
Testability Assessment of Object Oriented Software Using

Static Metric Model and Analytic Hierarchy Process

Dr. Pushpa R. Suri1, Harsha Singhani2
1

2

Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, Haryana, India

Research Scholar, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, Haryana, India

Abstract

Based on existing software testability models for object

oriented software, we have proposed a new testability

assessment model for object oriented software. The

model is based on those six important internal

programming features of object oriented design which

are not used before together at the same time in-spite of

being highlighted in some or other research. These

factors are assessed using popular static object oriented

metrics and their link with testability is established. The

model is further analysed using Multi Criteria Decision

Making (MCDM) approach. The model would be

validated using Analytic Hierarchy Process (AHP). The

proposed model and evaluation technique helps software

engineering practitioners to choose the best alternative

amongst available options by analysing the Testability.

Keywords: Software Testability Assessment Model,

Object Oriented Testability, Static Metric, AHP.

1. Introduction

Testability is one of the qualitative factors of

software engineering which has been accepted in

McCall and Boehm software quality model, which

built the foundation of ISO 9126 software quality

model. Formally, Software testability has been

defined and described in literature from different

point of views IEEE [1] defines it as “The degree

to which a system or component facilitates the

establishment of test criteria and performance of

tests to determine whether those criteria have been

met” and ISO [2] has defined software testability as

functionality or “attributes of software that bear on

the effort needed to validate the software product”.

The testability research actually is done from the

prospect of reducing testing effort and testing cost

which is more than 40% of total development cost

of any software [3]. Still, the research in the field of

testability has not been done in much detail. As

discussed in our previous work about testability

and testability metrics [4], [5], it has been found

that testability research has taken a speed up in past

few years only. Tough, much of the work has been

done using various object oriented featured metrics

only. In this paper we have proposed a testability

model for assessment during design time and

evaluated the same using AHP technique.

This paper is organized as follows: Section2 gives

brief overview of software testability related work.

Section3 showcases the proposed testability

assessment model from design perspective.

Section4 provides overview of material and

methodology used during this research. Section5

presents the details of testability evaluation based

on proposed model using AHP. It is followed by

result and findings in section with conclusion

drawn in section 7.

2. Related Work

2.1 Software Testability

Software testability measurement refers to the

activities and methods that study, analyze, and

measure software testability during a software

product life cycle. Unlike software testing, the

major objective of software testability

measurement is to find out which software

components are poor in quality, and where faults

can hide from software testing. Now these

measurements can be applied at various phases

during software development life cycle of a system.

In past number of research efforts were made

addressing software testability measurement. The

focus of past studies was on how to measure

software testability at various software

development phases like Design Phase [6]–[13] and

Coding Phase[14]–[17]. Lot of stress has been

given upon usage of object oriented metrics for

object oriented software testability evaluation

during these researches. The metrics investigated

related to object oriented software testability

assessment mostly belong to static software metrics

category. These metrics were mostly adapted from

CK, MOOD, Brian, Henderson-Sellers metric suite

[18]–[21]. Furthermore, Lot of empirical studies

has been done in showing the correlation of these

metrics with unit testing effort [22]–[25]. Also

found that few studies have been focussed on UML

diagram features from software testability

improvisation prospect during review of these

design diagrams [26]–[29]. All this work has been

explained in depth in our previous research work

[4],[5]. But still very less work has been found in

testability analysis using MCDM techniques, in

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

2015 International Journal of Computer Science Issues

mailto:pushpa.suri@yahoo.com
mailto:harshasinghani@gmail.com

spite of the fact that the testability factor depends

on multiple criteria which is explained next.

2.2 Analytical Hierarchy Process

In context with software engineering problems,

very few studies related to multi-criteria decision

making (MCDM) approach has been done and

published. Saaty [30] proposed AHP as one of the

most practical method based on MCDM. There are

other popular methods such as Fuzzy-AHP and

preference ranking organization method of

enrichment evaluations (PROMETHEE-2), all

capable of solving logistics as well as technical

systems. Now, when it comes to testability very

less of it is validated ever using any MCDM

techniques.

AHP technique is proposed by Saaty, which based

on pair-wise matrix to determine indistinctiveness

in MCDM problems. It helps in decision making on

the basis of needs and understanding of the

problem [30]. P. Khanna [31] have proposed

primitive work in this field using AHP for

testability which is not supported by any empirical

study on the data. Dubey et. al. [32] have done

study on object oriented usability. Though some

work have been found for aspect oriented software

testability and reusability assessment using MCDM

technique done by Singh and Sangawan [33], [34],

which has been technically found useful in how

AHP needs to be applied in other software’s too for

the study of other quality features. Yang [35] have

also used this technique for analysing and

calculating hardware testability using

comprehensive weighted method and AHP.

3. Proposed Model

Our proposed testability model is based on

Dromey’s software quality model [36] which has

been a benchmark in use for various quality

features as well as many testability models so far.

We have followed the steps as mentioned below to

formalize the model:

 Identification of internal design features

for object oriented software testability

assessment.

 Identification of static metrics out of

many popular metrics for each.

 Establishing link between testability and

these identified factors.

 Followed by Model Evaluation using

AHP technique.

On the basis of our previous research work and

surveys we have identified six factors to assess

testability for object oriented software at design

level [4], [5]. All these are internal quality

characteristics – Encapsulation, Inheritance,

Coupling, Cohesion, Polymorphism and Size &

Complexity as explained in Table 1. Out of six

identified features four features have been proposed

in MTMOOD testability model [10], which does

not cover the polymorphism and size & complexity

feature, which have also been found as essential

internal features by many researchers in testability

study [15], [22], [36], [37].

These six object oriented features play a very

significant role in testability improvisation directly

or indirectly. This relation has been build based on

thorough study of publications [2], [20], [35], [38],

[39]etc.

Table 1: Object Oriented Design Feature Affecting

Testability

OO Feature

Testability

Definition

Encapsulation It is defined as a kind of abstraction

that enforces a clean separation

between the external interface of an

object and its internal

implementation

Inheritance It is a measure of the ‘is-a’

relationship between classes.

Coupling It is defined as the interdependency

of an object on other objects in a

design.

Cohesion It defines as the internal consistency

within the parts of design.

Size &

Complexity

It’s the measure of size of the

system in terms attributes or

methods included in the class and

capture the complexity of the class.

Polymorphism Polymorphism allows the

implementation of a given operation

to be dependent on the object that

“contains” the operation.

The studies indicate encapsulation promotes

efficiency and complexity. Inheritance has a

significant influence on the efficiency, complexity,

reusability and testability or maintainability. While

low coupling is considered good for

understandability, complexity, reusability and

testability or maintainability, whereas higher

measures of coupling are viewed to adversely

influence these quality attributes. Cohesion is

viewed to have a significant effect on a design’s

understandability and reusability. Size &

Complexity has a significant impact on

understandability, and testability or maintainability.

Polymorphism reduces complexity and improves

reusability. Though these features can be measured

by many metrics options available as discussed

earlier [5]. Most of these metrics are accepted by

practitioners on ‘heavy usages and popularity’ and

by academic experts on empirical (post

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 77

2015 International Journal of Computer Science Issues

development) validation. But to keep study simple

from AHP evaluation aspect we have chosen the

few basic but popular metrics amongst testability

researchers.

So, the proposed testability assessment model with

respect to internal design features using static

metrics is as shown in Fig1.It is based on six above

mentioned object oriented features from testability

perspective as pointed in Binders research too [6].

Out of all the popular metrics suites discussed in

our previous work [41] six of these static metrics as

explained below in Table2 have been identified for

the evaluation of each of these feature and their

effects on any object oriented software testability at

design time.

Fig 1: Proposed Software Testability Assessment Model with

Static Metrics

As described in Table2 below for Encapsulation

evaluation number of methods metrics (NOM) is

being chosen by many researchers for the effect of

information hiding on testability [10], [38]. So we

kept it for encapsulation evaluation for our model

too. Inheritance is evaluated using Number of

Children metrics (NOC), one of the most popular

and efficient inheritance metrics [22], [36], [41],

[42]. For Coupling we chose coupling between

objects (CBO) and for Cohesion we opted cohesion

metrics (Li & Henry version) (LCOM). These two

were the most sought after and unparalleled metrics

available for assessing coupling and cohesion effect

on testability as per literature study and popularity

amongst industry practitioners [10], [20], [22]

,[24], [37], [43].Though Size & Complexity can be

easily measured by other metrics in this category

but we chose weighted method complexity (WMC)

metrics due to its significant role and association in

number of test case indication pointed [6], [22],

[42]. Polymorphism is one of the underlying factors

affecting testability but as quite stressed by early

researchers like Binder and others [6], [45] as it

results in testability reduction ,we chose

polymorphism factor metrics (POF/PF) for

testability assessment.

Table2: Testability Model Metrics Details

Testability

Factor

Metrics

Name

Description

Encapsulation No of

Method

(NOM)

This metric is the

count of all the

methods

Inheritance No of

Children

(NOC)

This metric is the

count of children of

super-class in the

design.

Coupling Coupling

Between

Object

(CBO)

This metric count of

the different number

of other classes that a

class is directly

coupled to. (Two

classes are coupled

when methods

declared in one class

use methods or

instance variables

defined by the other

class)

Cohesion Cohesion

Metric

(LCOM)

This metric computes

the relatedness

among methods of a

class based upon the

parameter list of the

methods.

Size &

Complexity

Weighted

Method

Complexity

(WMC)

It s the count of sum

of all methods

complexities in a

class

Polymorphism No of

methods

overridden

(NMO)

It is count of

overridden method in

a subclass

4. Material And Methodology

4.1 AHP Methodology

It initially requires the goal objective to be divided

in to hierarchy of factors and sub-factors, which

can be easily analysed individually. Once the

hierarchy is build the decision maker’s job is to

evaluate the problem as follows:

Step1. Reciprocal Matrix Formation: First, a

pair-wise comparison matrix has been constructed

based on the factors. Every factor needs to compare

with the immediate next factor. A common scale by

Saaty as shown in Table3 below is used for the

same.

The matrix thus formed somewhat look likes this,

Suppose for n number of factors, F1, F2….Fn are

considered, which are to be compared. Relative

weight of Fi relating to Fj denoted as mij and a

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 78

2015 International Journal of Computer Science Issues

square matrix A = [mij] of order n will be formed as

given in equation (1) below.

 (1)

 Here, mij =1/mji and i does not equal to j and mii =1

for all i. Hence the calculated matrix is known as

reciprocal matrix.

Table 3: Satty Rating Scale [30]

Intensity of

Importance

Definition Description

1 Equal

Importance

Elements Ci and Cj are

equally important

3 Weak

Importance of

Ci over Cj

Experience and

Judgment slightly favor

Ci over Cj

5 Essential or

Strong

Importance

Experience and

Judgment strongly favor

Ci over Cj

7 Demonstrated

Importance

Ci is very strongly

favored over Cj

9 Absolute

Importance

The evidence favoring

Ci over Cj is of the

highest possible order

of affirmation

2,4,6,8 Intermediate When compromise is

needed, values between

two adjacent judgments

are used

Reciprocals

of the above

judgments

If Ci has one of

the above

judgments

assigned to it

when compared

with Cj, then Cj

has the

reciprocal value

when compared

with Ci

A reasonable

assumption

Step2: Eigen Vector Calculation: Next, we have

to evaluate the relative weights of the factors,

which are relevant to the problem is called an eigen

vector .

A =max  , max=n (2)

Where,  is eigen vector and max is eigen value.
For a consistent matrix, λmax >=n.

Step3: Consistency Index Calculation: Now, we

have to evaluate Consistency Index (CI) for that

matrix using

  –

 (3)

Step4: Consistency Ratio: Finally, we have to

evaluate consistency ratio (CR) using saaty average

consistency index (RI) values as shown in Table4.

 (4)

Table 4: Saaty Scale of Average Consistency Index

(RI) [30]

Saaty also proposed that if the CR > 0.1, the

judgements may not be consistent and unreliable.

In such a case, a new comparison matrix is needed

to set up until CR < 0.1. This way we can apply the

AHP for predicting a decision based on available

choices at hand.

4.2 Testability Study

In order to conduct testability study based on above

model and AHP technique. The hierarchical model

with factors – Encapsulation (F1), Inheritance (F2),

Coupling (F3), cohesion (F4), Size & complexity

(F5) and polymorphism (F6) has been shown below

in fig2. In order to assign weights to these factors a

survey form was being sent to 10 professional

which are either academicians doing research in

object oriented testing related subjects or having

good knowledge of object oriented concepts or

from industry professional practicing these

methods. On basis of eigen value, eigen vector,

consistency ratio and consistency index

calculations, we have been able to evaluate weights

for all these factors which is shown in detail in next

section.

Fig 2: AHP Hierarchy for Evaluation of Software

Testability Based on Above Model

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 79

2015 International Journal of Computer Science Issues

5. Evaluation of Testability Model

Using AHP

5.1 Proposed Model Evaluation

A square matrix of 6X6 is sent for pair-wise weight

filling to 10 experts as discussed above. The mean

matrix thus formed using these 10 samples on six

testability factors is given below:

There are many methods for calculating the

eigenvector. We have used spreadsheet based

approximate calculations for local priorities of

criteria. The Eigen value thus calculated are as

shown in table 5 below. The eigenvector of the

relative importance of F1, F2, F3, F4, F5 and F6 is

(0.22, 0.22, 0.04, 0.06, 0.25, 0.20), which is given

in Table-5. These values are weights of main

factors i.e. Encapsulation (0.22), Inheritance (0.22),

Coupling (0.04), Cohesion (0.06), Size &

Complexity (0.25) and Polymorphism (0.20) in

testability assessment.

Now the six eigen values calculated for each of

these factors is (6.62, 6.61, 6.58, 6.47, 6.63, 6.60)

with max=6.59 which is >= 6 (total no of factors),

which is consistent. Using this we calculate the CI

and CR values as follows:

  –

=

= 0.12 (6)

 CR=CI/RI=0.12/1.24=0.09 (7)

Table 5: Eigen Vector and Eigen Value for main

factors

 F1 F2 F3 F4 F5 F6

Eigen

Value

F1 1.00 1.35 4.50 3.20 0.95 1.55 0.22

F2 1.23 1.00 4.30 3.30 1.07 1.40 0.22

F3 0.23 0.24 1.00 0.63 0.22 0.26 0.04

F4 0.32 0.31 1.95 1.00 0.27 0.31 0.06

F5 1.55 1.60 4.70 3.80 1.00 1.40 0.25

F6 0.95 1.10 3.90 3.30 1.10 1.00 0.20

max =6.59, CI=0.12, CR=0.09

We found the calculated value of CR<0.1 in all the

samples of matrices, which indicates that the

estimate is consistent and acceptable.

5.2 Testability Evaluate of Sample OO

Projects:

We have applied the above testability assessment

on three object oriented programs the data for

which is taken from [46] which consists of three

standard object oriented projects. Table 6 below

shows the gathered metric value for each of the

above mentioned programming features. Here the

prime motivation is to show the applicability of the

proposed scheme, irrespective of the size of the

considered project. The AHP technique is applied

on pair-wise comparison matrix of OO projects for

each testability factor individually.

Table 6: Three Project Metrics Values[46]

 NOM NOC CBO LCOM WMC NMO

P1 6 3 1 0.5 6 1.5

P2 10 1 2.2 0.5 10 8

P3 8.8 1 2.2 1 8.8 1.5

The eigen vector value for all three projects with

respect to six testability assessment factors-

Encapsulation (Table7), Inheritance (Table8),

Coupling (Table9), Cohesion (Table10), Size&

Complexity (Table 11) and Polymorphism

(Table12) are shown below. The solution with

respective eigen vector values and respective CR

(0.07, 0.07, 0.07, 0.06, 0.07, 0.08) values are also

below in these tables. All CR values are below 0.1.

Hence, the judgements are consistent and

acceptable.

This matrix eigen vector values are utilised in

evaluating global utility of each project and its

overall rank.

Table 7: Pair-wise Comparison Matrix of three OO

Projects for Encapsulation

 P1 P 2 P 3

Eigen

Values

P1 1.00 5.00 3.00 0.62

P2 0.20 1.00 0.25 0.10

P3 0.33 4.00 1.00 0.28

max=3.09,CI=0.04,CR=0.07

Table 8: Pair-wise Comparison Matrix of three OO

Projects for Inheritance

 P1 P2 P3

Eigen

Values

P1 1.00 0.33 4.00 0.28

P2 3.00 1.00 5.00 0.62

P3 0.25 0.20 1.00 0.10

max=3.09, CI=0.04, CR=0.07

(5)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 80

2015 International Journal of Computer Science Issues

Table 9: Pair-wise Comparison Matrix of three OO

Projects for Coupling

 P1 P2 P3

Eigen

Values

P1 1.00 4.00 7.00 0.69

P2 0.25 1.00 4.00 0.23

P3 0.14 0.25 1.00 0.08

max =3.08, CI=0.04, CR=0.07

Table 10: Pair-wise Comparison Matrix of three OO

Projects for Cohesion

 p1 p2 p3

Eigen

Values

P1 1.00 3.00 0.33 0.27

P2 0.33 1.00 0.25 0.12

P3 3.00 4.00 1.00 0.61

max =3.07, CI=0.04, CR=0.06

Table 11: Pair-wise Comparison Matrix of three OO

Projects for Size

 P 1 P 2 P 3

Eigen

Values

P1 1.00 5.00 2.00 0.57

P2 0.20 1.00 0.25 0.10

P3 0.50 4.00 1.00 0.33

max=3.02, CI=0.01, CR=0.02

Table 12: Pair-wise Comparison Matrix of three OO

Projects for Polymorphism

 P 1 P 2 P 3

Eigen

Values

P1 1.00 6.00 3.00 0.63

P2 0.17 1.00 0.20 0.08

P3 0.33 5.00 1.00 0.29

max=3.10,CI=0.05,CR=0.08

Now finally we have to construct a matrix of the

eigenvectors for three selected projects P1, P2 and

P3 and six testability assessment factors weights

F1, F2, F3, F4, F5, and F6 as mentioned below.

The overall global utility of each project is

calculated using the summation of the products of

the weight of OO Project with reference to each

factor by the weights of corresponding factor yields

the global utility of each OO Project.

OOS Testability =

 (8)

For example: U (P1) =

0.22*0.62+0.22*0.28+0.04*0.69+0.25*0.62+0.2*0.63 =

0.52 (9)

The best OO Project is the one which is having the

highest overall testability index values.

Accordingly, ranking of OO Project is done which

are shown in Table 13 and P1 found to be the best

choice as its testability index value is highest

amongst three.

Table 13: Global overall utility and Rank of all

Three projects w.r.t. Testability

 F1 F2 F3 F4 F5 F6

Glo

bal

Utili

ty

R

a

n

k

Wi 0.22 0.22 0.04 0.06 0.25 0.20

P1 0.62 0.28 0.69 0.27 0.62 0.63 0.52 1

P2 0.10 0.62 0.23 0.12 0.10 0.08 0.21 3

P3 0.28 0.10 0.08 0.61 0.28 0.29 0.25 2

6. Result and Findings

The above technique has shown that role of

encapsulation (22%), inheritance (22%), coupling

(4%), Cohesion (6%), size& complexity (25%) and

Polymorphism (20%) in overall testability

assessment of any OO project as per sample survey

based on AHP technique. The result here is utilised

for three medium sized projects for overall

testability index (TI) calculation. In actual

situation, comparative values of characteristics can

be gathered from running projects, which are

developed using object oriented technology.

Though, the projects, which are compared here, are

medium size projects but still good enough to

support the model. However, our motive is to show

the applicability of proposed scheme for the

testability estimation of object oriented software.

Proposed schemes can be applied on real life

software based on the values of identified six

factors and it will determine the Testability Index

(TI) for the considered software. It can be applied

on each module (method, class, package, module

etc) in order to know their testability or it can also

be applied on whole developed system to know its

overall testability.

7. Conclusion and Future Scope

In this paper we have proposed an object oriented

testability model depending on internal object

oriented software design features. The six OO

factors affecting testability are – Encapsulation,

Inheritance, Coupling, Cohesion, Size &

Complexity and Polymorphism found and

identified as per literature survey. We linked each

of these features with suitable popular OO metrics

only at design level. Now, in order to evaluate

testability using above model we used analytical

hierarchical process (AHP). The weights of each of

these factors thus obtained using this technique was

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 81

2015 International Journal of Computer Science Issues

being applied on three medium sized projects for

testability assessment.

In future the assessment of many core runtime

testability factors and metrics may be analysed

using AP technique along with large scale

industrial survey. Later, this model can be cross

validated using other techniques and help

practitioners in testability estimation and

improvisation first at design and later at source

code level, which has not been covered in our

study. Software practitioners can use the proposed

approach for selecting the appropriate program in

term of software testability for OO software.

References

[1] J. Radatz, A. Geraci, and F. Katki, “IEEE

Standard Glossary of Software Engineering

Terminology (IEEE Std 610.12-1990),” 1990.

[2] ISO, “ISO/IEC 9126: Software Engineering

Product Quality,” 2002.

[3] A. P. Mathur, Foundations of Software Testing,

Second. Pearson, 2013.

[4] P. R. Suri and H. Singhani, “Object Oriented

Software Testability Survey at Designing and

Implementation Phase,” International Journal of

Science and Research, vol. 4, no. 4, pp. 3047–

3053, 2015.

[5] P. R. Suri and H. Singhani, “Object Oriented

Software Testability (OOSTe) Metrics

Analysis,” International Journal of Computer

Applications Technology and Research, vol. 4,

no. 5, pp. 359–367, 2015.

[6] R. V Binder, “Design For Testabity in Object-

Oriented Systems,” Communications of the

ACM, vol. 37, pp. 87–100, 1994.

[7] S. Jungmayr, “Testability during Design,” pp.

1–2, 2002.

[8] B. Pettichord, “Design for Testability,” in

Pacific Northwest Software Quality

Conference., 2002, pp. 1–28.

[9] E. Mulo, “Design for Testability in Software

Systems,” 2007.

[10] R. A. Khan and K. Mustafa, “Metric based

testability model for object oriented design

(MTMOOD),” ACM SIGSOFT Software

Engineering Notes, vol. 34, no. 2, p. 1, 2009.

[11] M. Nazir, R. A. Khan, and K. Mustafa,

“Testability Estimation Framework,”

International Journal of Computer Applications,

vol. 2, no. 5, pp. 9–14, 2010.

[12] D. Esposito, “Design Your Classes For

Testbility.” 2008.

[13] J. E. Payne, R. T. Alexander, and C. D.

Hutchinson, “Design-for-Testability for Object-

Oriented Software,” Object Magazine, vol. 7,

no. 5, pp. 34–43, 1997.

[14] Y. Wang, G. King, I. Court, M. Ross, and G.

Staples, “On testable object-oriented

programming,” ACM SIGSOFT Software

Engineering Notes, vol. 22, no. 4, pp. 84–90,

1997.

[15] B. Baudry, Y. Le Traon, G. Sunye, and J. M.

Jézéquel, “Towards a ’ Safe ’ Use of Design

Patterns to Improve OO Software Testability,”

Software Reliability Engineering, 2001. ISSRE

2001. Proceedings. 12th International

Symposium on, pp. 324–329, 2001.

[16] M. Harman, A. Baresel, D. Binkley, and R.

Hierons, “Testability Transformation: Program

Transformation to Improve Testability,” in

Formal Method and Testing, LNCS, 2011, pp.

320–344.

[17] M. Badri, A. Kout, and F. Toure, “An empirical

analysis of a testability model for object-

oriented programs,” ACM SIGSOFT Software

Engineering Notes, vol. 36, no. 4, p. 1, 2011.

[18] S. R. Chidamber and C. F. Kemerer, “A Metrics

Suite for Object Oriented Design,” IEEE

Transactions on Software Engineering, vol. 20,

no. 6, pp. 476–493, 1994.

[19] A. Fernando, “Design Metrics for OO software

system,” ECOOP’95, Quantitative Methods

Workshop, 1995.

[20] L. C. Briand, J. Wust, S. V. Ikonomovski, and

H. Lounis, “Investigating quality factors in

object-oriented designs: an industrial case

study,” Proceedings of the 1999 International

Conference on Software Engineering (IEEE

Cat. No.99CB37002), 1999.

[21] B. Henderson and Sellers, Object-Oriented

Metric. New Jersey: Prentice Hall, 1996.

[22] M. Badri, “Empirical Analysis of Object-

Oriented Design Metrics for Predicting Unit

Testing Effort of Classes,” Journal of Software

Engineering and Applications, vol. 05, no. July,

pp. 513–526, 2012.

[23] M. Bruntink and A. Vandeursen, “An empirical

study into class testability,” Journal of Systems

and Software, vol. 79, pp. 1219–1232, 2006.

[24] L. Badri, M. Badri, and F. Toure, “An empirical

analysis of lack of cohesion metrics for

predicting testability of classes,” International

Journal of Software Engineering and its

Applications, vol. 5, no. 2, pp. 69–86, 2011.

[25] Y. Singh and A. Saha, “Predicting Testability of

Eclipse: Case Study,” Journal of Software

Engineering, vol. 4, no. 2, pp. 122–136, 2010.

[26] B. Baudry, Y. Le Traon, and G. Sunye,

“Improving the testability of UML class

diagrams,” First International Workshop

onTestability Assessment, 2004. IWoTA 2004.

Proceedings., 2004.

[27] M. Genero, M. Piattini, and C. Calero, “A

survey of metrics for UML class diagrams,”

Journal of Object Technology, vol. 4, no. 9, pp.

59–92, 2005.

[28] B. Baudry and Y. Le Traon, “Measuring design

testability of a UML class diagram,”

Information and Software Technology, vol. 47,

no. 13, pp. 859–879, 2005.

[29] B. Baudry, Y. Le Traon, and G. Sunye,

“Testability analysis of a UML class diagram,”

Proceedings Eighth IEEE Symposium on

Software Metrics, 2002.

[30] T. L. Saaty, “Decision making with the analytic

hierarchy process,” International Journal of

Services Sciences, vol. 1, no. 1, p. 83, 2008.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 82

2015 International Journal of Computer Science Issues

[31] P. Khanna, “Testability of Object-Oriented

Systems : An AHP-Based Approach for

Prioritization of Metrics,” in International

Conference on Contemporary Computing and

Informatics(IC3I), 2014, pp. 273–281.

[32] S. K. Dubey, A. Mittal, and A. Rana,

“Measurement of Object Oriented Software

Usability using Fuzzy AHP,” International

Journal of Computer Science and

Telecommunications, vol. 3, no. 5, pp. 98–104,

2012.

[33] P. K. Singh, O. P. Sangwan, A. Pratap, and A.

P. Singh, “Testability Assessment of Aspect

Oriented Software Using Multicriteria Decision

Making Approaches,” World Applied Sciences

Journal, vol. 32, no. 4, pp. 718–730, 2014.

[34] P. K. Singh, O. P. Sangwan, A. P. Singh, and A.

Pratap, “A Quantitative Evaluation of

Reusability for Aspect Oriented Software using

Multi-criteria Decision Making Approach,”

World Applied Sciences Journal, vol. 30, no. 12,

pp. 1966–1976, 2014.

[35] C. Yang, Y. Zheng, M. Zhu, Z. Zuo, X. Chen,

and X. Peng, “A Testability Allocation Method

Based on Analytic Hierarchy Process and

Comprehensive Weighted,” in IEEE 9th

Conference on Industrial Electronics and

Applications (ICIEA), 2014, pp. 113–116.

[36] R. G. Dromey, “A Model for Software Product

Quality,” IEEE Transactions on Software

Engineering, vol. 21. pp. 146–162, 1995.

[37] S. Khalid, S. Zehra, and F. Arif, “Analysis of

object oriented complexity and testability using

object oriented design metrics,” in Proceedings

of the 2010 National Software Engineering

Conference on - NSEC ’10, 2010, pp. 1–8.

[38] M. Nazir and K. Mustafa, “An Empirical

Validation of Testability Estimation Model,”

International Journal of Advanced Research in

Computer Science and Software Engineering,

vol. 3, no. 9, pp. 1298–1301, 2013.

[39] L. Rosenberg and L. Hyatt, “Software quality

metrics for object-oriented environments,”

Crosstalk Journal, April, vol. 10, no. 4, pp. 1–6,

1997.

[40] M. Nazir and R. A. Khan, “Software Design

Testability Factors: A New Perspective,” in

Proceedings of Third National Conference

INDIACOM, 2009, pp. 1–6.

[41] H. Singhani and P. R. Suri, “Object Oriented

SoftwareTestability (OOSTe) Metrics

Assessment Framework,” International Journal

of Advanced Research in Computer Science and

Software Engineering, vol. 5, no. 4, pp. 1096–

1106, 2015.

[42] M. Bruntink, “Testability of Object-Oriented

Systems : a Metrics-based Approach,” Master’s

thesis, Faculty of Natural sciences,

Mathematics, and Computer science, University

of Amsterdam, 2003.

[43] M. Genero, M. Piattini, and C. Calero, “An

Empirical Study to Validate Metrics for Class

Diagrams,” in Proc. of International Database

Engineering and Applications Symposium

(IDEAS’02), Edmonton, Canada., 2002, pp.

1–10.

[44] M. Patidar, R. Gupta, and G. Chandel,

“Coupling and Cohesion Measures in Object

Oriented Programming,” International Journal

of Advanced Research in Computer Science and

Software Engineering, vol. 3, no. 3, pp. 517–

521, 2013.

[45] S. Mouchawrab, L. C. Briand, and Y. Labiche,

“A measurement framework for object-oriented

software testability,” Information and Software

Technology, vol. 47, no. April, pp. 979–997,

2005.

[46] K. K. Aggarwal, Y. Singh, A. Kaur, and R.

Malhotra, “Empirical study of object-oriented

metrics,” Journal of Object Technology, vol. 5,

no. 8, pp. 149–173, 2006.

Dr. Pushpa R. Suri received her Ph.D. Degree from

Kurukshetra University, Kurukshetra. She had recently

retired as a Professor from the Department of Computer

Science and Applications, Kurukshetra University,

Kurukshetra, Haryana, India. She has many publications

in International and National Journals and Conferences.

Her teaching and research activities include Discrete

Mathematical Structure, Data Structure, Information

Computing and Database Systems.

Harsha Singhani received her Master of Computer

Application degree from Maharishi Dayanand

University, Rohtak, Haryana, India. She has got

experience of over 12 years of teaching in field of I.T.

At present, she is pursuing Ph.D. (Computer Science)

from Kurukshetra University, Kurukshetra, Haryana,

India. Her teaching and research areas include database

systems, automata theory, object oriented programming

and software testing.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 83

2015 International Journal of Computer Science Issues

