
Dynamic Computation of Runge-Kutta’s Fourth-Order 
Algorithm for First and Second Order Ordinary 

Differential Equation Using Java
Adesola O. Anidu, Samson A. Arekete, Ayomide O. Adedayo and Adekunle O. Adekoya

Department of Computer Science, Redeemer’s University, Ede, Nigeria

Abstract

Differential equations arise in mathematics, physics, 
medicine, pharmacology, communications, image 
processing and animation, etc. An Ordinary 
Differential Equation (ODE) is a differential equation 
if it involves derivatives with respect to only one 
independent variable which can be studied from 
different perspectives; such as: analytical methods, 
graphical methods and numerical methods. This 
research paper therefore revises the standard Runge-
Kutta fourth order algorithm by using compiler 
techniques to dynamically evaluate the inputs and 
implement the algorithm for both first and second 
order derivatives of the ODE. We have been able to 
develop and implement the software that can be used 
to evaluate inputs and compute solutions 
(approximately and analytically) for the ODE 
function at a more efficient rate than the traditional 
method. 

Keywords: Ordinary Differential Equations (ODE), 
Initial Value problems (IVP), Parsing Techniques, 
Grammar Rules

1. Introduction

Computational problems are problems found in areas 
of study like mathematics, computer and related 
subjects which can be represented in forms like 
algorithms, flowcharts and so on. There are various 
algorithms for solving a wide range of problems; and 
one of those problems that an algorithm can be 
represented in is the class of Runge-Kutta methods.
Runge-Kutta (RK) methods are a class of methods 
mostly used for solving IVPs (Initial Value 
Problems) numerically, because of their speed and 
accuracy. It is an essential family of implicit and 
explicit iterative methods needed for the 
approximation of solutions of ordinary differential 
equations which was developed around 1900 by 
German Mathematicians C.Runge and M.W. Kutta. 
Despite the fact that RK methods require less 
computation of higher order derivatives, they still 
give immense accuracy.

However, the set of explicit RK methods for 
numerically solving IVPs are the most popular 
because of their speed and accuracy; in which the 
simplest and most basic method for solving IVPs is 
the Euler’s method also known as Forward Euler [6].
Forward Euler is very easy to understand and 
implement but it is not as efficient as some higher-
order explicit Runge-Kutta methods. These higher-
order explicit RK methods operate in a similar 
fashion to Forward Euler in that they approximate the 
solution to y(t) by stepping to ݐ௙. The difference is 

that in each step, instead of using just f(ݐ௡,ݕ௡), 
higher-order explicit Runge-Kutta methods take a 
weighted average of several function evaluations, 

typically within ൣݐ௡,ݐ௡ାଵ൧. Although this means more 

computations per step, the accuracy of the solution is 
much better, relative to the amount of work done. 
The more efficient explicit Runge-Kutta methods are 
also a bit harder to understand and implement than 
Forward Euler but the overall gain in efficiency 
makes implementing them worth this effort.

Among the class of RK algorithm is the fourth order 
method which is the most popular often referred to as 
“RK4” and is also used for solving Initial Value 
Problems (IVPs).The fourth order Runge-Kutta 
method is the most powerful of the entire explicit RK 
methods, so accurate that most computer packages 
such as Java and C++ use it to compute solutions, 
numerically for differential equations. An IVP is 
composed of an Ordinary Differential Equation 
(ODE) and a prescribed initial value at a certain time. 
Certain conditions under which an IVP has a unique 
solution can be known but obtaining this solution in 
an analytical form can be too cumbersome. However, 
there are ways to approximate the solutions of most 
IVPs which is by solving them numerically; 
obtaining the numerical solution to a problem 
involves the use of a numerical method. Numerical 
methods can often produce a solution to any degree 
of accuracy that the computer can represent.

Arising from the existing limitations of implementing 
Runge-Kutta fourth order method, this method of 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 211

2015 International Journal of Computer Science Issues



solving RK4 poses a problem because the user can 
only perform operations on the already specified 
derivative of y or keeps changing the derivative of y 
for every RK4 problem. This limits the user of the 
program and is not flexible. The RK4 method for 
numerically solving ODE’s is represented 
mathematically as:ݕ′ =f ( .(ݕ,ݔ
This research work aims to dynamically implement 
and evaluate the Runge-Kutta fourth order algorithm 
using compiler techniques for a number of users 
using Java programming language.
The rest of the paper is organized as follows. Section 
2 presents the review of related literature. In section 
3 we present the system design, section 4 presents the 
implementation techniques while section 5 presents 
the results obtained.

2. Literature Review

Runge-Kutta formula is among the oldest and best 
understood schemes in numerical analysis. Owing to 
the evolution of a vast and comprehensive body of 
knowledge, Runge-Kutta still continues to be a 
source of active research [2]. The most suitable way 
of solving most initial value problems for a system of 
ordinary differential equations are mostly provided 
by Runge-Kutta methods sometimes referred to as 
“RK” methods. This is based on some reasons; 
Firstly, Runge-Kutta methods are convergent given 
that the approximate solution approaches the exact 
solution. Secondly, they are accurate due to the 
closeness between the approximate solution and the 
exact solution. Finally, they are conditionally stable 
in that it is stable for some values of the parameter.
The first order Runge-Kutta method which is in point 
of fact the Euler’s method is given as: ݕ௡ାଵ= +௡ݕ ℎ (௡ݕ,௡ݔ݂) + (ܱℎଶ) (1)
` First order RK[7]
This order advances a solution from ݔ௡to ݔ௡ାଵ≡ݔ௡+ ℎ that is, through an interval h which is 
unsymmetrical. Therefore this method is neither 
accurate nor stable.  
The second order Runge-Kutta method which is in 
fact the Modified Euler’s method is given as: 

ଵ݇= ℎ (௡ݕ,௡ݔ݂)
ଶ݇= ℎ +௡ݔ݂) ℎ,ݕ௡+ ଵ݇)ݕ௡ାଵ= +௡ݕ ଵ

ଶ( ଵ݇+ ଶ݇) + (ܱℎଷ)           (2)

Second order RK[7]
Eq. 2 above is also called the midpoint method and as 
denoted by the error term rules out the first order 

error term by symmetrization, and in that way, the 
method becomes second order.
The third order Runge-Kutta method which is the 
Runge’s method is given as: 

ଵ݇= ℎ (௡ݕ,௡ݔ݂)
ଶ݇= ℎ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞భଶቁ     

ଷ݇= ℎ +௡ݔ݂) ℎ,ݕ௡+ ଵ݇)ݕ௡ାଵ= +௡ݕ ଵ
଺( ଵ݇+ 4 ଶ݇+ ଷ݇) + (ܱℎସ)  (3)

Third order RK [7]
Without a doubt, the most frequently used is the 
conventional fourth order Runge-Kutta formula, 
which has a certain sleekness of orderliness about it:

ଵ݇= ℎ (௡ݕ,௡ݔ݂)
ଶ݇= ℎ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞భଶቁ
ଷ݇= ℎ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞మଶቁ
ସ݇= ℎ +௡ݔ݂) ℎ,ݕ௡+ ଷ݇)ݕ௡ାଵ= +௡ݕ ௞భ଺+ ௞మଷ+ ௞యଷ+ ௞ర଺+ (ܱℎହ)  (4)

Fourth order RK [7]
The fourth order RK method requires four 
evaluations of the right hand side per step h. By so 
doing, it will be superior to the second order RK or 
midpoint method (Eq. 2); at least twice as large a step 
is achievable with (Eq. 4) for the same accuracy. 
The assertion that fourth order RK is generally 
superior to second order is true, but one should know 
that it as an assertion about the contemporary practice 
of science rather than as an assertion about strict 
mathematics [8].
The above equations of RK are for calculating the 
first order ODE; below is the fourth order RK for 
second order ODE:

′ݕ = ଵ݂(ݖ,ݕ,ݔ)whereݖ= ′ݕ and ݖ′ = ′ݖ′′ݕ = ଶ݂(ݖ,ݕ,ݔ)ݕ(ݔ଴) = ,଴ݕ (଴ݔ)ݖ =  ଴are both initialݖ
conditions

ଵ݇= ℎ ଵ݂(ݔ௡,ݕ௡,ݖ௡)
ଵ݈= ℎ ଶ݂(ݔ௡,ݕ௡,ݖ௡)
ଶ݇= ℎ ଵ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞భଶ,ݖ௡+ ௟భଶቁ
ଶ݈= ℎ ଶ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞భଶ,ݖ௡+ ௟భଶቁ
ଷ݇= ℎ ଵ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞మଶ,ݖ௡+ ௟మଶቁ
ଷ݈= ℎ ଶ݂ቀݔ௡+ ௛

ଶ,ݕ௡+ ௞మଶ,ݖ௡+ ௟మଶቁ
ସ݇= ℎ ଵ݂(ݔ௡+ ℎ,ݕ௡+ ଷ݇,ݖ௡+ ଷ݈)
ସ݈= ℎ ଶ݂(ݔ௡+ ℎ,ݕ௡+ ଷ݇,ݖ௡+ ଷ݈)

=௡ାଵݕ +௡ݕ ଵ݇6 + ଶ݇3 + ଷ݇3 + ସ݇6 + (ܱℎହ)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 212

2015 International Journal of Computer Science Issues



=௡ାଵݖ           +௡ݖ ௟భ଺+ ௟మଷ+ ௟యଷ+ ௟ర଺+ (ܱℎହ)    (5)

RK4 for second order ODE [3]
Runge-Kutta method is said to be unique based on 
the following properties such as:

 It is a one-step method which means that to 
findݕ௠ାଵ, one would require information 
present at the preceding (initial) points: ݔ௠
and ݕ௠.

 It agrees with the Taylor’s series through 
terms in ℎ௣ , where p differs for the various 
methods and called the order of the method.

 It does not require the evaluation of any 
derivatives but only requires the function 
itself.

Owing to the fact that RK is a method with different 
stages, it is rather called nth stage RK method. Where 
n=1, 2, 3, 4…..But for the purpose of this work, we 
shall limit ourselves to the fourth order RK method.
Angelos (2013) formulated using Artificial Neural 
Networks in the construction of Runge-Kutta 
methods by generating the optimal coefficients of a 
numerical method. The network was designed to 
produce a finite difference algorithm that solves a 
specific system of ordinary differential equations 
numerically. This majorly concerns an explicit two-
stage Runge-Kutta method for the solution of the 
two-body problem numerically. 
Following the implementation of the network, the
latter is trained to obtain the optimal values for the 
coefficients of the Runge-Kutta method. The 
comparison of the new method to others that are well 
known in the literature proves its efficiency and 
demonstrates the capability of the network to provide
efficient algorithms for specific problems.
Jorick (2005) presented an interesting form of flow 
problem, one that involves multiple fluids of flows; 
more particularly, the two-fluid flows where there 
exists two non-mixing fluids separated by a sharp 
fluid interface, occurring in many applications 
majorly in both engineering and physics. Although, 
the use of experimental and analytical results have 
provided us a solid foundation for two-fluid 
dynamics, research on two-fluid shows that areas 
involved with solving numerically the flow equations 
are otherwise known as Computational Fluid 
Dynamics (CFD). 
However, we suppose that despite the disparity in the 
simulation of single-fluid flows, finding two-fluid 
flows that possesses accuracy and efficiency in the 
simulation method has proved abortive. This is due to 
the fact that when handling the interface between the 
two-fluids, difficulties often arise and also the 

numerical methods that manages these interface 
problems sometimes lack the accuracy. Therefore, 
the thesis presides the improvement of an extremely 
accurate numerical solver for the simulation of 
compressible, unsteady two-fluid flows as portrayed 
by the two-dimensional Euler equations of gas 
dynamics. The two-fluid flow solver considered was
centered on the Level-Set (LS) method.  
The uniqueness of the solver developed is the 
application of an extremely accurate Runge-Kutta 
discontinuous Galerkin (RKDG) method for the 
temporal and spatial discretization of the governing 
equations. The probability of gaining very high
orders of accuracy and the somewhat easy 
implementation of mesh and order refinement 
techniques makes the RKDG method an appealing 
method for solving fluid flow problems. The RKDG 
method also relates the accuracy of the former with 
the efficiency and easy implementation of the latter 
of a two-fluid flow solver equally centered on the LS 
method and by itself results in an interesting 
numerical solver for two-fluid flows.
The development of high performance Runge-Kutta 
(RK) numerical methods applied to unravel the 
Schrodinger equation for Hydrogen and Positronium 
Atoms generated using numerical results which 
conforms to the analytical calculations of the 
hydrogen atom in modern physics and quantum 
mechanics based on the ground state modes of wave 
functions for both hydrogen and positronium. 
Numerical RK method to solve differential equations 
in physics is very efficient and accurate useful for 
solving physics problems and could also be used in 
the analysis of quantum systems with different 
potentials [5]

3. System Design

Several techniques are used to model systems such as 
the Unified Modeling Language (UML) which is a 
language for expressing object oriented design 
models. The UML diagram used for this research is 
the Use Case diagram.

3.1 Use Case Diagram

This is a diagram that shows the actors and use cases, 
together with the various relations between them. The 
use case for this system is represented in figure 3.1 
below.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 213

2015 International Journal of Computer Science Issues



Figure 1 Use Case Diagram for inputs into RK4

3.2 Grammar Rules for Accepting Inputs

1. S    S “+” or “– ” E1 
2. S     E1
3. E1     E1 “*” or “/” E2 
4. E1      E2
5. E2      E2 “^” E3 
6. E2      E3
7. E3      “Sin” or “cos” or “tan” or “log” 

or “- ” T
8. E3      T
9. T      i
10. T      (S)

Removing left recursion…….

1. S     E1 Rs
2. Rs       “+” or “– ” E1 Rs | ܧ
3. E1      E2 Re1
4. Re1       “*” or “/” E2 Re1 |ܧ
5. E2        E3 Re2
6. Re2        “^” E3 Re2 | ܧ
7. E3      “Sin” or “cos” or “tan” or “log” 

or “- ” T
8. E3      T
9. T      i
10. T      (S)

To construct a parser based on this grammar, we use 
the recursive descent parser which is a kind of top-

down parser. Some types of grammars especially the 
context-free grammars, allows a recursive descent 
parser to choose which production to use by 
considering only the next k tokens of input LL(K)-
this grammar rules out all ambiguity present in the 
grammar as well as all grammars that are left 
recursive like the grammar above.

Based on this fact, a parser that will generate an error 
message if its input cannot be found in the language 
of the above grammar is constructed and also an 
Abstract Syntax Tree (AST) is constructed in order to 
correctly reflect the structure of the sequence of 
input. 

4.  Implementation Techniques
4.1 JAVA Programming Language
Java programming language was used to develop the 
front end of the Runge-Kutta fourth order system via 
the Java Development kit (JDK), which is the 
complier for Java programming language that 
converts Java source codes into executable Java Class 
files or libraries. Version 1.8.0 was used in the 
implementation

4.2 Steps in Implementing Dynamic Runge-Kutta 
Fourth Order Algorithm

1. Step 1: On the home page of 
Runge-Kutta fourth order, select 
“compute ODE”.

2. Step 2: Enter the values for the 
corresponding fields.

3. Step 3: Select either first order or 
second order.

4. Step 4: Select ‘Run’.
5. Step 5: A dialog box appears 

showing the chart and table.
6. Step 6: You can then select ‘Exit’ 

to go back to the main window

Figure 2 Welcome screen for RK4 first and second 
order ODE

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 214

2015 International Journal of Computer Science Issues



Figure 3 Data Entry Form

After all the fields have been filled, one can choose to 
either select the “Run” button or “Exit”. Note that the 
title of the field having “*” is not a compulsory field 
and can be ignored in the computation of first order 
ODE but is highly needed in the computation of 
second order ODE. Also, “#” indicates that when 
entering values into those fields, you terminate them 
with a semi-colon.

5.   Results

5.1 Screen Shots of Runge-Kutta Fourth Order 
Test Cases
5.1.1 Example on First Order ODE 

Figure 4 Data entry to compute RK4 for (x-y)/2

The above example computes the ODE (x-y)/2 which 
is a function of x and y with the initial value of x to 
be 0 and y to be 1; represented mathematically as: (0)ݕ = 1. The number of steps to be determined is 
24 and the maximum (end point) of x is 3. The 
solution to the ODE was analytically computed using 
the method of undermined co-efficient which reduces 
the solution to be a function of only x. The button 
‘first order’ was then selected to run.

X represents the list of x values, Y_Approximate 
represents the list of y approximated values, Y_Exact 
represents the list of y exact (True solution) values 
and Absolute Error represents the difference between 
Y_Exact and Y_Approximate. The fixed step size 
denoted ‘h’ which has to do with how x increases is 
0.125; is calculated by dividing the number of steps = 
24 by the maximum value of x = 3.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 215

2015 International Journal of Computer Science Issues



Figure 5 Graph of (x-y)/2function

In the graph above, observe that the horizontal values 
are reversed backwards. The colours red denotes Y 
Approximate, yellow denotes Y Exact and green 
denotes Absolute Error.This graph was plotted based 
on the tabulated values. We have plotted in this graph 
Y_Approximate against X, Y_Exact against X and 
Absolute Error against X. There is little or no 
difference at all between Y_Approximate values and 
Y_Exact values. As a result of this inference, we 
have in the graph above a single curve representing 
both Y_Approximate and Y_Exact as their values 
increases through X values and a straight line 
representing the Error. Also, notice that the absolute 
error is very small (minute) for all the values of x.

5.1.2 Example on Second Order ODE 

Figure 6 Data entry to compute RK4 for ܡᇱᇱ+૞ܡᇱ+૟ܡ= ૙
and ܡᇱ= ࢠ
The above example computes the ODE y′′ + 5y′ +6y = 0 which is a function of y and z with the initial 
value of x to be 0, y to be 2 and z to be 3; represented 
mathematically as:(0)ݕ = 2, (0)ݖ = 3. For second order, the equations 
are divided into two: y′ = z and y′′ = −6y − 5z
The number of steps to be determined is 10 and the 
maximum (end point) of t is 2. The solution to the 
ODE was analytically computed using the method of 
undermined co-efficient which reduces the solution 
to be a function of only x. The button ‘second order’ 
was then selected to run.

X represents the list of x values, Y_Approximate 
represents the list of y approximated values, Y_Exact 
represents the list of y exact (True solution) values 
and Absolute Error represents the difference between 
Y_Exact and Y_Approximate.
The fixed step size denoted ‘h’ which has to do with 
how x increases is also 0.2; is calculated by dividing 
the number of steps = 10 by the maximum value of x 
= 2.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 216

2015 International Journal of Computer Science Issues



Figure 7 Graph of ܡᇱᇱ+ ૞ܡᇱ+ ૟ܡ= ૙function

We have plotted in this graph Y_Approximate 
against X, Y_Exact against X and Absolute Error 
against X. From the table, there is a difference 
between Y_Approximate values and Y_Exact values. 
As a result of this inference, we have in the graph 
above two different curves representing 
Y_Approximate and Absolute Error. The straight line 
in the graph represents Y_Exact. Also, observe that 
while the Absolute Error increases in the positive y-
axis direction, Y_approximate increases in the 
negative y-axis direction. 

6. Conclusion
This study shows that Runge-Kutta’s fourth order 
algorithm can dynamically evaluate the inputs 
through the use of compiler techniques and can 
generate a solution for both first and second order 
ODE. This implementation is limited by the use of 
one programming language only. The Java program 
does not produce executable files, instead it compiles 
the program into bytecodes leaving it in a .jar format 
so the program has to be run from the command 
prompt window or console. Future research work 
may examine other algorithms as well as the 
introduction of Compilation techniques to be used in 
other areas of study particularly in the field of 
Numerical computations.

References

1. A. A. Angelos, “Constructing Runge-Kutta 
Methods with the use of Artificial Neural 
Networks”, 
doi:10.1007/2Fs005210131476x. Retrieved 

from http://link.springer.com/ 2003
2. G. Byrne, and K. Hindmarsh, “RK Methods 

prove popular”, in IMA Conference on 
Numerical ODE’s,SIAM News, 1990, Vol. 
23, pp.14-15.

3. S. Francis, Schaum’s Outlines of Theory and 
Problems of Numerical Analysis New York, 
NY: Mcgraw-Hill, 1989

4. N. Jorick, “A Runge-Kutta Discontinuous-
Galerkin Level-Set Method for 
UnsteadyCompressible Two-Fluid 
Flow”,Masters thesis, Delft University of 
Technology, Netherlands, 2005

5. A. A. Mowlavi, A. Binesh and H. 
Arabshahi. “Application of Runge-Kutta 
Numerical Methods to Solve the 
Schrodinger Equation for Hydrogen and 
Positronium Atoms”. Research Journal 
of Applied Sciences, Vol 5, 2010, pp. 315-
319.

6. M. D. Patterson, “Implementing Runge-
Kutta solvers in Java”, B.Sc. thesis 
AcadiaUniversity, 2003

7. W. H. Press, S. A. Teukolsky, W. T 
Vetterling, and B.P. Flannery, “Numerical 
Recipes in C: The art of Scientific 
Computing” ,Runge-Kutta method, New 
York, NY: Cambridge university press, 
2007.

8. L. F. Shampine, and H. A. Watts, Applied 
Mathematics and Computation New 
York, NY: Academic Press, 1977

Anidu Adesola.O. holds a Masters degree in 
Computer Science and is currently on her Ph.D 
programme. She is an assistant lecturer in the 
Department of Computer Science, Redeemer’s 
University Ede. Her research interests include 
biometrics, mathematical computing, e-learning 
and artificial intelligence.  

Arekete Samson A. holds a Ph.D degree in 
Computer Science. He has over 10 years 
experience in lecturing and is a senior lecturer in 
the Department of Computer Science, Redeemer’s 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 217

2015 International Journal of Computer Science Issues



University, Ede. His research areas  are agents in 
mobile technology, intelligent agents technology, 
artificial intelligence and context-aaaware 
computing.

Adedayo Ayomide O. is a student in the 
Department of Computer Science, Redeemer’s 
University. Her research interests are mathematical  
computing, compiler construction

Adekoya Adekunle O. holds a Masters degree in 
Computer Science and currently on his Ph.D 
programme. He is a senior programmer in 
Redeemer’s University with over 10 years 
experience in programming.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 218

2015 International Journal of Computer Science Issues




