
DOMAIN MODULE DESIGN: AN ONTOLOGICAL

APPROACH

SALISU MUHAMMAD SANI1, TEH NORANIS MOHD ARIS2, NORWATI MUSTAPHA3 and NASIR MD SULAIMAN4

Department of Computer Science, University Putra Malaysia,
Serdang, Selangor 43300, Malaysia

 Abstract

In the contemporary world, knowledge is considered
as a vital asset. Every aspect of human endeavour can
be represented by collection of well-defined
associated entities that can have the same semantic

representation especially when dealing with concepts
in a particular domain of knowledge. One of the
effective tools of Artificial Intelligence (AI) that is
commonly employed to formalize such domain
knowledge concepts and their relation in the design of
an intelligent tutoring system (ITS) is ontology. In
Artificial Intelligence field, the term ontology is
defined as a representation of the entities in a domain

and the way those entities relate to each other. The
technique is widely used in the development of AI
applications to model the concepts in a particular
domain of knowledge, in other words, ontology is
employed to represent concepts, classes and attributes
that commonly exist in a particular domain and their
relationships.

Keywords: Ontology, Domain Knowledge, Artificial
Intelligence, Concepts, Intelligent tutoring systems

1. Introduction

In any modern organization, knowledge is a vital

asset. Thus maintaining an organizational

knowledge has become almost a necessary thing
in order to enhance organizational well-being

and operations. Ontology as a formal

specification of entities and their relationship,

continue to play an important role in almost

every aspect of human endeavour especially in

the development of Artificial-Intelligence

applications [1]. Ontology concepts are used in

expressing how a set of well-defined entities

within an appropriate knowledge domain are

related to each other. The description of domain

knowledge concepts using ontology provides the

means for declaring knowledge formalisms using

much simpler tools that can improve the way

concepts and relations in a particular domain are
managed. The intelligent tutoring system is a

computer based system developed using the

techniques of artificial intelligence comprising of

ontology, Fuzzy logic, Bayesian networks,

genetic algorithms, data mining, neural networks

etc, that provide adaptive and personalized

tutoring to students based on their cognitive

states, styles of learning or characteristics [2].

The ITS as an integral system is made up of four

basic components namely; the student module,

the tutor module, the domain module as well as

the interface module. The component of this ITS
that represents the domain knowledge concepts

and the relation among those concepts is called

the domain module. This module therefore,

represents a key component of an intelligent

tutoring system. If the domain module is not

effectively designed to the extent that it

expresses how the domain concepts are related,

then all the decisions of the other components of

an ITS that depend on this module are going to

be of poor quality.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 263

2015 International Journal of Computer Science Issues

mailto:mssaleesu@gmail.com
mailto:nuranis@upm.edu.my
mailto:norwati@upm.edu.my
mailto:nasir@upm.edu.my

1.1 Architecture of an ITS

The intelligent tutoring system is an integral

system made up of four basic dependent

components namely the domain module, the

tutor module, the student module and the

interface module [17] (Figure 1). An ITS as a

knowledge based system, uses the domain

module to manage the relationship between the

domain entities.

Figure 1 Architecture of an ITS

2. Related Literature

2.1 History of Ontology

The use of ontology in information systems has

over the past decades grew and continues to gain

more popularity especially in various fields of

artificial intelligence such as multi-agents

systems, natural language processing, database
integration etc. Researchers in the field of AI

were originally able to borrow the term

“ontology” from Philosophy and from there the

word continued to be used in several other areas

[3]. From the Philosophical point of view,

ontology enables the study of nature of being,

their existence and the reality of those

fundamental parts of beings and their relation.

The use of ontology in the context of Artificial

Intelligence was intended to serve as an

alternative to knowledge representation [8].

2.2 Types of ontology

The following are the types of ontology

discussed in the literature:

2.2.1Domain-specific ontology

This type of Ontology is geared towards

modeling a specific domain, which is a

representation of entities in the universe of

discourse. Such semantics of entities used in that
universe of discourse are virtually defined by the

domain ontology. To describe the situation with

examples, consider the concept “card” that can

take various semantics for instance. A

representation of the concept card in the universe

of “Banking industry” would model the word

card to mean an “ATM Card”, a “Credit Card”, a

“Master Card” etc. Similarly, if we consider the

universe of discourse for “Computer hardware”

the same concept “Card” can be modelled using

semantics like the “Network Card”, the “Punch
card”, the “Video Card” [10]. Depending on the

expressivity of ontology, different kinds of

components of domain ontology like properties,

concepts, instances or axioms can also be

defined [5]. If we consider “concepts” as one of

the key components of the domain ontology for

example, they can be expressed in various ways

such as; using linguistic expressions for example

the linguistic term “man”can be represented by

the linguistic statement “a male human being”.

Another expression for "concepts" can also be
made by using a collection of well-defined

characteristics, here the term “man” can be

defined by such common characteristics or

properties like “name”, “date of birth”, “address”

etc. Sometimes we can express concepts in a

particular domain by logical expressions that can

be made up of several logical rules, in this case,

the entity “man” can be expressed using logical

rules, and for example, our entity “man” can be

represented by a logical rule “living

entity”∩“sensible entity”. And finally domain

concepts can be expressed using entities and
their instances, for instance “Abraham Lincoln”

is an instance of the entity “man”.

2.2.2 Upper ontology

The upper ontology is sometimes referred to as

foundation ontology; it models mostly the

objects that are commonly applied to domain

ontology with large application. This kind of

ontology is commonly characterized by a general

Tutor Module Student Module

Domain Module

Interface Module

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 264

2015 International Journal of Computer Science Issues

vocabulary that has entities and descriptions that

are associated with the objects of those entities

and how they are applied in various relevant sets

of domains. Foundation ontology is sometimes
seen as Meta ontology that describes entities in

higher categories that are often used to describe

other ontology [4].

2.2.3 The Gellish ontology

Gellish ontology combines features of both

domain specific ontology and foundation

ontology. Because domain-specific ontology
represents entities that are more precise, they

sometimes appear to be incompatible to work

with. But more and more systems relying on

domain ontology are emerging, thus the need to

integrate domain ontology with additional

representations to make it more general become

apparent. Ontology designers are therefore faced

with more challenging tasks to satisfy this

requirement. Gellish ontology is designed with

the capability to transform a variation from one

language to another using a Gellish dictionary. It
provides a mechanism to distinguish between

concepts that are independent and those entities

whose conceptual representations are defined in

different contexts or linguistic term [5].

3. Domain Model Design

3.1 Description of the Domain Concepts

At this stage, we try to explain how our approach

uses ontology to model the concepts in the

domain of “Computer as a system”. To

implement our ontological design to this domain,

we defined 73 concepts that are believed to exist

in the domain of “Computer as a system”. These

73 domain concepts are believed to be the
concepts learnt when students interact with an

adaptive AC-ware Tutor system [7]. The

advantage of using the AC-ware Tutor system is

to enable us to get instances of student's

knowledge after testing by the system (the

student module) as well as enabling us to define

the conceptual relation, the ontology that exist

between the domain entities.

Table 1 Part of the domain knowledge concepts

Concept Kx

Application software
Arithmetic operation
Arithmetic-logic unit
Assembler
Basic
Basic Computer function
C

Capacity
Central unit
Central processing unit
Compact disc
Compiler
Computer system
Computer
Conjunction
Control Unit

Data entry
Data processing
Data storage

3.2 Domain Knowledge Ontology

Domain knowledge ontology is a representation

of how the domain concepts relate to each other.

To explain how the concepts in our ontology

structure relate (Figure 2), we define the

direction of the relation between the concepts

using the terms subset and superset. Therefore it

is important to define clearly how each concept

in the ontology is associated with another and

what type of relation exist between them, and

this allow us to put up the following definition:

Let KCON = {M1, M2,...Mi} i≥0, be a set of

domain concepts and let a set of relations be

KREL={M1,N2,.....Nj}U{has_superset,has_subset

,has_instance} j≥0. Let ØK denotes an empty set.

We now define our domain knowledge concepts

Kx to be a combination of triplets (M1, R, M2)

that show how the relation R describes the type

of relation that exist between concepts M1 and

M2. This relation allows us to say that concept

M1 is a superset of concept M2; similarly concept

M2 is a subset of concept M1.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 265

2015 International Journal of Computer Science Issues

Figure 2 the ontology structure for the domain

concepts

SupSet_ComputerSysem

SubSet_BasCompFun Inst* BasCompFun

SubSet_SoftWaSup Inst* SostWaSup

SubSet_TechSup Inst* TechSup

SupSet_SoftwareSupport

SubSet_SysSofWare Inst* SysSoftWara

SubSet_AppSoftWar String

SupSet_BasicCompFunction

SubSet_DatPro Inst* DatPro

DatEntry String

DispDat String

SupSet_TechnicalSupport

SubSet_CentUnit Inst* CentUnit

SubSet_Memory Inst* Memory

SubSet_OutPUnit Inst* OutPUnit

SubSet_InPUnit Inst* InPUnit

SubSet_DeviceFCom Inst* DevFCom

 DataProcessing

DataStorage String

ManagOfData String

 InputUnit

Keyboard String

Mouse String

 SupSet_CentralUnit

SubSet_Comp Inst* Comp

SubSet_MasMem Inst* MasMem

 MassMemory

CompactDisc String

HardDisc String

FloppyDisc String

 SupSet_Memory

SubSet_FlopDisc Inst* FlopDisc

SubSet_CmpDisc Inst* CmpDisc

 SupSet_DeviceForCommunic

SupSet_Modem Inst* Modem

SupSet_DataTrans Inst* DataTran

NetWorkCard String

 OutputUnit

Printer String

Monitor String

 SupSet_SystemSoftWare

SubSet_LngTrns Inst* LngTrns

SubSet_OperaSys Inst* OperaSys

Utilities String

 OperatingSystem

DOS String

Windows String

LanguageTranslators

Compiler String

Interpreter String

 Modem

SerlDatTrans String

 SupSet_Computer

SubSet_CentProcU Inst* CentProcU

SubSet_WorkinMem Inst* WorkinMem

 CentralProcessingUnit

SubSet_ControlUnit Inst* ControlUnit

SubSet_ArithLogUni Inst* ArithLogUnit

 ControlUnit

SubSet_Instruction Inst* Instruction

 Instruction

Data String

 ArithmeticLogicUnit

SubSet_ArithmOperat Inst* Arithmoperat

SubSet_LogicalOperat Inst* LogicalOperat

 ArithmeticOperation

Additiion String

Subtraction String

LogicGate

SubSet_LogicOperat Inst* LogicOpe

SubSet_ORgate String

SubSet_NORgate String

SubSet_NOTgate String

SubSet_ANDgate String

 LogicalOperation

Disjunction String

Conjunction String

Negation String

WorkinMem

RAM String

ROM String

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 266

2015 International Journal of Computer Science Issues

4. Conclusion

Looking into the literature of the research, it is

possible for the reader to find several definitions

of ontology. These are evidences of how

important ontology is to various domains of

human endeavours. It is obvious then to

conclude that ontology provides a

comprehensive formalism that removes any

ambiguity in communication between software

and human agents. Ontology as a tool therefore

proved to be an effective alternative for

knowledge representation not only in the field of

Artificial Intelligence but in so many diverse

areas. The domain knowledge structure we

developed in this article too justify how ontology

can help in modeling one of the vital

components of an Intelligent Tutoring System-

the domain model.

References

[1] T, Gruber, “A Translation Approach to Portable
Ontology Specification”Knowledge Acquisition 5:
199-220. (1993).

[2] A. Grubišić, S. Stankov, I. Peraic, “Ontology

based approach to Bayesian student model design”

Expert Systems with Applications 40 (2013) 5363–

5371

 [3] Gasevic, D., Djuric, D., Devedzic, V. "Model
Driven Architecture and Ontology Development",
328p. Springer-Verlag, Berlin Heidelberg New York
(2006).

[4] C. Roussey, "An Itroduction to Ontology
Engineeribg" Springer-Vergal. London Limited. 2011.

[5] P. van Renssen “Gellish A Generic Extensible
Ontological Language” Published and distributed by:
DUP Science ISBN 90-407-2597-4. 2005.

[6] Y. Feng-Jeng, “The Ideology of Intelligent

tutoring Systems” acm inrods Vol. 1 No. 4, 2010.

[7] A. Grubišić, S. Stankov, M. Rosić, B. Ẑitko,
“TEx-Sys model for building intelligent tutoring

systems” Computers & Education 51 (2008) 1017–
1036

 [8] J. Li. "An Educational Tool for the Ant Colony
Optimization Algorithm", First International
Workshop on Education Technology and Computer
Science, 03/2009

[9] Z. Jingyi, Y. Lv, "An approach of refining the

merged ontology", 2012 9th International
Conference on Fuzzy Systems and Knowledge
Discovery, 2012.

[10] C. Chao, "An Affective Learning Interface with
an Interactive Animated Agent", IEEE Fourth
International Conference on Digital Game And
Intelligent Toy Enhanced Learning, 2012

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 267

2015 International Journal of Computer Science Issues

