ≤x ≤ 𝑥𝑚𝑎𝑥and 𝑦𝑚𝑖𝑛 ≤y ≤ 𝑦𝑚𝑎𝑥. 

The probability 𝑃𝑟𝑜𝑏(𝑥𝜁 , 𝑦𝜁)= Prob(X =𝑥𝜁,Y=𝑦𝜁)          (38) 

the constants 𝑥𝑚𝑖𝑛 ,𝑥𝑚𝑎𝑥 ,𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are the bounding 

coordinates of the network, and both ∆𝑥 and  ∆𝑦 are 

arbitrarily small values. The higher the probability 

 𝑃𝑟𝑜𝑏(𝑥𝜁 , 𝑦𝜁), the more likely that the unknown node is 

placed at (𝑥𝜁 , 𝑦𝜁) . By using distribution functions from 

distance or angle Estimation techniques 𝑃𝑟𝑜𝑏(𝑥𝜁 , 𝑦𝜁) can be 

estimated. The next procedure is considering RSS technique 

used in distance estimation.  

Initially Calibration Process is needed. During the 

calibration phase the RSS is measured at different distances 

between a transmitter and a receiver pair. Let P and D 

denote the random variables of RSS (in dB) and distance (in 

meters), respectively. The mean of the RSS measurements 

P(d P(d) at each distance D = 

d can be calculated from the calibration measurements and 

using Eq. (37) 
𝑅𝑆𝑆[𝑑𝐵𝑚]  =  𝑃𝑡  [𝑑𝐵𝑚] −  𝑃𝐿(𝑑0) [𝑑𝐵𝑚] −  10𝛼 𝑙𝑜𝑔10(𝑑/
𝑑0) + 𝑋𝜎𝑅𝑆𝑆 [𝑑𝐵𝑚]                                                            (39) 

 𝑃(𝑑)and 𝜎𝑃(𝑑)can be used to generate a mapping from 

any RSS to a pdf of the distance random variable D. Using 

this mapping which is a log-normal mapping of the RSS 

measurements, each unknown estimates its position pdf. 

Initially, each unknown sets its initial estimation to an even 

distribution over the entire network area, 𝑓𝑋,𝑌(𝑥, 𝑦) =  
1

𝐴
; 

where A is the total area of the network. Nodes with position 

information, including both beacons (anchors) and 

unknowns with updated pdf estimations, send out beacon 
packets to their neighbors. Upon receiving a beacon packet, 

an unknown node executes the following algorithm:  

- It measures the RSS of the received beacon packet; 

- It maps the RSS to a one dimensional pdf using Eq. 

(48) and generate a pdf constraint Ψ𝑋𝐶,𝑌𝐶
 (𝑥, 𝑦) , 

which is a function of the coordinate random 

variable (𝑋𝐶 , 𝑌𝐶); 

- It updates the old pdf estimation by intersecting it 

with the generated constraint;  

- Finally, the unknown with the updated pdf 

estimation will broadcast to all its neighbors.  

There are two classes of beacon packets:  

- Beacon packets from a beacon, and 

- Beacon packets from an unknown. 

If the beacon packet is from a beacon 𝑏 placed at (𝑋𝑏 , 𝑌𝑏), 
we assume the position of the beacon is accurate (although 

the scheme may take into account any inaccuracies of the 

beacon’s position). An unknown 𝑗within𝑏 ’s transmission 

range receiving the beacon packet with 𝑅𝑆𝑆𝑝𝑏,𝑗𝑑𝐵  maps 

𝑝𝑏,𝑗to a pdf of the distance with mean 𝜇𝐷(𝑝𝑏,𝑗) and standard 

deviation𝜎𝐷(𝑝𝑏,𝑗); both 𝜇𝐷(𝑝𝑏,𝑗)and 𝜎𝐷(𝑝𝑏,𝑗) are calculated 

during calibration stage that should be at first. The unknown  

𝑗 then calculates a pdf constraint as: 
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Ψ𝑋𝐶,𝑌𝐶
(𝑥, 𝑦|𝑝𝑏,𝑗) =  

𝜑(𝑥,𝑦,𝑥𝑏 ,𝑦𝑏)

∫ ∫ 𝜑(𝑥,𝑦,𝑥𝑏,𝑦𝑏) 𝑑𝑥𝑑𝑦
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥
𝑦𝑚𝑖𝑛

              (40) 

𝜑(𝑥, 𝑦, 𝑋𝑏 , 𝑌𝑏) =  
1

√2𝜋𝜎𝐷
2 (𝑝𝑏,𝑗)𝑑𝑏,𝑗

𝑒
− 

(𝑙𝑜𝑔𝑑𝑏,𝑗− 𝜇𝐷(𝑝𝑏,𝑗)) 
2

2𝜎𝐷
2 (𝑝𝑏,𝑗)         (41) 

𝑑𝑏,𝑗 = √(𝑥 − 𝑥𝑏)
2 + (𝑦 − 𝑦𝑏)

2            (42) 

If the beacon packet is from an unknown node i with pdf 

estimation𝑓𝑋𝑖,𝑌𝑖
(𝑥, 𝑦), the unknown  𝑗 , receiving a beacon 

packet from 𝑖 with 𝑅𝑆𝑆𝑝𝑏,𝑗𝑑𝐵, estimates the pdf constraints 

as: 

Ψ𝑋𝐶,𝑌𝐶
(𝑥, 𝑦|𝑝𝑖,𝑗) = 

𝜑(𝑥,𝑦)

∫ ∫ 𝜑(𝑥,𝑦) 𝑑𝑥𝑑𝑦
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥
𝑦𝑚𝑖𝑛

                      (43) 

𝜑(𝑥, 𝑦) = ∫ ∫ 𝜑(𝑥, 𝑦, 𝑥𝑖 , 𝑥𝑖)𝑓𝑋𝑖 ,𝑌𝑖
(𝑋𝑖 , 𝑌𝑖) 𝑑𝑥𝑖𝑑𝑦𝑖

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛
 (44) 

where: 𝜑(𝑥, 𝑦, 𝑥𝑖 , 𝑥𝑖) =
1

√2𝜋𝜎𝐷
2(𝑝𝑖,𝑗)𝑑𝑖,𝑗

𝑒
− 

(𝑙𝑜𝑔𝑑𝑖,𝑗− 𝜇𝐷(𝑝𝑖,𝑗)) 
2

2𝜎𝐷
2 (𝑝𝑖,𝑗)           (45) 

Assume the original pdf estimation for unknown 𝑗 is 

𝑓(𝑋𝑖,𝑌𝑖)
𝑜𝑙𝑑 (𝑥, 𝑦); a new pdf estimation for unknown 𝑗can be 

calculated by intersecting the pdf constraint described 

above, either from a beacon or an unknown, with the 

original estimation, if vector random variables (𝑋𝑖 , 𝑌𝑖) and 

(𝑋𝐶 , 𝑌𝐶) are mutually independent. 

𝑓𝑋𝑖,𝑌𝑖
(𝑥, 𝑦) =  

𝑓(𝑋𝑖,𝑌𝑖)
𝑜𝑙𝑑 (𝑥,𝑦)Ψ𝑋𝐶,𝑌𝐶

(𝑥,𝑦|𝑝)

∫ ∫ 𝑓𝑋𝑖,𝑌𝑖
𝑜𝑙𝑑 (𝑥,𝑦)Ψ𝑋𝐶,𝑌𝐶

(𝑥,𝑦|𝑝)𝑑𝑥𝑑𝑦
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥
𝑦𝑚𝑖𝑛

         (46) 

  

5.3. Spring-Relaxation Technique 

 
The concept of spring-relaxation technique is explained be 

considering the following example. The example consists of 

five beacons and a sensor whose location is to be 

determined. In the concept of spring-relaxation technique, 

the considered example is equivalent to having a moving 

particle (i.e., sensor) attaching with five springs. For each 

spring, while its one end attaches to the particle, its another 

end is nailed by a pin (i.e., beacon) at a fixed location. Fig. 9 

depicts the described example. In the illustration, the black 

rings are the beacons or the pins in fixed locations, and 

white ring is the sensor or the particle in its initial guessed 
location. The natural length of a spring is the length where 

the spring is in the rest state. When the length of a spring 

becomes shorter (resp. longer) than its natural length, the 

spring is compressed (resp. stretched) and forces are 

produced at each end of the spring. The particle attached to 

a set of springs receives forces from them when they are 

compressed or stretched. The net force applies on the 

particle is the vector sum of all received forces. When the 

particle begins at a particular location with nonzero net 

force, the net force moves the particle to a new location and 

the net force changes accordingly. The particle continues to 

move until the net force becomes zero, and the particle 
comes to rest. This resting location, indicated by the grey 

ring in Fig. 9, is also the final stopping location of the 

particle. Localization using spring-relaxation technique does 

not have real springs connecting the particles and pins. It 

uses the concept to simulate the movements of the particle 

under the spring forces computed, and find the final 

stopping location, which is the estimated location of the 

particle. From Hooke’s law, the magnitude of the force F 

from each spring  F =  k(L 0 −  L)                                  (47) 

where L 0 is the natural length of the spring, L is the current 
length of the spring, and k is the spring constant. The 

difference which L 0 − L describes is the stretch or 

compression of the spring. Let F⃗  be the force vector applied 

on a particle by a spring, and Fnet
⃗⃗ ⃗⃗ ⃗⃗  ⃗=∑ F⃗  be the net force 

applying on the particle by all the attached springs. By 

Newton’s first and second law, we have the relationship: 

Fnet
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

d(mv)⃗⃗⃗⃗ 

dt
                                                                      (48) 

where m  is the mass of the particle and v⃗  is the 

instantaneous velocity of the particle due to the net force. 

The instantaneous displacement of the particle can be 

determined by: �⃗⃗� = ∫𝑣 𝑑𝑡 = ∬
𝐹𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑚
𝑑𝑡2                          (49) 

The instantaneous displacement will cause a change in force 

applied by each spring on the particle. This change in force 

leads to a new net force on the particle which then changes 

the instantaneous displacement of the particle again. As this 
process continues, the particle moves and will eventually 

rest at an equilibrium location where the net force is zero. 

 
                 Fig. 9  Example of five beacons and a sensor. [39] 

6.  Localization Algorithm 

It determines how the available information will be 

manipulated in order to allow most or all of the nodes of a 

WSN to estimate their positions. 

 

6.1. Localization based on RSS algorithm 

 

In [37].The distance estimation phase is the initial step 

performed when locating a node's position in space using 

RSS profiling techniques. By estimating distances to 

neighbors with known coordinates, a node can determine its 
own position using positioning algorithms. Once a node 

determines its position, it becomes an anchor node and can 

then help other neighbors find their positions. Alternatively, 

nodes attached to GPS-devices can rely on this instrument 

for obtaining coordinates, without needing to estimate 

distances to their neighbors. [38]  

The received signal strength (RSS) technique does not 

require any hardware in addition to the radio transceiver. 

Knowing the transmitted signal's power and path-loss 

model, the inter-node separation can be calculated. RSS 

based localization systems do not require hardware 

components in addition to the radio transceiver. Moreover, 
no dedicated packets need to be sent over the network for 

such systems to function. However, RSS measurements are 

very unreliable, even when both sender and receiver are 

stationary. Ranging errors of ± 50% have been observed, 

leading to inaccurate distance estimates. Hence, it is 

important to understand the sources of error before relying 

on this technique for locating nodes.  

Multipath and shadowing are two major phenomena 

affecting the reliability of RSS measurements. Different 

magnitude signals arriving out of phase at the receiver cause 
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constructive and destructive interference. Spread spectrum 

radios effectively mitigate this problem by averaging the 

received power over multiple frequencies. Shadowing 
effects are caused by obstructions (e.g. thick vegetation, 

walls, furniture) that attenuate the signal's strength. 

Additionally, not all RSSI circuits are factory calibrated, 

resulting in device-dependent RSS measurements for the 

same signal strength. The actual signal power can be 

different from the transceiver's intended transmission power, 

causing further discrepancies in RSS measurements. Various 

techniques have been proposed for mapping RSS 

measurements to distance estimates. The basic formula used 

in RSS localization is given by the formula: 

𝑅𝑆𝑆[𝑑𝐵𝑚] =

 𝑃𝑡[𝑑𝐵𝑚]− 𝑃𝐿(𝑑0)[𝑑𝐵𝑚] −  10𝛼 𝑙𝑜𝑔10  
𝑑

𝑑0
 +

𝑋𝜎𝑅𝑆𝑆
[𝑑𝐵𝑚]                                                                          (50) 

where RSS is the received signal strength in units of 

decibels with respect to milli watts (dBm). In Eq. (50), 𝑑 is 

the true distance from the sender to the receiver, α = np is the 

path-loss exponent, Pt is the transmit power of the sender in 

dBm, PL(d0) is the power loss in dBm at a reference 

distance 𝑑0. The quantity XσRSS in dBm is a random variable 

representing the noise in the measured RSS and is often 

assumed to be a zero-mean Gaussian random variable with 

variance σRSS. The source of the noise XσRSS in measured 

RSS can come from both time varying and time-invariant 

sources. Time varying errors, such as interference, can be 
averaged out by taking multiple measurements 

corresponding to the same distance. Time-invariant errors, 

Such as shadowing due to heterogeneity in the medium 

resulting from objects such as walls or buildings can cause 

the signal to degrade contrary to the path-loss model. These 

errors cannot be averaged out by taking multiple 

measurements, as the path loss model cannot be specifically 

designed for each wireless channel in each deployed 

network. It is observed that the random effects of shadowing 

are appropriately modeled by assuming the error 𝑋𝜎𝑅𝑆𝑆
is 

Gaussian. In a WSN performing RSS-based localization 

according to traditional techniques, each node measures an 

RSS value corresponding to each neighboring beacon node. 

This measured value RSS is mapped to a distance estimate�̂�. 

This mapping from RSS to �̂� requires an expression for the 

distance �̂�as a function of RSS and can be obtained by 

solving (20) for, yielding: 

𝑑 =  𝑘10(𝑃𝑡−𝑅𝑆𝑆+𝑋𝜎𝑅𝑆𝑆  )/(10 𝛼)                                         (51)  

Where k is a constant incorporating both PL(d0) and α 

log10(d0).  

 

7. Wireless Sensor Fire Rescue Network 

(WSFRN) Architecture 
 

The architecture of the proposed Wireless Sensor Fire 

Rescue Network (WSFRN) Architecture is shown in Fig. 

10. In the WSFRN, the vehicles and firefighters are 

equipped with sensors which forma self-organized 

heterogeneous wireless sensor network. In the incident 

commander's vehicle, a powerful laptop connected with a 

powerful sensor acts as the gateway of WSN. The ladder 

vehicle and the two engine vehicles are loaded with sensors 

having GPS equipped. These vehicles can act as the 

landmark for the whole WSN because they will have 

relatively stable location, i.e., other sensors can calculate 

their location based on the location of these vehicles. Each 
firefighter in the sensor field carries a sensor, such as 

MICA2 or MICAz from Crossbow [29] attached with 

available sensor board which can sense interested 

parameters, acting as the active badge for each firefighter. 

The active badge records all the information expected by the 

incident commander and fire department (for later analysis), 

such as the firefighter information, the fire field 

environment information and emergent events, as listed in 

the Fig. 10. The role of each active badge (i.e., sensor) has 

two-fold: sensing the data and forwarding the packets. After 

the fire fight team starts their work, the sensors attached to 
vehicles and firefighters are self-organized into a WSN via 

wireless communication. Then, the sensors start to operate 

according to their pre-installed program. For example, the 

sensors attached to firefighters will collect the information 

of firefighters, sample the environment parameters, and 

generate the vital events happened in the fire field, as shown 

in the right part of Fig. 10. These data will be reported to the 

sink by the multi-hop routing protocol and further delivered 

to the fire department via Internet. Then, both the incident 

commander and the officers in the fire department have the 

accountability and real-time information from the fire field, 

which is abstracted and presented by the powerful pre-
installed software in the sink or fire department. By doing 

so, the whole fire field is monitored and the status of each 

firefighter is clear to the incident commander and fire 

department. Based on this, the incident commander and fire 

department will make optimized fire schedule according to 

the suggestion of the intelligent software. The location, 

especially the real-time location, of firefighters in a fire 

scene is a very important and valuable piece of information. 

Given this piece of information, the incident commander 

could have a clear view of the distribution of deployed 

firefighters, and make real-time decisions. Moreover, 
location information is very useful for other protocols in 

WSN as well. Most research topics in WSN, e.g., fault 

tolerant routing, aggregation, event detection and tracking, 

and so on, directly or indirectly lend on accurate location 

information provided by the underlying localization service. 

Admittedly, location in the fire rescue application is not a 

trivial task given the fact that firefighters are moving very 

fast and randomly in a real rescue operation as well as the 

inherent ad-hoc feature of Fire Net. Localization in WSN 

has been extensively studied in the literature [1]; however, 

as a reality check, few of practical localization algorithms 

are deployed in the real applications, and practical 
localization, especially mobile localization, is still a 

challenge from the perspective of real deployment. 

Intuitively, Global Positioning System (GPS) is a pretty 

good positioning system at outdoors; however, it is not 

accurate enough for indoor tracking. Moreover, most of 

existing localization solutions did not take the mobility into 

consideration, i.e., they always assume the location of 

sensors is static, which is obviously not the case in Fire Net. 

The few mobile localization algorithms such as [38] do not 

consider the moving speed and the dynamics of the system. 

Therefore, we argue that the localization protocol    for a 
WSN in fire rescue application needs to address the 

following issues: mobility, heterogeneity, locality, 
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robustness, feasibility, and accuracy, each of which is 

described as follows. 

1) Mobility The fast movement of firefighters makes the 
localization a big challenge in a timely fashion. 

2) Heterogeneity Due to the heterogeneity of the sensors 

used in Fire Net, the localization algorithm should take these 

diverse platforms into consideration, e.g., the computing 

devices on some vehicles/equipment, such as laptops or 

tablets, could be integrated with GPS support which 

provides some reference points for further location 

resolving, while on the other side, the sensors carried by 

firefighters would be very simple and possess only limited 

computing resource and energy support. 

3) Locality Each sensor has limited computing power, 
memory, and communication range, thus only a completely 

localized algorithm is applicable in Fire Net, where each 

sensor interacts with its neighbors only. 

4) Robustness Sensors in Fire Net are working in a very 

harsh and highly failure-prone environment. Robustness is a 

key requirement of the localization algorithm, i.e., the 

failure of some sensors should not affect the calculation of 

other sensors location. 

5) Feasibility The localization algorithm has to be practical 

enough so that its computing cost could be affordable by the 

limited hardware/software supporting of those tiny sensors. 

6) Accuracy the real scheduling by the incident commander 
and fire department is based on the accurate location of 

firefighters. Accurate positioning in a static environment is 

already nontrivial; it becomes more challenge in such a 

highly dynamic environment. 

 

 

 

 

 

 

 
 

 

Fig. 10  Fire rescue network. 

 

Table 1 highlights the Advantages and disadvantages of the 

most suitable localization techniques for fire rescue systems 

using WSN Round-trip propagation time and RSS. 

 
  Table 1: Advantages and disadvantages of RTT and RSS techniques 

Technique Advantages Disadvantages Comment 

TOA  -More 
accurate 

- Hardware is 
complex 

 
- Accuracy is 

sensitive to the 
multipath 

condition and the 

system 
bandwidth 

 
- Performance of 
TOA technique 
depends on the 

availability of the 
direct path (DP) 

signal 

- It also known 
as time off 

arrival (TOA). 
 

- Suitable for 
outdoor 

localization 

 

RSS - More 
practical 

 
- Simple to 
implement 

 

- No additional 
hard ware are 

required 
 

- Insensitive to 
the multipath 
condition and 
the bandwidth 
of the system 

 
- Localization 

error is 
independence 
of the system 

bandwidth 

- Lower accuracy 
and precision 

 
- High density of 

anchors or 
reference points 

is needed 
 

- Extensive 
training and 

computationally 
expensive 

algorithms are 
required. 

- Performance 
of RSS 

techniques 
depends on the 
accuracy of the 
model used for 

the estimation 
of the RSS 

 

8. Conclusion  
 

TDOA methods are impressively accurate under line-of-

sight conditions. But this line-of-sight condition is difficult 

to meet in some environments. Furthermore, the speed of 

sound in air varies with air temperature and humidity, which 

introduce inaccuracy into distance estimation. Acoustic 

signals also show multi-path propagation effects that may 

impact the accuracy of signal detection TDOA also needs 

synchronization. AOA techniques provide more accurate 

localization result than RSSI based techniques but the cost 

of hardware of very high in AOA. However Angle-Of-
Arrival measurements techniques and distance related 

measurements techniques can be used to determine the 

location of sensor nodes, RSS can be considered the most 

suitable localization technique for WSN because no 

additional hardware need to be added (rotating antenna, 

antenna array, synchronization equipment's) and is unlikely 

to significantly impact local power consumption which is a 

very important issue in WSN, sensor size and thus cost. 

Table.1 highlights the advantages and disadvantages of the 

most suitable techniques for WSN Round-trip propagation 

time and RSS. [38],[27]. 

 

9. Future Work 
In this paper the localizations process phases and its 

importance in fire rescue process are described in near 

future enhancing the localization accuracy and saving 

energy consumption will be introduced. 
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