
Multiversion Thomas' Write Rule Timestamp-based Concurrency
Control

Habes Alkhraisat1, Hasan Rashaideh 2

 1 Department of Computer Science, Al-Balqa Applied University
Al-Salt 19117, Jordan

2 Department of Computer Science, Al-Balqa Applied University
Al-Salt 19117, Jordan

Abstract
One of the fundamental properties of a transaction is isolation.
When several transactions execute concurrently in the database,
however, the isolation property may no longer be preserved.
Concurrency control techniques are used to ensure the
noninterference or isolation property of concurrently executing
transactions. Most of these techniques ensure serializability of
schedules. This paper addresses the problem of modifying the
Thomas write rule to support Multiversion Timestaming
concurrency control technique.

Keywords— Transaction, ACID properties, concurrency
control, timestamp ordering, Multiversion concurrency control,
Thomas write rule, serializability graph SG

1. Introduction

A transaction is an atomic unit of processing that should
either be completed in its entirety or not done at all.
Transaction processing systems are systems with large
databases and hundreds of concurrent users executing
database transactions. Concurrency control ensure the
correct executions of transactions. The database
management system maintain the ACID properties of
the transactions, which should be enforced by the
concurrency control and recovery methods. The ACID
properties are: (1). Atomicity: A transaction is an atomic
unit of processing; it should be either performed in its
entirety or not performed at all. (2). Consistency
preservation: A complete execution of transaction takes the
database from one consistent state to another. (3). Isolation:
A transaction should appear as though it is being executed
in isolation from other transactions. That is, the execution
of a transaction should not be interfered with by any other
transactions executing concurrently. (4). Durability or
permanency: The changes applied to the database by a
committed transaction must persist in the database and must
not be lost because of any failure [1].

When several transactions execute concurrently in the
database, the isolation property may no longer be preserved.
To ensure the isolation, the system must control the

interaction among the concurrent transactions; concurrency
control techniques are used to ensure the isolation property
of concurrently executing transactions. Several current
trends in the field of computing are giving rise to an
increase in the amount of concurrency possible. As database
systems exploit this concurrency to increase overall system
performance, there will necessarily be an increasing number
of transactions run concurrently.

Multi-Version Concurrency Control (MVCC) is an
advanced technique for improving database performance in
a multi-user environment. Multiversion concurrency control
algorithm keeps the old values of a data item when the item
is updated, each Write on a data item x produces a new
copy (or version) of X. The DM that manages x therefore
keeps a list of versions of X, which is the history of values
that the DM has assigned to X. For each Read(x), the
scheduler not only decides when to send the Read to the
DM, but it also tells the DM which one of the versions of x
to read.
The benefit of multiple versions for concurrency control is
to help the scheduler avoid rejecting operations that arrive
too late. For example, the scheduler normally rejects a Read
because the value it was supposed to read has already been
overwritten. With multiversions, such old values are never
overwritten and are therefore always available to tardy
Reads. The scheduler can avoid rejecting the Read simply
by having the Read read an old version. When a transaction
requires access to an item, an appropriate version is chosen
to maintain the serializability of the currently executing
schedule, if possible. The idea is that some read operations
that would be rejected in other techniques could still be
accepted by reading an older version of the item to maintain
serializability [2].

Maintaining multiple versions may not add much to the cost
of concurrency control, because the recovery algorithm may
need the versions anyway. An obvious cost of maintaining
multiple versions is storage space. To control this storage
requirement, versions must periodically be purged or
archived. Since certain versions may be needed by active
transactions, purging versions must be synchronized with

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 202

2015 International Journal of Computer Science Issues

respect to active transactions. This purging activity is
another cost of multiversion concurrency control [3].

2. Timestamp ordering Protocol

Each transaction Ti in the system has a unique fixed
timestamp, denoted by TS (Ti). The database management
system assigns timestamp before the transaction Ti starts
execution. If a transaction Ti has been assigned timestamp
TS (Ti), and a new transaction Tj enters the system, then TS
(Ti) < TS (Tj).

The timestamps of the transactions determine the
serializability order. Thus, if TS (Ti) < TS (Tj), then the
system must ensure that the produced schedule is equivalent
to a serial schedule in which transaction Ti appears before
transaction Tj.

To implement timestamps ordering, each data item Q has
two timestamp values [1, 2]:

 W-TS (Q) denotes the largest timestamp of any
transaction that executed write (Q) successfully.

 R-TS (Q) denotes the largest timestamp of any
transaction that executed read (Q) successfully.

W-TS (Q) and R-TS (Q) timestamps are updated whenever
a new read (Q) or write (Q) instruction is executed.

2.1 Basic Timestamp Ordering Protocol

The timestamp-ordering protocol ensures that any
conflicting read and write operations are executed in
timestamp order.

This protocol operates as follows [2]:

1. Suppose that transaction Ti issues read (Q).
a. If TS (Ti) < W-TS (Q), then Ti needs to read a

value of Q that was already overwritten.
Hence, the read operation is rejected, and Ti is
rolled back.

b. If TS(Ti) ≥ W-TS(Q), then the read operation
is executed, and R-TS(Q) is set to the
maximum of R-TS(Q)and TS(Ti).

2. Suppose that transaction Ti issues write (Q).
a. If TS (Ti) < R-TS (Q), then the value of Q

that Ti is producing was needed previously,
and the system assumed that that value would
never be produced. Hence, the system rejects
the write operation and rolls Ti back.

b. If TS (Ti) < W-TS (Q), then Ti is attempting to
write an obsolete value of Q. Hence, the
system rejects this write operation and rolls Ti
back.

c. Otherwise, the system executes the write
operation and sets W-TS (Q) to TS (Ti).

2.2. Thomas’ Write Rule Timestamp Ordering
Protocol

The protocol rules for read operations remain unchanged.
The protocol rules for write operations, however, are
slightly different from the timestamp-ordering protocol of
Section 2.1. Thomas’ Write Rule is a modified version of
the timestamp-ordering protocol in which obsolete write
operations can be ignored under certain circumstances [1].

Suppose that transaction Ti issues write (Q):

1. If TS (Ti) < R-TS (Q), then the value of Q that Ti is
producing was previously needed, and it had been
assumed that the value would never be produced.
Hence, the system rejects the write operation and
rolls Ti back.

2. If TS (Ti) < W-TS (Q), then Ti is attempting to write
an obsolete value of Q. Hence, this write operation
can be ignored.

3. Otherwise, the system executes the write operation
and sets W-TS (Q) to TS (Ti).

By ignoring the write, Thomas’ write rule allows schedules
that are not conflict serializable but are correct. Thomas’
write rule makes use of view serializability by, in effect,
deleting obsolete write operations from the transactions that
issue them. This modification of transactions makes it
possible to generate serializable schedules that would not be
possible under the protocols presented in Section 2.1.

3. Multiversion Concurrency Control
Techniques

The concurrency-control schemes discussed thus far ensure
serializability by aborting the transaction that issued the
operation. For example, a read operation may be may be
rejected (that is, the issuing transaction must be aborted)
because the value that it was supposed to read has already
been overwritten. These difficulties could be avoided if old
copies of each data item were kept in a system [1,3].

In multiversion concurrency-control schemes, each write (Q)
operation creates a new version of Q. When a transaction
issues a read (Q) operation, the concurrency-control
manager selects one of the versions of Q to be read. The
concurrency-control scheme must ensure that the version to
be read is selected in a manner that ensures serializability. It
is also crucial, for performance reasons that a transaction is
able to determine easily and quickly which version of the
data item should be read [1].

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 203

2015 International Journal of Computer Science Issues

3.1 Multiversion Timestamp Ordering Protocol

The timestamp-ordering protocol can be extended to a
multiversion protocol. With each transaction Ti in the
system, associates a unique static timestamp, denoted by TS
(Ti). With each data item Q, a sequence of versions <Q1,
Q2... Qm> is associated. Each version Qk has two
timestamps:

 W-TS (Qk) is the timestamp of the transaction that
created version Qk.

 R-TS (Qk) is the largest timestamp of any
transaction that successfully read version Qk.

Multiversion timestamp-ordering scheme operates as
follows: Suppose that transaction Ti issues a read (Q) or
write (Q) operation. Let Qk denote the version of Q whose
write timestamp is the largest write timestamp less than or
equal to TS (Ti).

1. If transaction Ti issues a read (Q), then the
value returned is the content of version Qk.

2. If transaction Ti issues write (Q),
a. If TS (Ti) < R-TS (Qk), then the system rolls

back transaction Ti.
b. If TS (Ti) = W-TS (Qk), the system overwrites

the contents of Qk.
c. Otherwise TS (Ti) > R-TS (Qk), it creates a

new version of Q.
The multiversion timestamp-ordering scheme has the
desirable property that a read request never fails and is
never made to wait. In typical database systems, where
reading is a more frequent operation than is writing, this
advantage may be of major practical significance [1, 2].

3.2 Modified Multiversion Thomas’ Write Rule
(MVTWR)

In this section, we are going to explain the modified
Thomas’ Write Rule by applying the multi version
timestamp-ordering protocol.
Multiversion Thomas’ Write Rule operates as follows:
Suppose that transaction Ti issues a write (Q) operation. Let
Qk denote the version of Q whose write timestamp is the
largest write timestamp less than or equal to TS (Ti).

1. If transaction Ti issues a read (Q), then the
value returned is the content of version Qk.

2. If transaction Ti issues write (Q),
a. if TS(Ti) = W-TS(Qk), the system overwrites

the contents of Qk;
b. if TS(Ti) < W-TS (Qk), this write operation

can be ignored;
c. Otherwise, it creates a new version of Q, with

W-TS(Qk+1)= R-TS(Qk+1) = TS(Ti).

The Multiversion Thomas’ Write Rule has the desirable
property that a read request never fails wait, also in a the
case when the transaction Ti issues write (Q), and the TS
(Ti) < R-TS, then the system never rolls back transaction Ti.

4. Proof of Correctness

To prove MVTWR correct, we must describe it in
serializability theory. The scheduler processes ri[x] by first
translating it into ri[xk], where xk is the version of x with the
largest timestamp less than or equal to TS(Ti), and then
sending rj[xk] to the DM. It processes wi[X] by considering
three cases. If it has already processed a Read Tj[Xk] such
that TS(Ti) < TS(Tj), it translates wi[x] into wi[xi. If it
TS(Ti) < TS(Tk), then ignore the Write Ti[x]. Otherwise, it
translates wi[x] into wi[xi]. Finally, to ensure recoverability,
DMNS must delayed the processing of ci until it has
processed cj for all transactions Tj that wrote versions read
by Ti.

The following properties describe the essential
characteristics of every MVTO history H over (T0, ... Tn}.

 MVTWR1. For each Ti, there is a unique
timestamp TS(Ti);

 MVTWR2. For every rk[xj] ∈ H, wj[xj] < rk[xj] and
TS(Tj) ≤ TS(Tk).
 MVTWR3. For every rk[Xj] and wi[xi] ∈ H, i≠j,
either

 (a) TS(Ti) < TS(Tj) or
(b) TS(Tk) < TS(Ti) or
(c) i = k and rk[xj] < wi[xl] .

 MVTWR4. If rj[xi] ∈ H, i≠j, and cj ∈ H, then ci
< cj.

Property MVTWR1, says that transactions have unique
timestamps. Property MVTWR2, says that each transaction
Tk only reads versions with timestamps smaller than TS(Tk).
Property MVTWR3, states that when the scheduler
processes rk[Xj], xj is the version of x with the largest
timestamp less than or equal to TS(Tk). MVTWR4, states
that H is recoverable.

These conditions ensure that H preserves reflexive reads-
from relationships. In other words, MVTWR is a correct
scheduler.
Proof: Define a version order as follows: xi ≪ xj iff TS(Ti)
< TS(Tj). We now prove that MVSG(H, ≪) is acyclic by
showing that for every edge Ti → Tj in MVSG(H,≪), TS(Ti)
< TS(Tj).
Suppose Ti → Tj is an edge of SG(H). This edge
corresponds to a reads from relationship. That is, for some
X, Tj reads x from Ti. By MVTO, TS(Ti) 5 TS(Tj). By
MVTWR2, TS(Ti) ≠TS(Tj). So, TS(Ti) < TS(Tj) as desired.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 204

2015 International Journal of Computer Science Issues

Let rk[xj] and wi[xi] be in H where i, j, and k are distinct,
and consider the version order edge that they generate.
There are two cases: (1) xi ≪ xj, which implies Ti → Tj is
in MVSG(H, ≪); and (2) xj ≪ xi, which implies Tk → Ti is
in MVSG(H, ≪). In case (l), by definition of ≪, TS(Ti) <
TS(Tj). In case (2), by MVTWR3, either TS(Ti) < ts(Tj) or
TS(Tk) < TS(Ti). The first option is impossible, because xj
≪ xi implies TS(Tj) < TS(Ti). SO, TS(Tk) < TS(Ti) as
desired. Since all edges in MVSG(H, ≪) are in timestamp
order, MVSG(H, ≪) is acyclic.

5. Conclusion

In this paper, we explained how to extend the Thomas’
Write Rule timestamp-ordering protocol using the
multiversion timestamp-ordering scheme. A multiversion
concurrency-control scheme is based on the creation of a
new version of a data item for each transaction that writes
that item. When a read operation is issued, the system
selects one of the versions to be read. The concurrency-
control scheme ensures that the version to be read is
selected in a manner that ensures serializability, by using
timestamps. A read operation always succeeds. The
multiversion Thomas’ Write Rule, allows greater potential
concurrency than does the basic Thomas’ Write Rule.

References

[1] A. Silberschatz, H. F. Korth, S. Sudarshan, Database System

Concept, 6th ed, New York: McGraw-Hill, 2010.

[2] R. A. Elmasri, S. Navathe, Fundamentals of Database Systems, 6th
ed., Addison-Wesley, 2010.

[3] Philip A. Bernstein, Eric Newcomer, Principles of Transaction
Processing, 2nd Ed, Morgan Kaufmann, 2009.

Dr. Habes Alkhraisat is a professor of computer science at
Al-Balqa Applied University, Salt, Jordan. He received his
Bsc. Degree in Information Technology from Al-Balqa
Applied University, Jordanm in 2001, master degree of
computer science from University of Jordan, Jordan, 2003,
and Ph.D degree of Automated System from Saint
Petersburg Electrotechnical University, 2008. In 2009, he
joined the Department of Computer Science, Al-Balqa
Applied University, as assistant professor. His current
research interests include database management system, ear
recognition, development methodology, and biometric.

Dr. Hasan Rashaideh is a professor of computer science at
Al-Balqa Applied University, Salt, Jordan. He received his
B.Sc. and master Degrees in Computer Science from
Yarmok University, Jordan in 1999, 2001 respectively, and
Ph.D. degree of Automated System from Saint Petersburg

Electrotechnical University, 2008. In 2009, he joined the
Department of Computer Science, Al-Balqa Applied
University, as assistant professor. His current research
includes image processing, ear recognition, and
development methodology.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 205

2015 International Journal of Computer Science Issues

