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Abstract 
Sorting data is an important problem for many applications. 
Parallel sorting is a way to improve sorting performance using 
more nodes or threads e.g. dividing data in more nodes and 
perform sorting in each node simultaneously or including more 
threads in process of sorting. It was experimented with one type 
of those sorting algorithms, namely the well-known sorting 
algorithms called Odd-Even sort. This paper describes a 
modification of the above mentioned algorithm. Namely, the 
algorithm modification consists in the ability to work with the 
blocks of elements instead of working with individual elements. 
This modification is done with the idea to make it in a closer 
form for use of the CUDA technology. Both theoretical and 
experimental analysis of Odd-Even sort algorithm together with 
its parallel implementation is done. For experimental purpose, a 
GeForce GT 645M with 2 GB memory is used. The 
programming language C++ with CUDA 7.0 paradigm is utilized 
to implement Odd-Even algorithm and the results indicated that 
sorting of integers in CUDA environment are dozens of times 
faster. 
Keywords: Parallel sorting; Odd-Even sort; shared memory; 
CUDA. 

1. Introduction

Sorting problem is very important in computer science and 
other disciplines. There are many related work on the issue 
together with many investigated properties [6, 13]. 
Nowadays, different sorting algorithms have been 
developed including such as sequential and parallel [1, 3, 
10, 11, 12, 19]. Some of them are implemented in sorting 
machines as well [18]. In recent years, a lot of 
investigations of the sorting problem are focused in GPU 
technology [2, 9, 17] and CUDA [4, 5, 7, 14, 15, 20, 21]. 
In this paper we have analyzed a simple odd-even sorting 
algorithm implemented by use of the CUDA paradigm 
techniques. The odd-even algorithm is used in modified 
form and instead of comparing the pair of neighbor 
elements (as in standard odd-even algorithm) we use merge 
of the subsequences of successive elements. The idea is to 
separate the sequence of the elements into k subsequences 

and continue in two steps. The first step is local sort which 
is between the subsequences by the use of any sorting 
algorithm and the second step is the merge of the 
subsequences, and by this modification we achieved 

( )knO /2  as computation complexity. This modification is
quite convenient to use CUDA paradigm and GPU 
technology. The algorithm is adapted for CUDA paradigm 
use and the parallel implementation is done. With parallel 
implementation, ( )22 / knO  is achieved as computation
complexity. The purpose of this paper was to measure and 
compare the execution time of the modified algorithm 
implemented and executed in both CPU and GPU, and to 
highlight the time speedup in case of GPU use. 

The paper is organized in seven sections. It starts with the 
introduction, in the second section some related works are 
given, odd-even algorithm and modification are analyzed 
in the third section, in the fourth section, a parallel 
implementation is done, the CUDA implementation and 
experimentation are given in section five and six and in 
section seven presents some conclusions. 

2. Related Work

Sorting algorithms are the most widely studied in the 
computer science and there is too much work done in the 
sorting problems. Hence, we focus on the parallel sorting 
algorithms that exploit the modern GPU architectures and 
CUDA paradigm. In this section, we briefly survey related 
work in GPU sorting algorithms with use of advantages of 
CUDA paradigm. 

A design of parallel routines for multicore GPU which use 
advantages of the full programmability offered by CUDA 
is presented in [14] (Nadathur, Mark, & Michael). They 
have designed a version of parallel radix sort algorithm as 
a non-comparison based and merge sort algorithm as a 
comparison based and where have exploited substantial 
fine-grained parallelism and decompose of the 
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computation into independent tasks that perform minimal 
global communication. In their experiments they have 
achieved higher performances. 
 
Shifu, Jing, Yongming, Junping, & Pheng-Ann, in their 
paper [20] proposed a sorting algorithm which is a 
combination of the bucket sort and internal bitonic sort and 
they achieved many times acceleration over the STL 
Quicksort implementation. Also they show that their 
implementation has higher performance than the GPU 
Quicksort and GPU RadixSort. 
 
Daniel & Philippas in [5] have proposed a parallel 
Quicksort algorithm designed to take advantage of the high 
bandwidth of GPUs by minimizing the amount of 
bookkeeping and inter-thread synchronization needed. 
They show that their GPU-Quicksort implementation 
performs better than the fastest known sorting 
implementations for GPU, such as radix and bitonic sort. 
 
A version of comparison based parallel algorithm for GPU 
which consists a combination of the bitonic sort algorithm 
followed by the merge sort is presented in [21] (Xiaochun, 
Dongrui, Wei, Nan, & Ienne). They have paid more 
attention on the mapping of the sorting tasks to the GPU, 
the synchronous execution of threads in a warp (in order to 
eliminate the barriers in bitonic sorting network) and 
providing sufficient homogeneous parallel operations for 
all the threads within a warp (in order to avoid branch 
divergence). They called their algorithm as GPU - 
Warpsort and in their experimentation have achieved high 
performances. 
 
Hagen, Ole, & Norbert, in [9] have proposed an in-place 
implementation of Batcher's bitonic sorting networks for 
CUDA-enabled GPUs. They adapted bitonic sort for 
arbitrary input length and assigned compare/exchange-
operations to threads in a way that decreases low-
performance global-memory access and thereby greatly 
increases the performance of the implementation. 

Chun-Yuan, Wei Sheng, & Chuan Yi, in [4], they proposed 
an efficient implementation of a parallel shellsort 
algorithm, CUDA shellsort, for many-core GPUs with 
CUDA. And under the uniform distribution of the elements 
their implementation show high performances and 
moreover the performance, based on the showed results, is 
the same for big samples of elements.  

3. Odd-Even Sort Algorithm 

Odd-even sort algorithm a version of well-known bubble 

sort algorithm which can be effectively implemented in 
parallel. In the following section we describe two variants 
of this algorithm. The first is the simple form given as 
below. 

 

Let we have a sequence of numbers 0a , 1a , …, 1−na , 

sorting algorithms starts with first position, element 0a , 

and for each even position does the exchange of the 

neighbors, so the element ia2  is compared with his 

neighbor 12 +ia . On the next step, algorithm starts from the 

second position 1a  and for each odd position does the 

exchange of the neighbors, 12 +ia  is compared with 22 +ia . 

Those two steps are repeated until there is no changes on 
the exchange operation. Let k be the number of repetitions 
of the above steps and in one step there are 2/n  
exchange operation so in total the number of comparisons 
is )2/(nk ⋅  and the best case is if we obtain the sorting for 

1=k  and the worst case for 1−= nk . The complexity 
of the odd-even sorting algorithm lays between )(nO  

and )( 2nO . 

 
Now, let we try to modify this idea by divide the sequence 
into subsequences. Let k be the number of sub sequences, 
than algorithm can be divided into two steps. First step, 
sorts the elements into each sub sequence and the second 
step does the merge of the sub sequences. 
 
For the first step, we can use any sorting algorithm and as 
well can be used the odd-even algorithm. Now because the 

number of elements which is 
k

n , the complexity is between 
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In the next step, the sorted subsequences have to be 
merged. For merge operation the idea of odd-even 
algorithm is used and instead of exchange between 
elements we do merge of the subsequences. The merge 
operation is done for the two neighbor subsequences and 
for the left subsequence we chose the first k smaller 
(depend on the sorting type, does it ascending or 
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descending) elements and the remaining we store on the 
right subsequence. Merge operation is done in way of 
merging two sorted sequence and the complexity is linear 
to the number of elements. This operation will be done 
alternatively and as it explained for the case where all 
elements are contained into one sequence. So instead of an 
element now we work with a sequence. The whole sort will 
be achieved after 1−k  sub steps where into one step will 

be done 
2

k
 alternatively merge operations. Taken into 

account that one merge operation has complexity 
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The described idea is illustrated with a following simple 
example, 
 
70 74 59 77 72 63 38 39 63 16 18 23 77 53 75 91 
 
59 70 74 77 38 39 63 72 16 18 23 63 53 75 77 91

 
 
38 39 59 63 70 72 74 77 16 18 23 53 63 75 77 91

 
 
38 39 59 63 16 18 23 53 70 72 74 77 63 75 77 91

 
 
16 18 23 38 39 53 59 63 63 70 72 74 75 77 77 91 
 

4. Parallel Odd-Even Sort Algorithm 

The idea of sorting by divide into subsequences is a good 
starting point to design a parallel algorithm. Let us start 
with a simple case. 
 
Let n be the number of elements of the sequence and also 
let us supposed to have n processing elements (where 
processing element can be a process or thread). As it is 

known odd-even algorithm does alternatively exchange of 
the neighboring elements and after n-1 repeats the 

sequence is sorted. Let us take the sequence 0a , 1a , …, in 

the step i, where ni <≤1  then the processing element j, 

nj <≤0  will operate as follow  
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Algorithms starts with first position, element0a , and for 

each even position does the exchange of the neighbors, so 

the element ka2  is compared with his neighbor 12 +ka . In 

the next step, algorithm starts from the second position 1a  

and for each odd position does the exchange of the 

neighbors, 12 +ka  is compared with 22 +ka . Those two steps 

are repeated until there is no changes on the exchange 
operation. 
 
Exchange operations can be done in parallel. If for each 
element we map a processing element then during one step 
all exchange operations will be done in the same time and 

the overall time complexity of the step is ( )1O . As we 

mention before the sort is done after n-1 steps and the time 
complexity of the parallel sorting of sequence with n 
elements by use of n processing elements is  
 

( ) ( )nOOnnT =⋅= 1)( . 

 
On the general, the number of processing elements is less 
than the number of elements. Let n be the number of 
elements of the sequence and k the number of processing 
elements. We use the above elaborated idea where we 
divide the sequence into subsequences. We divide the 
sequence into k subsequences and each subsequence will 

have 
k

n  elements. Now, first step is sorting of the 

subsequences and this can be done in parallel, so, each 
sorting element will sort his part and we obtain k sorted 
sequence. This operation we call local sort. The time 
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O  (depend on the sorting algorithm used). 
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For the next step, we define the operation merge which 
take two sorted subsequences and as a result gives one 
sorted subsequence with same length as input sequences. 
The merge operation is defined as follow: each processing 
element works with owned subsequence and the 
subsequence of the first his right neighbor and by use of 
the merge operation combines those two subsequences into 
one sorted sequence with doubled number of elements. Let 
i be the identification number of the processing element. In 
case of even step, if i is even then the processing element 

as a result takes the first 
k

n  elements otherwise takes the 

second part (second 
k

n  elements). For the odd step it does 

similar and if i is odd then procesing element takes the first 
part otherwise second part. 
 

The complexity of one merge is 
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whole step, according to above explanation the time 
complexity of this part of the algorithm is 
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5. Implementation of Odd-Even Sort 
Algorithm in CUDA Technology 

5.1. Introduction to CUDA 

The Compute Unified Device Architecture (CUDA) is a 
parallel programming paradigm released in 2007 by 
NVIDIA. It was originally intended as a platform for 
programming graphics applications, but later it was found 
that could be used for to include the GPU in solving 
general purpose problems and to enable parallel solutions 
by use of the kernels of the GPU as a processing elements. 
CUDA use the C/C++ programming language with some 
extensions to allow use of the GPU specific features. 
CUDA has specific functions, called kernels. Kernel is a 
function or a program which is invoked from CPU and is 

executed many times of the same function in parallel in 
GPU. CUDA programming paradigm is a combination of a 
serial and parallel execution and serial part is executed in 
the host (CPU) and parallel part in the device (GPU). Host 
is responsible for transfer data to the device and as well as 
to invoke kernels which will be execute to device. Figure 1 
illustrate the basic model of CUDA working  
 

Host
(CPU)

Main memory
(RAM)

Device

Device main 
memory

GPU

 
a.  

Host
(CPU)

Main memory
(RAM)

Device

Device main 
memory

GPU

 
b. 

Host
(CPU)

Main memory
(RAM)

Device

Device main 
memory

GPU

 
c. 

Fig. 1. a. Transfer data from host main memory to device main memory; 
b. Invoke kernel function; c. Return the results from device to host. 

In general, CUDA provides three main types of the 
function qualifiers which are device, global and host. 
Functions which have to be executed in device (GPU) have 
to be declared with qualifier __device__, these function are 
callable from the  device. Functions which have to be 
invoked from the host (CPU) but the execution will be in 
the device with qualifier __global__ and those which 
execution will be in host with __host__ and these are 
callable only from host. 
CUDA execution model is based on a hierarchy of 
abstraction layers: grids, blocks, warps and threads (Fig. 
2). The thread is the basic execution unit and it represents 
the processing element. A block is a batch of threads 
cooperating together and therefore all threads in a block 
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share the same memory (each thread has its local memory 
and together have the common memory). Threads in a 
block can be waiting one to each other, so can be 
synchronized (the global synchronization isn’t provided). 
A grid is composed by several blocks. In turn, a warp is a 
group of threads of the same block and which can be 
executed in parallel, in a SIMD way and threads of a same 
block are scheduled warp by warp. The CPU is responsible 
of transferring data between host and device memories as 
well as invoking the kernel code, setting the grid and block 
dimensions. The kernel invoke is as follow  
 
kernel_function<<<gridDim, blockDim>>>(…arguments…); 
 

Host (CPU) Device (GPU)

Grid 1

Grid 2

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Kernel 1

Kernel 2 Block
(0,0)

Block
(1,0)

Block
(2,0)

Block (2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

...

...

………………………………………………

 

Fig. 2. Hierarchy of abstraction layers: grids, blocks and threads.  

The CUDA paradigm provides some built-in variables to 
use this structure efficiently. To access the id of a thread 
block the blockIdx variable (values from 0 to gridDim-1) is 
used and to access its dimension the blockDim variable is 
used while gridDim gives the dimensions of the grid. Each 
individual thread is identified by threadIdx variable, can 
have values from 0 to blockDim-1. WarpSize specifies 
warp size in the threads. All these variables are built-in in 
kernel. 
 
Different memory spaces are available. The GPU has its 
memory which is named as global memory and this can be 
used from all threads of all blocks. This memory also is 
used and from CPU (CPU transfer the data which have to 
be processed from its main memory to this memory). 
Global memory can be with large capacity. The next is 
shared memory. Shared memory is faster compared to 
global memory and it is divided into many parts. Each 
block has its own part of shared memory and this part of 
shared memory is accessible only from the threads within a 
block and all threads within a block, share this part of 
memory for both read and write operations To declare 
variables in shared memory __shared__ qualifier is used 
and to declare in global memory __device__ qualifier is 
used. Each thread also contains its own local memory. 
Normally local variables of the kernel functions are 
allocated here. Sometimes they are allocated on global 
memory [8, 16, 22]. 

5.2. CUDA Implementation 

Using the CUDA possibilities, for the above developed 
algorithm we have analyzed two implementations. First 
one implementation is when the number of elements of the 
sequence is less than the maximum number of the threads 
in a block. In this case the whole sequence is copied to the 
block’s shared memory and for each element of the 
sequence is mapped one thread. Each thread takes two 
elements (the element with the same index as thread 
identification number and the right/left neighbor element) 
and in accordance with the algorithm’s rule as a result 
gives the minimum or maximum of the input elements. 
This operation is repeated many times (as many time as is 
the number of elements of the sequence). 
Second implementation is limited by the maximum number 
of blocks. So the sequence is divided in many 
subsequences (up to the maximum number of the blocks) 
where a sub sequence is mapped into a block and 
implementation goes in two steps. The first step is local 
sort. According to the number of elements of the 
subsequence and maximum number of thread available for 
the block we have analyzed two different situations. If the 
number of elements in a subsequence (in a block) is less or 
equal to the number of threads than is used the same idea 
as in first implementation. Otherwise, if the number of 
elements in a block is greater than the number of threads 
than is applied the sorting in two phases. The subsequence 
in a block is divided in subsequences, up to the number of 
threads and each thread does the sort in his part. After the 
finishing of the first phase, starts the merge phase which 
continue to whole sort of the subsequence of the block. 
Now, if the number of sorted subsequences is smaller than 
the number of threads in a block, for the second step we 
define one block and each subsequence we map to a thread 
of this block. Threads deals similar as in the first 
implementation but instead of elements it takes two 
subsequences and does the merge of those. If the number 
of sub sequences is greater than the maximum number of 
available threads on the block than we have defined for 
each subsequence a block with one thread. On the shared 
memory of each block two neighbor subsequences are 
copied, as in the follow figure 

 

Block no. 0 1 2 3 4 5 …
Seq. no. 0-1 0-1 2-3 2-3 4-5 4-5 … 

 a. 

Block no. 0 1 2 3 4 5 …
Seq. no. 1-2 1-2 3-4 3-4 5-6 … 

 b. 

Fig. 3. a. For the phase which starts from zero, even phase, b. odd phase 
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This operation repeats k - 1 times, where k is the number 
of blocks used. 

6. Practical Experiments 

In order to show the practical effects of the above 
explained algorithm, we implemented the above idea and it 
is executed in a machine with NVidia GPU. Technical 
features of the machine used for testing are Intel i5 
processor, 8 GB RAM and GeForce GT 645M with 2GB 
VRAM, set up under Windows 8.1 operating system. 
CUDA 7.0 paradigm and C++ is used for CUDA 
implementation.  
 
Methodology of experimentation - the same algorithm is 
executed several times (typically 10 times) and as an 
execution time the average time is taken. Three different 
algorithms are executed, the standard Odd-Even algorithm 
(where the basic operation is comparison of neighbor 
elements), modified Odd-Even algorithm (called block 
Odd-Even, which consists of two phases, the first phase 
where a local sorting is performed and second phase where 
a merge is performed) and block Odd-Even algorithm 
implemented with CUDA paradigm. It is measured only 
the calculations (sorting) time and data transfers from 
RAM to VRAM and vice versa are not taken into account. 
Average time results are given in tables and graphs. 
 
Because of the technical features of the system, executions 
are done for integer numbers and for the number of 
elements n = 1K, 2K, 4K, 8K, 16K, 32k, 64K, 128K, 256K, 
512K and 1024K (power of number 2 and K - kilo). The 
block sizes BS = 16, 32, 64, 128, 256, 512 and 1024 for 
executions are used. Due to GPU technical limitations 
(memory restrictions and limited number of threads per 
block), we could not use block sizes greater than 1024. 
Results are expressed into tables and graphs and the first 
table’s row shows the number of elements (expressed in 
kilo), while the first column the block size. 
 

Table 1. Run time of sequential implementation of Block Odd-Even 
algorithm 

1 0.0029 0.0128 0.0424 0.1622 0.683 2.7843 11.048 43.482 170.56
16 0.0009 0.003 0.0106 0.0419 0.1621 0.6581 2.5212 9.7517 38.343 153.17
32 0.0001 0.0014 0.0058 0.0215 0.0834 0.3235 1.2836 4.9074 19.163 76.127
64 0.0003 0.0009 0.004 0.0122 0.0435 0.1631 0.6286 2.466 9.7439 38.533

128 0.0004 0.0008 0.0029 0.0088 0.0258 0.0876 0.3214 1.2516 4.8447 19.119 76.354
256 0.0005 0.0015 0.004 0.0088 0.0212 0.0601 0.191 0.6712 2.4961 9.7048 38.594
512 0.0013 0.003 0.0061 0.0126 0.0267 0.0598 0.1584 0.4657 1.5187 5.375 20.234

1024 0.0029 0.0054 0.0114 0.0219 0.0447 0.0943 0.2029 0.475 1.2237 3.6393 11.953

16 32
    N(K)               

Bs
1 2 4 8 64 128 256 512 1024

 
 

 

Fig. 4. Run time of sequential implementation of Block Odd-Even 
algorithm 

Table 2. Run time of CUDA implementation  

16 0.0008 0.0007 0.001 0.0008 0.0013 0.0012 0.0019 0.0028 0.005
32 0.0004 0.0008 0.001 0.0009 0.001 0.0011 0.0015 0.0025 0.0044
64 0.0009 0.0007 0.0008 0.0009 0.0011 0.0012 0.0019 0.0024 0.004 0.008

128 0.0008 0.0008 0.0009 0.0007 0.001 0.0013 0.0017 0.0028 0.005 0.0089 0.017
256 0.001 0.001 0.0008 0.0012 0.001 0.002 0.003 0.0052 0.0095 0.0173 0.034
512 0.001 0.0009 0.001 0.0015 0.002 0.0034 0.0058 0.0103 0.0194 0.0381 0.075

1024 0.0013 0.0011 0.0017 0.0022 0.0036 0.0063 0.0113 0.0216 0.0417 0.082 0.165

1024
    N(K)               

Bs
1 2 4 8 16 32 64 128 256 512

 
 

 

Fig. 5. Run time of CUDA implementation 

7. Conclusion 

The analysis and obtained results conclude that 
modification in blocks of the Odd-Even algorithm, 
compared to the standard algorithm shows dozen times 
higher performances. It was expected since the algorithm 
operates as follow: first the sequence is divided into 
subsequences (in blocks), which is sorted quickly 
compared with the sequence of whole and to achieve the 
whole sequence sorted it continues with the merger of 
sorted subsequences which is with a complexity)(nO . 
This was noticed even in theory, where the complexity is 
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calculated and it is ( )knO /2  and k is the number of 
elements of the subsequence. The practical results confirm 
the theoretical complexity, so when k increase execution 
time is in decrease. 
 
The idea of separation of sequence in blocks and 
modification of Odd-Even is used for NVidia CUDA 
paradigm implementation. In CUDA implementation, the 
logical CUDA block for the subsequence (block) is used. 
Compared to CPU execution, GPU execution shows very 
high performance (and the same is confirmed by 
mathematical complexity calculation). Analyzing the 
executions for different block size we conclude that in case 
of BS = 128 the results are better. This result is justified 
because of the GPU technical parameters, warp size (which 
is 32) and the way of algorithm implementation (as shown 
above).  
 
As a general conclusion is that despite the technical 
limitations of the GPU, the achieved results show that the 
use of GPU and CUDA paradigm shows high performance 
in solving of the problem of sorting. 
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