
A Tool Support for Automatic Detection of Duplicate Features
during Software Product Lines Evolution

Amal Khtira, Anissa Benlarabi, Bouchra El Asri

 IMS Team, SIME Laboratory, ENSIAS Mohammed V University
Rabat, Morocco

Abstract
Software product lines are continuously changing systems that
must evolve to meet new customers’ needs and new business
strategies. Due to this change, many defects impact both the core
platform and the specific applications of the product line. Thus,
the verification of feature models has become one of the most
crucial issues related to software product line engineering. Many
tools have been proposed in literature to verify product line
models but few have focused on the problem of semantic feature
duplication. In this paper, we introduce FDDetector, a tool that
aims at optimizing the evolution of software product lines by
detecting feature duplication between the existing feature models
and the specifications of the new evolutions.
Keywords: Software Product Line Evolution, Feature
Duplication, Tool Support, Automatic Verification, Natural
Language Processing.

1. Introduction

The reduction of cost and the enhancement of product
quality are today among the most crucial challenges in
software engineering. To deal with these issues, many
development paradigms have been proposed, among which,
Software Product Line Engineering (SPLE) [1] has
emerged as a discipline that aims mainly at producing
products of high quality and reducing the time to market
and the cost of development. SPLE consists of creating a
core platform that contains the common and variable assets
of a domain. Then, customized applications are generated
based on this platform. Thus, two processes are separated
in SPLE, namely the domain engineering and the
application engineering [2]. The first process involves the
determination of variability and commonality of the
product line, while the second process is responsible for
the derivation of individual applications that respond to
specific needs of customers.

Software Product Lines are large scale systems that last
over time. These systems have to evolve constantly to meet
new customers’ requirements and new technology. The
evolution of SPLs is more complex than other systems
because the change happens both in the domain assets of

the core platform and the application assets related to
derived products. Several papers in the literature have
addressed issues related to SPL evolution such as
requirements traceability [3], the co-evolution of domain
and application models [4], the evolution modeling [5],
and model defects [6].

Our area of research concerns model defects caused by
SPL evolution, especially duplication [7]. Based on the
literature review, we have identified some tools
[8][9][10][11][12] dealing with the detection and
correction of defects. An analysis of these tools has shown
that most of them focus on specifications rather than
feature models. In addition, these tools deal specifically
with consistency checking, while duplication is not taken
into account. To overcome these gaps, we propose a tool
that aims at detecting duplication in feature models, and
between feature models and the specifications of new SPL
evolutions. The motivation for this work is that duplication
causes the increase of cost and time-to-market and impacts
negatively the quality of products, which contradicts the
main objectives of SPLs.

The proposed tool is based on a two-process framework.
The first process consists of transforming the existing
feature models and the specifications of new evolutions
into a more formal representation. The second process
involves the detection of feature duplication through a set
of algorithms.

The remainder of the paper is structured as follows.
Section 2 gives an overview of the background of our work,
namely software product line evolution and feature
duplication. Section 3 describes our approach for detecting
feature duplication when evolving software product lines.
In Section 4, we present the architecture and functionalities
of the proposed tool. The tool is evaluated in Section 5
using a case study. Section 6 compares out tool with
related tools. Finally, Section 7 concludes the paper and
describes future work.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 1

2015 International Journal of Computer Science Issues

2. Background and Motivations

In this section, we introduce the background of our study.
First, we present the SPLE paradigm and we discuss SPL
evolution challenges. Then, we highlight the problem of
feature duplication when evolving SPLs.

2.1 Software Product Line Evolution

Formerly, the cost of hardware in a project was much
higher than software. Thus, companies used to develop
single software and little attention was given to reuse.
Nowadays, software has become the most expensive
component even in large projects such as aeronautics and
nuclear field. The cost becomes more significant in the
case of long living systems that evolve over time. At the
aim of reducing the cost of development, deployment and
maintenance, many paradigms have been proposed, among
which, Software Product Line Engineering (SPLE) has
emerged as an approach that promotes software reuse by
using a core platform to create different products
according to distinct needs of customers. The main
objectives of the SPLE approach are the reduction of time
to market, the reduction of cost and the enhancement of
product quality [2].

A Software Product Line (SPL) is defined by [1] as a set of
related systems that address a market segment and that are
created from a common set of core assets. Software
product lines are built around a domain model that
contains the common and variable features of the system,
and a multitude of specific applications generated by
binding the domain variability.

In general, software product lines are long lived systems
that incur significant evolution throughout their service life.
This evolution allows companies to align their products
with new business strategies, new customers’ requirements
and new technology challenges. Hence, a great importance
must be assigned to the maintenance process of SPLs. For
this, many studies in the literature have dealt with issues
related to SPL evolution. Some issues are explained in
what follows.

Evolution and Traceability [3][13][14]: The approaches
dealing with traceability trace the links between the
different assets of a SPL or between its subsequent releases.
This enables to assess the change history and to highlight
possible inconsistencies, which helps anticipate future
steps of evolution and estimate the cost of changes.

Evolution modeling [15][16][17]: These studies consists
of defining a strategy for change management and

identifying rigorous and controlled steps of evolution,
which simplifies the evolution process.

Co-evolution of artefacts [18]: Some papers have focused
on the necessity of managing the co-evolution of different
artefacts of a SPL. For instance, Passos [18] performed a
thorough analysis of a specific Linux kernel release. He
captured the co-evolution between the variability model,
the makefiles which contains the mapping between features
and compilation units, and the source code. As a result of
this analysis, he proved that considering changes only in
the variability model may lead to incorrect conclusions.

Co-evolution of domain and application models [4]:
SPL evolution is more complex than single software
evolution because two levels of change have to be
considered, the level of the core platform and the level of
derived products. However, due to time pressure and tight
deadlines, a specific product can evolve independently
without taking into consideration the evolution of the
platform. As a result, instead of having a set of
applications derived from the same platform, we end up
with a set of single applications. Thus, a management of
the co-evolution of domain and application models
becomes necessary to avoid the software aging
phenomenon [19].

Model verification [17][20][21]: Software evolution
consists of adding new features or modifying or deleting
the existing ones. This evolution impacts all assets of the
product line, but specifically the model, which is
considered the input of the other assets. Therefore, a
verification of the model is necessary to detect potential
defects and ensure its integrity and correctness. In our
study, we focus on this specific challenge which is the
verification of SPL models during evolution and the
detection of the resulted model defects.

2.2 Feature Duplication

As stated before, the SPL evolution can be the source of
many model defects. In our work, we carried out a
literature review whose objectives are to list the different
model defects discussed in the literature, determine the
different solutions proposed to deal with these defects,
identify the limitations of these approaches and find
potential area of research. As a result of this review, we
listed the following model defects:

• Inconsistency: A contradiction between two or
more features, requirements or functionalities
[22].

• Incompleteness: The lack of necessary
information related to a feature or requirement
[9].

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 2

2015 International Journal of Computer Science Issues

• Incorrectness: The non-correspondence of a
feature with the requirements imposed in the
specification [20].

• Ambiguity: When a feature has more than one
interpretation [9].

• Redundancy: The presence of reusable elements
and variability constraints among them that can
be omitted from the Product Line Model (PLM)
without loss of semantics on the PLM [6].

• Unsafety: It happens when the behavior of
existing products is affected by a new evolution
[23].

• Duplication: To have the same thing expressed in
two or more places. Duplication can happen in
specifications, processes and programs [24].

Compared to other defects, we found that feature
duplication is the one who received little interest in
literature, at least in the analyzed papers. Even when a
paper addresses this issue, it focuses generally on code
duplication or code cloning [25][26][27]. Consequently,
we decided to deal with the problem of duplication in the
feature level, which is an early stage of the product
lifecycle, which enables to avoid duplication in the next
steps of the project. Other motivations lead us to tackle this
problem. Indeed, the introduction of duplication in a SPL
causes a waste of time, money and effort by implementing
repeatedly the same requirements, which contradicts the
main goals of SPLs, namely the reduction of time-to-
market and the reduction of cost. Moreover, the
independent evolution of duplicate features may cause
inconsistencies and contradictions in the model, which
impacts negatively the product quality. In addition, feature
duplication causes also code duplication, and results in
many cloning-related problems such as the recurring-bug
problem and the increase of maintenance effort [28]. A
solution is thus necessary to detect duplicate features in an
early stage of evolutions, which helps avoid their inclusion
into the existing models from the very beginning.

3. Approach Description

In this section, we present the proposed framework for
detecting and correcting feature duplication caused by SPL
evolution. We first give a short definition of the basic
concepts. Then, we present the overview of the framework
and we describe its processes.

3.1 Basic Concepts

Before going any further, we will give an insight of the
basic concepts used in the framework.

Feature: A feature is a distinctively identifiable functional
abstraction that must be implemented tested, delivered, and
maintained [29].

Feature Model: It is the description of all the possible
features of a software product line and the relationships
between them. The most common representation of feature
models is the FODA feature diagram proposed by [30].
The feature diagram is a tree-like structure where a feature
is represented by a node and sub-features by children
nodes. In basic feature models, there are four kinds of
relationships between features:

• Mandatory: It exists in all products.
• Optional: It is not present in all products.
• Alternative: Only one option can be chosen from

a set of features.
• Or: One or more features may be included in the

product.

Specification: Requirements specification is a description
of the intended behavior of a software product. It contains
the details of all the features that have to be implemented
during an evolution of the system.

Variation Point: Variation points are places in a design or
implementation that identify the locations at which
variation occurs [31].

Variant: It is a single option of a variation point and is
related to the latter using a variability dependency [32].

Duplication: We consider that two features are duplicated
if they have the same semantics or that they satisfy the
same functionality [7]. In our approach, duplication can
happen in three levels: In feature models, in specifications
or between specifications and feature models.

3.2 The Framework Overview

The objective of our work is to detect duplication when
evolving SPL feature models. The solution we propose
consists of a two-process framework [33]. The first process
consists of transforming the existing feature models and
the specifications into a formal presentation, while the
second process involves the detection of feature

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 3

2015 International Journal of Computer Science Issues

Fig. 1 The overview of the framework

duplication using a set of algorithms. The overview of the
framework is depicted in Fig. 1. In what follows, we will
explain in details the framework processes.

3.2.1 Process 1: Inputs Transformation

In many software product lines, the variability is modeled
using the FODA feature model [30] that we use in our
approach. However, the requirements related to new
evolutions of the system are documented using natural
language because it is the easiest way for customers to
express their needs. These two ways of modeling do not
enable the detection and correction of defects. Thus, the
aim of this process is to transform both the existing feature
models of a SPL and the specifications of its evolutions to
a more formal presentation.

Feature-oriented software development (FOSD) [34] is a
paradigm based on the FODA method. The goal of this
paradigm is to generate automatically software products
based on the feature models. Hence, tools such as
FeatureIDE [35] have been proposed to formalize the
representation of feature models and allow the automatic
selection of features of derived applications. In our
approach, we opt for this tool to transform feature models
to XML. Fig. 2 shows an example of a feature model
created by FeatureIDE and its generated XML.

As for specifications, we adopt a natural language
processing (NLP) approach to transform them into the
same form of feature models. NLP is a branch of artificial
intelligence that aims at analyzing and understanding
human language in order to interface with computers in
both written and spoken contexts. This approach allows the

syntax and semantic parsing of a text. The syntax parsing
analyzes the specifications and generates the syntactic tree
based on the English grammar, while the semantic parsing
extracts the meaning of the sentences.

Fig. 2 A feature model created in FeatureIDE

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 4

2015 International Journal of Computer Science Issues

In [36], we have explained in details the different steps of
parsing, as depicted in Fig. 3:

• Sentence Detector: It enables the separation of
sentences by putting each sentence in a different
line.

• Tokenizer: It divides each sentence into tokens (e.
g. noun, verb, number).

• Parser: It converts the sentence into a tree that
represents the syntactic structure. Each word of
the sentence is marked with a POS tagger (Part-
Of-Speech tagger) that represents the role of this
word in the English grammar.

• Entity Detector: It detects semantic entities in the
sentences, especially variation points and variants
in our case. This component is based on a
repository where all the product line features are
stored and categorized.

Fig. 3 Specification Transformation

3.2.2 Process 2: Duplication Detection

In a previous work [37], we stated that the operation of
duplication detection has to be performed in three steps. In
each step, we propose one or more algorithms. In what
follows, we will detail each of these steps.

Detecting duplication in the existing feature models:
It is a one-shot operation that can be performed once the
domain and application models are ready-to-use. The
algorithm to detect duplication in feature models contains
four steps:

• Generate an equivalent XML for the specification
by replacing the name of every node (variation
point or variant) with its associated key synonym
in the dictionary.

• Put in alphabetical order the variation points and
the variants of each variation point.

• Detect and remove duplicated variants for each
variation point.

• Compare between the variants of all the variation
points in order to detect duplication in the whole
specification.

Detecting duplication in specifications:
This algorithm is the same as the previous algorithm
because the representation of feature models and
specifications was unified.

Detecting duplication between the feature models and
the specifications:
In this level, two algorithms are proposed [33]. The first
algorithm detects duplication between specifications and
the application model, while the second algorithm detects
duplication between specifications and the domain model.
Fig. 4 illustrates the algorithm that corresponds to the
second verification.

The two algorithms contain the following steps:

• Compare each variation point of the specification
with the variation points of the domain feature
model (or the application model).

• When an equivalent is found in the latter,
compare between the variants corresponding to
the variation point of the specification and the
variants related to the equivalent variation point
of the domain model (or the application model).

• If a variant is detected, this means that the feature
corresponding to the pair (variation point, variant)
is duplicated.

For each algorithm, duplications and their locations are
stored in a log file that will be sent to the user so that he
makes his decisions regarding the concerned features (e. g.,
Modify the new feature, delete the new/old feature, replace
the old feature).

Fig. 4 The algorithm to detect duplication between the
specification and the domain model

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 5

2015 International Journal of Computer Science Issues

Fig. 5 The embedding of FDDetector

4. Tool Support for Duplication Detection

In order to instantiate the proposed framework, we have
developed a tool that we called FDDetector (Feature
Duplication Detector). In this section, we present the main
functionalities supported by this tool and we describe its
architecture.

4.1 Main Functionalities

As explained in the previous section, the goal of the
proposed tool is to detect duplication during SPL evolution.
Thus, the main functionalities provided by FDDetector are
the following:

• The import of a textual specification in order to
process it and transform it to XML.

• The detection of duplicate features in the
processed specification.

• The import of the XML format of a feature model.
• The detection of duplicate features in the feature

model.
• The comparison of features between a feature

model and a specification to detect duplication
between them.

• The creation of the repository and its initiation by
a domain feature model.

Other functionalities are also required to enable an
efficient duplication detection, such as:

• The generation of a graph that enables the

visualization of duplicate features.
• The binding of new variants with the

corresponding variation points in the repository.
• The refreshment of the repository after the

binding of new features.
• The re-parsing of the specification after a

modification of the repository.
• The manual update of the repository.
• The update of the repository based on a new

specification or a new feature model.
• The generation of a log containing the detected

duplicate features and their locations.
• The sending of the log to the user via email.

4.2 Design and Implementation

In order to implement the functionalities described earlier,
we designed the embedding of FDDetector as depicted in
Fig. 5.

The tool is a thick-client application built on Eclipse IDE,
which is an open source IDE distinguished from its
competitors by its adaptability and its large community of
plugins creators. In our development, we will use a set of
Eclipse plugins to implement different features. In
addition, we will use java code to implement the
algorithms of duplication detection.

For the creation of feature models and the generation of
their XML source, we use FeatureIDE [35]. FeatureIDE is

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 6

2015 International Journal of Computer Science Issues

an open-source framework based on Eclipse. It supports all
phases of FOSD, namely domain analysis, requirements
analysis, domain implementation, and software generation.

The interface of our tool is created using SWT [38], which
is an open source widget toolkit for Java designed to
provide efficient, portable access to the user-interface
facilities of the operating systems on which it is
implemented. In our case, the development is done on
Windows. The facilities of this OS are hence used to create
the tool interface.

Both textual specifications and XML feature models can
be opened via the main interface. The processing of
specifications is performed using Apache OpenNLP
Library [39], which is a machine learning based toolkit for
the processing of natural language text. It supports the
most common NLP tasks, such as tokenization, sentence
segmentation, part-of-speech tagging, named entity
extraction, chunking, parsing, and coreference resolution.
It also includes an evaluation tool that measures the
precision of entity recognition and provides information
about the accuracy of the used model.

The content of the repository is stored using PostgreSQL
[40], which is an open source object-relational database
system. In the repository are stored all the domain features,
their categories, and their synonyms. For a set of
synonyms, we define a key synonym that we will use in the
comparison between features.

In order to visualize the processed specifications and the
duplicate features, we opt for Prefuse [41]. It is an open
source toolkit that provides a visualization framework for
the Java programming language. It supports a rich set of
features for data modeling, visualization, and interaction.

5. Evaluation

To evaluate our solution, we use a CRM (Customer
Relationship Management) product line, and specifically,
we consider one of its derived applications. The feature
model of this application is depicted in Fig. 6.

Fig. 6 The feature model of the CRM application

It is a web application that enables the management of on-
line and off-line sales and the management of exclusive
network stores. The sector header collects customers’
information using phone calls, and he contacts them by
telephone or by setting up an appointment.

In our test, we use the specification of a new evolution of
this application. In order to verify the algorithm of
duplication detection in specifications, we added
intentionally two duplicate features in the specification
illustrated in Fig. 7.

Fig. 7 The specification of the new evolution

After the specification is processed and the algorithm is
applied, we obtain the generated XML of the specification
and a graph corresponding to this XML. This graph is
depicted in Fig. 8. This representation facilitates the
visualization of the different new features introduced by
the specification and distinguishes the duplicate features by
presenting them in a different color.

Fig. 8 The graph corresponding to the specification

As a result of the algorithm, two duplications are detected
(“Summaries in Excel form” and “Common shop
management”). The number of duplications is displayed in

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 7

2015 International Journal of Computer Science Issues

the top left corner of the interface. Moreover, the duplicate
features are colored red in the graph.

The tool also distinguishes the new variants added by the
specification by relating them to the node "unbinded
variants". The interface gives the possibility to the user to
bind these variants with a variation point from the
repository. In case of binding new variants, the user can
also refresh the repository and re-parse the specification.

The log generated for our example is presented in Fig. 9. It
contains the number of variants in the specification and the
number of detected duplications. It also displays the
sentences of the specification that contain duplication. This
log will be sent to the customer by email so that he can
make his decisions about the duplicate features (Remove
the new/old feature, replace the existing feature, etc…).

Fig. 9 The log of the performed test

So far, we have developed the duplication detection in
specifications. In our future work, we intend to implement
the algorithms of detecting duplication in feature models
and between the specifications and the feature models. We
also intend to apply the different algorithms to a product
line with a large number of requirements in order to obtain
more accurate results.

6. Related Tools

Many tools have been proposed to support the verification
of models and the detection of defects. In this section, we
present some of these tools.

Marama [8] is an automated tracing tool that enables users
to capture their requirements and automatically generate
the Essential Use Cases (EUC). This tool supports the
inconsistency checking between the textual requirements,
the abstract interactions and the EUCs. However, it does
not support the detection of semantic duplication and
focuses only on specifications, while our tool detects
duplication between specifications and feature models.

QuARS (Quality Analyzer for Requirement Specifications)
is a tool proposed by Lami et al [9]. This tool performs an
initial parsing of the specifications in order to detect

automatically specific linguistic defects, namely
inconsistency, incompleteness and ambiguity. Although
QuARS converges with our tool in the fact that it is based
on parsing of natural language requirements to detect
defects. However, it is limited to syntax-related issues of a
natural language document, while our approach focuses on
a semantic problem which is feature duplication.

CIRCE [10] is a system that uses natural language
processing to extract information from natural language
requirements and allows the checking and measurement of
requirements consistency and produces functional metric
reports. Our tool is different because, on the one hand, it
focuses on semantic duplication in SPLs and not on
inconsistency in general, and on the other hand, because
our final goal is not only to detect duplication in textual
requirements, but between the existing feature models and
the specifications of new evolutions.

Requiline [11] is a requirement engineering tool for the
management of software product lines. This tool provides
many capabilities such as feature modeling, product
configuration and consistency checking. Apart from the
consistency checking, RequiLine does not perform any of
the other analysis operations identified on feature models,
especially duplication detection.

VMWare [12] is a tool that enables the verification of
structural and semantic correctness of models derived from
the FORE metamodel. This tool allows the structural
verification of constraints, but does not support all
semantic correctness properties, especially feature
uniqueness.

Table 1 presents a comparison between the analyzed tools
based on the functionalities they provide.

Table 1: Comparison of related tools

M
ar

am
a

Q
uA

R
S

C
IR

C
E

R
eq

ui
lin

e

V
M

W
ar

e

FD
D

et
ec

to
r

Specifications + + + + - +
Feature Models - - - + + +
Semantic correction - - - - ∼ ∼
Duplication Detection - - - - - +
Consistency checking + + + + + -
NLP - + + - - +
XML - - - + + +
Machine Learning - - - - - ∼

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

2015 International Journal of Computer Science Issues

7. Conclusion and Future Work

In this paper, we introduced the first prototype of
FDDetector, which is a tool for the detection of feature
duplication in the feature models and specifications related
to software product lines. Our goal is to optimize the
evolution of software product lines by detecting the
duplication in an early stage of evolutions, which enables
to reduce the time to market and the cost of development.
So far, we have implemented the detection of duplication
in natural language specifications and we evaluated the
efficacy of the solution through a product line that contains
a limited number of features. In future work, we intend to
implement other functionalities such as: (i) detecting
duplication in feature models; (ii) detecting duplication
between specifications and feature models; (iii) using
machine learning to update the repository; and (iv)
supporting other formats of specifications and feature
models. In addition, we will perform further evaluation
through large scale and real-life software to ensure the
effectiveness of our solution.

References

[1] P. Clements, and L. Northop, Software Product Lines -
Practices and Patterns, Boston: Addison-Wesley, 2002.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software
Product Line Engineering Foundations, Principles, and
Techniques, Berlin, Germany: Springer-Verlag, 2005.

[3] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. C.
Royer, A. Rummler, and A. Sousa, "A model-driven
traceability framework for software product lines", Software
and Systems Modeling, Vol. 9, No. 4, 2010, pp. 427-451.

[4] A. Benlarabi, B. El Asri, and A. Khtira, "A co-evolution
model for software product lines: An approach based on
evolutionary trees", in the 2d World Conference on Complex
Systems (WCCS), IEEE, Nov. 2014, pp. 140-145.

[5] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S.
Kowalewski, "Model-driven support for product line
evolution on feature level", Journal of Systems and Software,
Vol. 85, No. 10, 2010, pp. 2261-2274.

[6] R. Mazo, "A generic approach for automated verification of
product line models", Ph.D. thesis, Pantheon-Sorbonne
University, Paris, France, 2011.

[7] A. Khtira, A. Benlarabi, and B. El Asri, "Towards
Duplication-Free Feature Models when Evolving Software
Product Lines", in the 9th International Conference on
Software Engineering Advances (ICSEA’14), Oct. 2014, pp.
107-113.

[8] M. Kamalrudin, J. Grundy, and J. Hosking, "Managing
consistency between textual requirements, abstract
interactions and Essential Use Cases", in the 34th Computer
Software and Applications Conference (COMPSAC), IEEE,
July 2010, pp. 327-336.

[9] G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni,
"An automatic tool for the analysis of natural language

requirements", Informe tcnico, CNR Information Science and
Technology Institute, Pisa, Italia, Sept. 2004.

[10] V. Ambriola, and V. Gervasi, "Processing Natural Language
Requirements", in the 12th IEEE Conference on Automated
Software Engineering (ASE’97), IEEE Computer Society
Press, Nov. 1997, pp. 36-45.

[11] T. von der Maßen, and H. Lichter. "Requiline: A
requirements engineering tool for software product lines",
Lecture notes in computer science, 2004, pp. 168-180.

[12] C. Salinesi, C. Rolland, and R. Mazo. "VMWare: Tool
support for automatic verification of structural and semantic
correctness in product line models", in International
Workshop on Variability Modelling of Software-intensive
Systems (VaMos), 2009.

[13] L. Passos, K. Czarnecki, S. Apel, A. Wasowski, C. Kästner,
and J. Guo, "Feature-oriented software evolution", in the 7th
International Workshop on Variability Modelling of
Software-intensive Systems, ACM, 2013, p. 17.

[14] A. Goknil, I. Kurtev, K. van den Berg, and J. Veldhuis,
"Semantics of trace relations in requirements models for
consistency checking and inferencing, Software Systems
Modeling", Springer, Vol. 10, No. 1, 2011, pp. 31-54.

[15] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, "Using
composite feature models to support agile software product
line evolution", in the 6th International Workshop on Models
and Evolution, 2012, pp. 21-26

[16] S. A. Ajila, and A. B. Kaba, "Evolution support mechanisms
for software product line process”, Journal of Systems and
Software, Elsevier, Vol. 81, No 10, 2008, pp. 1784-1801.

[17] D. Romero, S. Urli, C. Quinton, M. Blay-Fornarino, P.
Collet, L. Duchien, and S. Mosser, "SPLEMMA: A generic
framework for controlled-evolution of software product
lines", in the 17th International Software Product Line
Conference, 2013, pp. 59-66.

[18] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wasowski,
and P. Borba, "Coevolution of variability models and related
artifacts: A case study from the linux kernel", in the 17th
International Software Product Line Conference, 2013, pp.
91-100.

[19] D. L. Parnas, "Software aging", in the 16th international
conference on Software engineering, 1994, p. 279-287.

[20] D. Zowghi, and V. Gervasi, "On the interplay between
consistency, completeness, and correctness in requirements
evolution", Information and Software Technology, Vol. 46,
No. 11, 2004, pp. 763-779.

[21] J. Guo, and Y.Wang, "Towards consistent evolution of
feature models", in Software Product Lines: Going Beyond,
Springer Berlin Heidelberg, 2010, pp. 451-455.

[22] B. Nuseibeh, "To be and not to be: On managing
inconsistency in software development", in the 8th
International Workshop on Software Specification and
Design, IEEE, Mar. 1996, pp. 164-169.

[23] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, and P.
Borba, "Investigating the safe evolution of software product
lines", ACM SIGPLAN Notices, Vol. 47, No. 3, 2012, pp.
33-42.

[24] A. Hunt, and D.Thomas, "The pragmatic programmer: from
journeyman to master", Addison-Wesley Professional, 2000.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

2015 International Journal of Computer Science Issues

[25] S. Schulze, "Analysis and Removal of Code Clones in
Software Product Lines", Ph.D. thesis, Magdeburg
University, 2012.

[26] Y Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker,
and K. Czarnecki, "An exploratory study of cloning in
industrial software product lines", in the 17th European
Conference on Software Maintenance and Reengineering
(CSMR’13), IEEE, Mar. 2013, pp. 25-34.

[27] T. Mende, F. Beckwermert, R. Koschke, and G. Meier,
"Supporting the grow-and-prune model in software product
lines evolution using clone detection", in the 12th European
Conference on Software Maintenance and Reengineering
(CSMR’08), IEEE, Apr. 2008, pp. 163-172.

[28] L. Aversano, L. Cerulo, and M. Di Penta, "How clones are
maintained: An empirical study", in the 11th European
Conference on Software Maintenance and Reengineering
(CSMR’07), IEEE, March 2007, pp. 81-90.

[29] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,
"FORM: A feature-oriented reuse method with domain-
specific reference architectures", Annals of Software
Engineering, Vol. 5, No. 1, 1998, pp. 143-168.

[30] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson,
"Feature-Oriented Domain Analysis (FODA) Feasibility
Study", Technical Report CMU/SEI-90-TR-21, Carnegie
Mellon University, Software Engineering Institute, Nov.
1990.

[31] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse.
Architecture, Process and Organization for Business Success,
Addison-Wesley, ISBN: 0-201-92476-5, 1997.

[32] S. Creff, "Une modélisation de la variabilité
multidimensionnelle pour une évolution incrémentale des
lignes de produits", Doctoral dissertation, University of
Rennes 1, 2003.

[33] A. Khtira, A. Benlarabi, and B. El Asri, "An Approach to
Detect Duplication in Software Product Lines Using Natural
Language Processing", in the Mediterranean Conference on
Information and Communication Technologies
(MEDICT’14), May. 2015, under publication.

[34] S. Apel, and C. Kästner, "An Overview of Feature-Oriented
Software Development", Journal of Object Technology (JOT),
Vol. 8, 2009, pp. 49-84.

[35] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F.
Wielgorz, and S. Apel, "FeatureIDE: A Tool Framework for
Feature-Oriented Software Development", in the 31st
International Conference on Software Engineering, 2009, pp.
611-614.

[36] A. Khtira, A. Benlarabi, and B. El Asri, "Detecting Feature
Duplication in Natural Language Specifications when
Evolving Software Product Lines", in the 10th International
Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE’15), Apr. 2015.

[37] A. Khtira, "Towards a Framework for Feature Deduplication
during Software Product Lines Evolution", in the 27th
International Conference on Advanced Information Systems
Engineering (CAISE’15 Doctoral Consortium), June 2015,
pp. 65-73.

[38] The Eclipse Foundation, "SWT: The Standard Widget
Toolkit", eclipse.org/swt/ [retrieved: July, 2015].

[39] The Apache software foundation, "OpenNLP",
opennlp.apache.org [retrieved: July, 2015].

[40] The PostgreSQL Global Development Group, "About
PostgreSQL", postgresql.org/about/ [retrieved: July, 2015].

[41] "The prefuse visualization toolkit", prefuse.org/ [retrieved:
July, 2015].

Amal Khtira received a degree in software engineering from
National High School of Computer Science and Systems Analysis
(ENSIAS) in 2008. She is currently a PhD student in the IMS
(Models and Systems Engineering) Team of SIME Laboratory at
ENSIAS. Her research interests include Software Product Line
Engineering, Requirements Engineering, Feature Modeling and
Software Evolution.

Anissa Benlarabi obtained a degree in software engineering from
National High School of Computer Science and Systems Analysis
(ENSIAS) in 2010. She is currently a PhD candidate in the IMS
(Models and Systems Engineering) Team of SIME Laboratory at
ENSIAS. Her research interests include Software Evolution,
Biology-Based Software Approaches and Software Product Line
Engineering.

Bouchra El Asri is a Professor in the Software Engineering
Department and a member of the IMS (Models and Systems
Engineering) Team of SIME Laboratory at National High School of
Computer Science and Systems Analysis (ENSIAS), Rabat. Her
research interests include Service-Oriented Computing, Model-
Driven Engineering, Cloud Computing, Component-Based
Systems and Software Product Line Engineering.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 10

2015 International Journal of Computer Science Issues

