
A Version of Parallel Odd-Even Sorting Algorithm Implemented

in CUDA Paradigm

Jaumin Ajdari, Bujar Raufi, Xhemal Zenuni, Florije Ismaili

Faculty of Contemporary Sciences and Technologies
South East European University

Tetovo, Macedonia

Abstract
Sorting data is an important problem for many applications.
Parallel sorting is a way to improve sorting performance using
more nodes or threads e.g. dividing data in more nodes and
perform sorting in each node simultaneously or including more
threads in process of sorting. It was experimented with one type
of those sorting algorithms, namely the well-known sorting
algorithms called Odd-Even sort. This paper describes a
modification of the above mentioned algorithm. Namely, the
algorithm modification consists in the ability to work with the
blocks of elements instead of working with individual elements.
This modification is done with the idea to make it in a closer
form for use of the CUDA technology. Both theoretical and
experimental analysis of Odd-Even sort algorithm together with
its parallel implementation is done. For experimental purpose, a
GeForce GT 645M with 2 GB memory is used. The
programming language C++ with CUDA 7.0 paradigm is utilized
to implement Odd-Even algorithm and the results indicated that
sorting of integers in CUDA environment are dozens of times
faster.
Keywords: Parallel sorting; Odd-Even sort; shared memory;
CUDA.

1. Introduction

Sorting problem is very important in computer science and
other disciplines. There are many related work on the issue
together with many investigated properties [6, 13].
Nowadays, different sorting algorithms have been
developed including such as sequential and parallel [1, 3,
10, 11, 12, 19]. Some of them are implemented in sorting
machines as well [18]. In recent years, a lot of
investigations of the sorting problem are focused in GPU
technology [2, 9, 17] and CUDA [4, 5, 7, 14, 15, 20, 21].
In this paper we have analyzed a simple odd-even sorting
algorithm implemented by use of the CUDA paradigm
techniques. The odd-even algorithm is used in modified
form and instead of comparing the pair of neighbor
elements (as in standard odd-even algorithm) we use merge
of the subsequences of successive elements. The idea is to
separate the sequence of the elements into k subsequences

and continue in two steps. The first step is local sort which
is between the subsequences by the use of any sorting
algorithm and the second step is the merge of the
subsequences, and by this modification we achieved

()knO /2 as computation complexity. This modification is
quite convenient to use CUDA paradigm and GPU
technology. The algorithm is adapted for CUDA paradigm
use and the parallel implementation is done. With parallel
implementation, ()22 / knO is achieved as computation
complexity. The purpose of this paper was to measure and
compare the execution time of the modified algorithm
implemented and executed in both CPU and GPU, and to
highlight the time speedup in case of GPU use.

The paper is organized in seven sections. It starts with the
introduction, in the second section some related works are
given, odd-even algorithm and modification are analyzed
in the third section, in the fourth section, a parallel
implementation is done, the CUDA implementation and
experimentation are given in section five and six and in
section seven presents some conclusions.

2. Related Work

Sorting algorithms are the most widely studied in the
computer science and there is too much work done in the
sorting problems. Hence, we focus on the parallel sorting
algorithms that exploit the modern GPU architectures and
CUDA paradigm. In this section, we briefly survey related
work in GPU sorting algorithms with use of advantages of
CUDA paradigm.

A design of parallel routines for multicore GPU which use
advantages of the full programmability offered by CUDA
is presented in [14] (Nadathur, Mark, & Michael). They
have designed a version of parallel radix sort algorithm as
a non-comparison based and merge sort algorithm as a
comparison based and where have exploited substantial
fine-grained parallelism and decompose of the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 68

2015 International Journal of Computer Science Issues

computation into independent tasks that perform minimal
global communication. In their experiments they have
achieved higher performances.

Shifu, Jing, Yongming, Junping, & Pheng-Ann, in their
paper [20] proposed a sorting algorithm which is a
combination of the bucket sort and internal bitonic sort and
they achieved many times acceleration over the STL
Quicksort implementation. Also they show that their
implementation has higher performance than the GPU
Quicksort and GPU RadixSort.

Daniel & Philippas in [5] have proposed a parallel
Quicksort algorithm designed to take advantage of the high
bandwidth of GPUs by minimizing the amount of
bookkeeping and inter-thread synchronization needed.
They show that their GPU-Quicksort implementation
performs better than the fastest known sorting
implementations for GPU, such as radix and bitonic sort.

A version of comparison based parallel algorithm for GPU
which consists a combination of the bitonic sort algorithm
followed by the merge sort is presented in [21] (Xiaochun,
Dongrui, Wei, Nan, & Ienne). They have paid more
attention on the mapping of the sorting tasks to the GPU,
the synchronous execution of threads in a warp (in order to
eliminate the barriers in bitonic sorting network) and
providing sufficient homogeneous parallel operations for
all the threads within a warp (in order to avoid branch
divergence). They called their algorithm as GPU -
Warpsort and in their experimentation have achieved high
performances.

Hagen, Ole, & Norbert, in [9] have proposed an in-place
implementation of Batcher's bitonic sorting networks for
CUDA-enabled GPUs. They adapted bitonic sort for
arbitrary input length and assigned compare/exchange-
operations to threads in a way that decreases low-
performance global-memory access and thereby greatly
increases the performance of the implementation.

Chun-Yuan, Wei Sheng, & Chuan Yi, in [4], they proposed
an efficient implementation of a parallel shellsort
algorithm, CUDA shellsort, for many-core GPUs with
CUDA. And under the uniform distribution of the elements
their implementation show high performances and
moreover the performance, based on the showed results, is
the same for big samples of elements.

3. Odd-Even Sort Algorithm

Odd-even sort algorithm a version of well-known bubble

sort algorithm which can be effectively implemented in
parallel. In the following section we describe two variants
of this algorithm. The first is the simple form given as
below.

Let we have a sequence of numbers 0a , 1a , …, 1−na ,

sorting algorithms starts with first position, element 0a ,

and for each even position does the exchange of the

neighbors, so the element ia2 is compared with his

neighbor 12 +ia . On the next step, algorithm starts from the

second position 1a and for each odd position does the

exchange of the neighbors, 12 +ia is compared with 22 +ia .

Those two steps are repeated until there is no changes on
the exchange operation. Let k be the number of repetitions
of the above steps and in one step there are 2/n
exchange operation so in total the number of comparisons
is)2/(nk ⋅ and the best case is if we obtain the sorting for

1=k and the worst case for 1−= nk . The complexity
of the odd-even sorting algorithm lays between)(nO

and)(2nO .

Now, let we try to modify this idea by divide the sequence
into subsequences. Let k be the number of sub sequences,
than algorithm can be divided into two steps. First step,
sorts the elements into each sub sequence and the second
step does the merge of the sub sequences.

For the first step, we can use any sorting algorithm and as
well can be used the odd-even algorithm. Now because the

number of elements which is
k

n , the complexity is between










k

n
O and






















2

k

n
O . If we use quicksort (which is

known as better sorting algorithm) then the complexity is


















k

n

k

n
O log . The total complexity for this step lays

between ()nO and









k

n
O

2

.

In the next step, the sorted subsequences have to be
merged. For merge operation the idea of odd-even
algorithm is used and instead of exchange between
elements we do merge of the subsequences. The merge
operation is done for the two neighbor subsequences and
for the left subsequence we chose the first k smaller
(depend on the sorting type, does it ascending or

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 69

2015 International Journal of Computer Science Issues

descending) elements and the remaining we store on the
right subsequence. Merge operation is done in way of
merging two sorted sequence and the complexity is linear
to the number of elements. This operation will be done
alternatively and as it explained for the case where all
elements are contained into one sequence. So instead of an
element now we work with a sequence. The whole sort will
be achieved after 1−k sub steps where into one step will

be done
2

k
 alternatively merge operations. Taken into

account that one merge operation has complexity 








k

n
O ,

we obtain the complexity 






⋅⋅−
k

n
O

k
k

2
)1(and for the

overall complexity is








⋅⋅−+







=

k

n
O

k
k

k

n
OknT

2
)1(),(

2

() 







+=+








= kn

k

n
OknO

k

n
OknT

22

),(

and 2kn > (which is very realistic condition), thus we

have








=

k

n
OknT

2

),(.

The described idea is illustrated with a following simple
example,

70 74 59 77 72 63 38 39 63 16 18 23 77 53 75 91

59 70 74 77 38 39 63 72 16 18 23 63 53 75 77 91

38 39 59 63 70 72 74 77 16 18 23 53 63 75 77 91

38 39 59 63 16 18 23 53 70 72 74 77 63 75 77 91

16 18 23 38 39 53 59 63 63 70 72 74 75 77 77 91

4. Parallel Odd-Even Sort Algorithm

The idea of sorting by divide into subsequences is a good
starting point to design a parallel algorithm. Let us start
with a simple case.

Let n be the number of elements of the sequence and also
let us supposed to have n processing elements (where
processing element can be a process or thread). As it is

known odd-even algorithm does alternatively exchange of
the neighboring elements and after n-1 repeats the

sequence is sorted. Let us take the sequence 0a , 1a , …, in

the step i, where ni <≤1 then the processing element j,

nj <≤0 will operate as follow





+=
=

=
+

+

12),,max(

2),,min(

122

122

kjaa

kjaa
a

kk

kk
j

, ki 2=

and





=
+=

=
++

++

kjaa

kjaa
a

kk

kk
j 2),,max(

12),,min(

2212

2212 , 12 += ki

Algorithms starts with first position, element0a , and for

each even position does the exchange of the neighbors, so

the element ka2 is compared with his neighbor 12 +ka . In

the next step, algorithm starts from the second position 1a

and for each odd position does the exchange of the

neighbors, 12 +ka is compared with 22 +ka . Those two steps

are repeated until there is no changes on the exchange
operation.

Exchange operations can be done in parallel. If for each
element we map a processing element then during one step
all exchange operations will be done in the same time and

the overall time complexity of the step is ()1O . As we

mention before the sort is done after n-1 steps and the time
complexity of the parallel sorting of sequence with n
elements by use of n processing elements is

() ()nOOnnT =⋅= 1)(.

On the general, the number of processing elements is less
than the number of elements. Let n be the number of
elements of the sequence and k the number of processing
elements. We use the above elaborated idea where we
divide the sequence into subsequences. We divide the
sequence into k subsequences and each subsequence will

have
k

n elements. Now, first step is sorting of the

subsequences and this can be done in parallel, so, each
sorting element will sort his part and we obtain k sorted
sequence. This operation we call local sort. The time

complexity of the local sort is between 
















k

n

k

n
O log and






















2

k

n
O (depend on the sorting algorithm used).

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

2015 International Journal of Computer Science Issues

For the next step, we define the operation merge which
take two sorted subsequences and as a result gives one
sorted subsequence with same length as input sequences.
The merge operation is defined as follow: each processing
element works with owned subsequence and the
subsequence of the first his right neighbor and by use of
the merge operation combines those two subsequences into
one sorted sequence with doubled number of elements. Let
i be the identification number of the processing element. In
case of even step, if i is even then the processing element

as a result takes the first
k

n elements otherwise takes the

second part (second
k

n elements). For the odd step it does

similar and if i is odd then procesing element takes the first
part otherwise second part.

The complexity of one merge is 








k

n
O and the same is for

whole step, according to above explanation the time
complexity of this part of the algorithm is

()nO
k

n
OkknT =







⋅=),(

and for both parts is

()













+







=+




















= n
k

n
OnO

k

n
OknT

22

),(

2
2

,),(knfor
k

n
OknT >





















= .

5. Implementation of Odd-Even Sort
Algorithm in CUDA Technology

5.1. Introduction to CUDA

The Compute Unified Device Architecture (CUDA) is a
parallel programming paradigm released in 2007 by
NVIDIA. It was originally intended as a platform for
programming graphics applications, but later it was found
that could be used for to include the GPU in solving
general purpose problems and to enable parallel solutions
by use of the kernels of the GPU as a processing elements.
CUDA use the C/C++ programming language with some
extensions to allow use of the GPU specific features.
CUDA has specific functions, called kernels. Kernel is a
function or a program which is invoked from CPU and is

executed many times of the same function in parallel in
GPU. CUDA programming paradigm is a combination of a
serial and parallel execution and serial part is executed in
the host (CPU) and parallel part in the device (GPU). Host
is responsible for transfer data to the device and as well as
to invoke kernels which will be execute to device. Figure 1
illustrate the basic model of CUDA working

Host
(CPU)

Main memory
(RAM)

Device

Device main
memory

GPU

a.

Host
(CPU)

Main memory
(RAM)

Device

Device main
memory

GPU

b.

Host
(CPU)

Main memory
(RAM)

Device

Device main
memory

GPU

c.

Fig. 1. a. Transfer data from host main memory to device main memory;
b. Invoke kernel function; c. Return the results from device to host.

In general, CUDA provides three main types of the
function qualifiers which are device, global and host.
Functions which have to be executed in device (GPU) have
to be declared with qualifier __device__, these function are
callable from the device. Functions which have to be
invoked from the host (CPU) but the execution will be in
the device with qualifier __global__ and those which
execution will be in host with __host__ and these are
callable only from host.
CUDA execution model is based on a hierarchy of
abstraction layers: grids, blocks, warps and threads (Fig.
2). The thread is the basic execution unit and it represents
the processing element. A block is a batch of threads
cooperating together and therefore all threads in a block

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

2015 International Journal of Computer Science Issues

share the same memory (each thread has its local memory
and together have the common memory). Threads in a
block can be waiting one to each other, so can be
synchronized (the global synchronization isn’t provided).
A grid is composed by several blocks. In turn, a warp is a
group of threads of the same block and which can be
executed in parallel, in a SIMD way and threads of a same
block are scheduled warp by warp. The CPU is responsible
of transferring data between host and device memories as
well as invoking the kernel code, setting the grid and block
dimensions. The kernel invoke is as follow

kernel_function<<<gridDim, blockDim>>>(…arguments…);

Host (CPU) Device (GPU)

Grid 1

Grid 2

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Kernel 1

Kernel 2 Block
(0,0)

Block
(1,0)

Block
(2,0)

Block (2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

...

...

………………………………………………

Fig. 2. Hierarchy of abstraction layers: grids, blocks and threads.

The CUDA paradigm provides some built-in variables to
use this structure efficiently. To access the id of a thread
block the blockIdx variable (values from 0 to gridDim-1) is
used and to access its dimension the blockDim variable is
used while gridDim gives the dimensions of the grid. Each
individual thread is identified by threadIdx variable, can
have values from 0 to blockDim-1. WarpSize specifies
warp size in the threads. All these variables are built-in in
kernel.

Different memory spaces are available. The GPU has its
memory which is named as global memory and this can be
used from all threads of all blocks. This memory also is
used and from CPU (CPU transfer the data which have to
be processed from its main memory to this memory).
Global memory can be with large capacity. The next is
shared memory. Shared memory is faster compared to
global memory and it is divided into many parts. Each
block has its own part of shared memory and this part of
shared memory is accessible only from the threads within a
block and all threads within a block, share this part of
memory for both read and write operations To declare
variables in shared memory __shared__ qualifier is used
and to declare in global memory __device__ qualifier is
used. Each thread also contains its own local memory.
Normally local variables of the kernel functions are
allocated here. Sometimes they are allocated on global
memory [8, 16, 22].

5.2. CUDA Implementation

Using the CUDA possibilities, for the above developed
algorithm we have analyzed two implementations. First
one implementation is when the number of elements of the
sequence is less than the maximum number of the threads
in a block. In this case the whole sequence is copied to the
block’s shared memory and for each element of the
sequence is mapped one thread. Each thread takes two
elements (the element with the same index as thread
identification number and the right/left neighbor element)
and in accordance with the algorithm’s rule as a result
gives the minimum or maximum of the input elements.
This operation is repeated many times (as many time as is
the number of elements of the sequence).
Second implementation is limited by the maximum number
of blocks. So the sequence is divided in many
subsequences (up to the maximum number of the blocks)
where a sub sequence is mapped into a block and
implementation goes in two steps. The first step is local
sort. According to the number of elements of the
subsequence and maximum number of thread available for
the block we have analyzed two different situations. If the
number of elements in a subsequence (in a block) is less or
equal to the number of threads than is used the same idea
as in first implementation. Otherwise, if the number of
elements in a block is greater than the number of threads
than is applied the sorting in two phases. The subsequence
in a block is divided in subsequences, up to the number of
threads and each thread does the sort in his part. After the
finishing of the first phase, starts the merge phase which
continue to whole sort of the subsequence of the block.
Now, if the number of sorted subsequences is smaller than
the number of threads in a block, for the second step we
define one block and each subsequence we map to a thread
of this block. Threads deals similar as in the first
implementation but instead of elements it takes two
subsequences and does the merge of those. If the number
of sub sequences is greater than the maximum number of
available threads on the block than we have defined for
each subsequence a block with one thread. On the shared
memory of each block two neighbor subsequences are
copied, as in the follow figure

Block no. 0 1 2 3 4 5 …
Seq. no. 0-1 0-1 2-3 2-3 4-5 4-5 …

 a.

Block no. 0 1 2 3 4 5 …
Seq. no. 1-2 1-2 3-4 3-4 5-6 …

 b.

Fig. 3. a. For the phase which starts from zero, even phase, b. odd phase

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

2015 International Journal of Computer Science Issues

This operation repeats k - 1 times, where k is the number
of blocks used.

6. Practical Experiments

In order to show the practical effects of the above
explained algorithm, we implemented the above idea and it
is executed in a machine with NVidia GPU. Technical
features of the machine used for testing are Intel i5
processor, 8 GB RAM and GeForce GT 645M with 2GB
VRAM, set up under Windows 8.1 operating system.
CUDA 7.0 paradigm and C++ is used for CUDA
implementation.

Methodology of experimentation - the same algorithm is
executed several times (typically 10 times) and as an
execution time the average time is taken. Three different
algorithms are executed, the standard Odd-Even algorithm
(where the basic operation is comparison of neighbor
elements), modified Odd-Even algorithm (called block
Odd-Even, which consists of two phases, the first phase
where a local sorting is performed and second phase where
a merge is performed) and block Odd-Even algorithm
implemented with CUDA paradigm. It is measured only
the calculations (sorting) time and data transfers from
RAM to VRAM and vice versa are not taken into account.
Average time results are given in tables and graphs.

Because of the technical features of the system, executions
are done for integer numbers and for the number of
elements n = 1K, 2K, 4K, 8K, 16K, 32k, 64K, 128K, 256K,
512K and 1024K (power of number 2 and K - kilo). The
block sizes BS = 16, 32, 64, 128, 256, 512 and 1024 for
executions are used. Due to GPU technical limitations
(memory restrictions and limited number of threads per
block), we could not use block sizes greater than 1024.
Results are expressed into tables and graphs and the first
table’s row shows the number of elements (expressed in
kilo), while the first column the block size.

Table 1. Run time of sequential implementation of Block Odd-Even
algorithm

1 0.0029 0.0128 0.0424 0.1622 0.683 2.7843 11.048 43.482 170.56
16 0.0009 0.003 0.0106 0.0419 0.1621 0.6581 2.5212 9.7517 38.343 153.17
32 0.0001 0.0014 0.0058 0.0215 0.0834 0.3235 1.2836 4.9074 19.163 76.127
64 0.0003 0.0009 0.004 0.0122 0.0435 0.1631 0.6286 2.466 9.7439 38.533

128 0.0004 0.0008 0.0029 0.0088 0.0258 0.0876 0.3214 1.2516 4.8447 19.119 76.354
256 0.0005 0.0015 0.004 0.0088 0.0212 0.0601 0.191 0.6712 2.4961 9.7048 38.594
512 0.0013 0.003 0.0061 0.0126 0.0267 0.0598 0.1584 0.4657 1.5187 5.375 20.234

1024 0.0029 0.0054 0.0114 0.0219 0.0447 0.0943 0.2029 0.475 1.2237 3.6393 11.953

16 32
 N(K)

Bs
1 2 4 8 64 128 256 512 1024

Fig. 4. Run time of sequential implementation of Block Odd-Even
algorithm

Table 2. Run time of CUDA implementation

16 0.0008 0.0007 0.001 0.0008 0.0013 0.0012 0.0019 0.0028 0.005
32 0.0004 0.0008 0.001 0.0009 0.001 0.0011 0.0015 0.0025 0.0044
64 0.0009 0.0007 0.0008 0.0009 0.0011 0.0012 0.0019 0.0024 0.004 0.008

128 0.0008 0.0008 0.0009 0.0007 0.001 0.0013 0.0017 0.0028 0.005 0.0089 0.017
256 0.001 0.001 0.0008 0.0012 0.001 0.002 0.003 0.0052 0.0095 0.0173 0.034
512 0.001 0.0009 0.001 0.0015 0.002 0.0034 0.0058 0.0103 0.0194 0.0381 0.075

1024 0.0013 0.0011 0.0017 0.0022 0.0036 0.0063 0.0113 0.0216 0.0417 0.082 0.165

1024
 N(K)

Bs
1 2 4 8 16 32 64 128 256 512

Fig. 5. Run time of CUDA implementation

7. Conclusion

The analysis and obtained results conclude that
modification in blocks of the Odd-Even algorithm,
compared to the standard algorithm shows dozen times
higher performances. It was expected since the algorithm
operates as follow: first the sequence is divided into
subsequences (in blocks), which is sorted quickly
compared with the sequence of whole and to achieve the
whole sequence sorted it continues with the merger of
sorted subsequences which is with a complexity)(nO .
This was noticed even in theory, where the complexity is

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

2015 International Journal of Computer Science Issues

calculated and it is ()knO /2 and k is the number of
elements of the subsequence. The practical results confirm
the theoretical complexity, so when k increase execution
time is in decrease.

The idea of separation of sequence in blocks and
modification of Odd-Even is used for NVidia CUDA
paradigm implementation. In CUDA implementation, the
logical CUDA block for the subsequence (block) is used.
Compared to CPU execution, GPU execution shows very
high performance (and the same is confirmed by
mathematical complexity calculation). Analyzing the
executions for different block size we conclude that in case
of BS = 128 the results are better. This result is justified
because of the GPU technical parameters, warp size (which
is 32) and the way of algorithm implementation (as shown
above).

As a general conclusion is that despite the technical
limitations of the GPU, the achieved results show that the
use of GPU and CUDA paradigm shows high performance
in solving of the problem of sorting.

References
[1] Ananth, G., George, K., Vipin, K., & Anshul, G. Introduction

to Parallel Computing, Second Edition. Boston: Addison
Wesley, 2003.

[2] Bilal, J., Bartolomeo, M., Carlo, R., Fiaz, G. K., & Omar, K.
Fast Parallel Sorting Algoritms On GPUs. International
Journal of Distributed and Parallel Systems (IJDPS), 3(6),
2012, pp. 107-118

[3] Blelloch, G. E., Leiserson, C. E., Maggs, B. M., Plaxton, C.
G., Smith, S. J., & Zagha, M. An Experimental Analysis of
Parallel Sorting Algorithms, Theory of Computing Systems.
Theory of Computing Systems, 31(2), 1998, pp. 135-167.

[4] Chun-Yuan, L., Wei Sheng, L., & Chuan Yi, T. Parallel
Shellsort Algorithm for Many-Core GPUs with CUDA.
International Journal of Grid and High Performance
Computing, 4(2), 2012, pp. 1-16.

[5] Daniel, C., & Philippas, T. GPU-Quicksort: A Practical
Quicksort Algorithm. Journal of Experimental Algorithmics
(JEA), 14, 2009, pp. 1-22.

[6] David, R. H., Joseph, J., & David, A. B. A New Deterministic
Parallel Sorting Algorithm with an Experimental Evaluation.
Journal of Experimental Algorithmics (JEA), 3(4), 1996.

[7] Dominik, Z., Marcin, P., Maciej, W., & Kazimierz, W.
Comparison of Hybrid Sorting Algorithms Implemented on
Different Parallel Hardware Platforms. Computer Science
Journal, 14(4), 2013, pp. 679-691.

[8] Ghorpade, J., Parande, J., Kulkarni, M., & Bawaskar, A.
GPGPU processing in CUDA architecture. Advanced
Computing: An International Journal (ACIJ), 3(1), 2012, pp.
105-120.

[9] Hagen, P., Ole, S.-H., & Norbert, L. Fast in-place,
comparison-based sorting with CUDA: a study with bitonic
sort. Journal Concurrency and Computation: Practice &
Experience, 23(7), 2011, pp. 681-693.

[10] Herruzo, E., Ruíz, G., Benavides, J. I., & Plata, O. G. A
New Parallel Sorting Algorithm based on Odd-Even
Mergesort. 15th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP
2007 , pp. 18-22. Naples, Italy: IEEE Computer Society.

[11] Ionescu, M., & Schauser, K. Optimizing parallel bitonic
sort. Proceedings 11th International Parallel Processing
Symposium, Geneva, Switzerland: IEEE Computer Society
Press. 1999.

[12] Ajdari, J. Performance Estimation of Hypercube Bitonic
Sorting Algorithm Implemented With MPI Paradigm In An
Experimental Cluster Computer. 3rd Balkan Conference in
Informatics (BCI'2007). 1, p. . Sofia, Bulgaria. 2007

[13] Knut, D. E. The Art of Computer Programming, volume 3.
Sorting and Searching. Boston: Addison Wesley. 1973

[14] Nadathur, S., Mark, H., & Michael, G. (2009). Designing
Efficient Sorting Algorithms for. Proceedings of the 2009
IEEE International Parallel & Distributed Processing
Symposium, 2009, pp. 1-10. Rome: IEEE. 2009

[15] Nikolaj, L., Vitaly, O., & Sanders, P. GPU sample sort.
Cornell University, Computer Science. Ithaca, New York:
Cornell University Library. 2009.

[16] NVidia Corporation. CUDA C Programming Guide.
Retrieved from Programming Guide: CUDA Toolkit
Documentation: http://docs.nvidia.com/cuda/cuda-c-
programming-guide/#axzz3X1M5pnlg, (2015, March 5).

[17] Oded, G., Robert, M., & David, A. B. GPU Merge Path - A
GPU Merging Algorithm. Proceeding ICS '12 Proceedings of
the 26th ACM international conference on Supercomputing
2012, pp. 331-340. San Servolo Island, Venice, Italy, AMC,
2012.

[18] Ranieri, B., Gabriele, C., Franco Maria, N., & Fabrizio, S.
Sorting using Bitonic network wIth CUDA. Workshop on
Large-Scale Distributed Systems for Information Retrieval
(LSDS-IR’09), pp. 33-40. Boston, USA, 2009.

[19] Rub, C. On Batcher’s Merge Sort as Parallel Sorting
Algorithms. Proceedings 5th Annual Symposium on
Theoretical Aspects of Computer Science, pp. 410-420.
Paris, France, 1998.

[20] Shifu, C., Jing, Q., Yongming, X., Junping, Z., & Pheng-
Ann, H. A Fast and Flexible Sorting Algorithm with CUDA.
In S.-L. C. Arrems Hua, Algorithms and Architectures for
Parallel Processing, pp. 291-290. Berlin: Springer-Verlag,
2009.

[21] Xiaochun, Y., Dongrui, F., Wei, L., Nan, Y., & Ienne, P.
High Performance Comparison-Based Sorting Algorithm on
Many-Core GPUs. Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium, pp. 1-10.
Atlanta, GA: IEEE, 2010.

[22] Heru S., Arry Y., Ari W. Performance Analysis Cluster and
GPU Computing Environment on Molecular Dynamic
Simulation of BRV-1 and REM2 with GROMACS, IJCSI
International Journal of Computer Science Issues, Vol. 8,
Issue 4, No 2, pp. 131-135, July 2011

Jaumin Ajdari, Assist. Prof. at Faculty of Contemporary Sciences
and Technologies, South East European University. His current
research interest is in parallel processing, data processing and
databases.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

2015 International Journal of Computer Science Issues

Bujar Raufi, Assist. Prof. at Faculty of Contemporary Sciences
and Technologies, South East European University. His current
research interest is in adaptive web, semantic web, computer
graphics and data analytics.

Xhemal Zenuniu, Assist. Prof. at Faculty of Contemporary
Sciences and Technologies, South East European University. His
current research interest is in semantic web, contemporary
distributed systems, intelligent agent and data analytics.

Florije Ismaili Assist. Prof. at Faculty of Contemporary Sciences
and Technologies, South East European University. His current
research interest is in web services, cloud computing and
information retrieval.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

2015 International Journal of Computer Science Issues

