
Specification of Document Structure and Code Generation for

Web Content Management

Besnik Selimi1 and Artan Luma2

1 Contemporary Sciences and Technologies, South East European University

Tetovo, 1200, Macedonia

2 Contemporary Sciences and Technologies, South East European University

Tetovo, 1200, Macedonia

Abstract
This paper presents a simple model for declarative specification

of the structure of documents for web-based content management.

The proposed model allows the description of the hierarchical

structure of multi-lingual documents, relationships, and

organization among documents of same type. We specify this

model in a way that allows building specifications using drag-

and-drop interfaces. Then, we use these specifications in order to

automatically generate the necessary database schemas and code

for managing these documents. The final goal is to provide

unobtrusive automatic code generation that is strongly based on

widely used design patterns and thus fits into common workflows

in web application development. The usage of such models

should further reduce development time in Rapid Application

Development processes, especially by shortening the time from

gathering requirements to having an executable application.

Keywords: Content Management, Code Generation,

Hierarchical Documents, Models, Multi-language Content,

Requirement Specification.

1. Introduction

While developing software, standard solutions of common

problems are identified as design patterns [1]. These

patterns represent a formalization of best practices to

follow when solving application or system design

problems. Reusing design patterns helps to speed up the

development time and provide well tested development

paradigms that help in preventing common errors. These

are among the main reasons that after some time,

particular design patterns become de-facto standards in

application development.

Besides the advantages that design patterns provide to a

programmer, following a pattern introduces a significant

part of systematic work – producing the necessary code for

applying the given pattern. Providing appropriate

techniques, tools, and libraries for reducing such

systematic work is one of the biggest challenges in

software engineering [2].

One of the directions in alleviating the amount of work is

to provide frameworks that include the code for the

implementation of the most common design patterns, thus

minimizing the code written by the developer. As an

example, the Model-View-Controller (MVC) [3][4]

application pattern or variants of the same are used in a

multitude of domains and many frameworks implementing

this pattern nowadays are available. Active record [5] is

another frequent design pattern that provides a mapping of

objects to relational databases. Among others, such

patterns are nowadays ubiquitous in web application

frameworks.

Another important direction that helps reducing the

systematic work is the Model-Driven Engineering (MDE)

[6] [7] approach that focuses on defining models of the

system, including the business logic and other domain-

specific information, in an abstract level, and base the

subsequent development on these models. The ultimate

goal of this approach is to provide tools that are able to

automatically generate the code based on the provided

formally-defined model [8] [9]. The automation allows the

development team to focus on the domain and the primary

reasons for creating the software system. Model-driven

development methods usually require longer time from

gathering requirements until obtaining executable models.

Nowadays, web application oriented development teams

frequently use agile methods [12], the main reason being

that customers want to see and accept a finalized product

instead of a specification.

Yet another model–based approach is to abstract common

knowledge in a particular domain and provide Domain-

Specific Languages (DSL) [10]. The primary advantage of

using a DSL is in the fact that it is easier for a domain

specialist to understand because it manipulates concepts

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 1

2015 International Journal of Computer Science Issues

mailto:a.luma@seeu.edu.mk

that are known to them. Creating a DSL requires expertise

in both the application domain and programming for

providing the underlying tools that help in the execution of

such models [11].

In this paper, we present a simple domain-specific

language for the specification of the structure of

documents used in the domain of web applications. The

main idea is to abstract the most frequently used concepts

into a model, and then use such models to generate the

database schema and code for managing document

instances. Although such models can be dynamically

interpreted, we focus on code generation since it allows

developers to easily customize and extend the code using

standard object-oriented techniques. Furthermore, we

generate code that follows common design patterns and

thus fits into current frameworks and development

practices. We do not claim to provide a general model that

can describe any document but rather provide a simple

model that can accommodate a large range of web

applications while allowing programmers to further

customize it for specific requirements.

The rest of this paper is organized as follows. Section 2

provides a background on the current approaches in the

development of web applications. Section 3 presents the

approach discussed in this paper. Section 4 provides a

succinct specification of the model we use. Section 5

discusses some of the most important issue related to the

implementation of the approach. And finally, section 6

concludes and gives directions on future evolutions of the

presented approach.

2. Problem definition

Management of content has been an increasing concern

since the beginning of the web. From a collection of

interlinked static documents, nowadays the web has

evolved into a full featured application platform. A large

part of the development has shifted from conventional

desktop to web and mobile applications. These

applications manipulate content that needs to be precisely

structured, semantically meaningful and available in an

increasing number of different formats. As a consequence,

web content management cannot be reduced to managing a

set of pages, articles, or similar, which is already covered

by a multitude of Content Management Systems (CMS)

that are available.

Generally, a CMS provides a lot of commonly required

features for a website. But, the rigid structure of such

systems cannot easily accommodate the demand for

customized data types and interfaces. Some systems

provide form generators to allow users to define their data

structures as a list of fields with a custom type. This

handful feature is still not sufficient in many cases,

because of their inherent linear structure, the fixed

database schemas, and the fact that they do not allow

programmatic customizations. These, together with

reasons related to the distributed nature of cloud

applications, are probably the main reasons that most of

web applications are nowadays developed on a lower level,

based on web framework libraries.

2.1 Web frameworks

The role of web application framework is to cover the

usual overhead in developing websites, web applications

and services. They provide a set of libraries that

implement common features and help reducing the amount

of code to be written. By using frameworks that are

available nowadays and following suggested best practices,

developers may be productive even ignoring important

subtleties of web development such as the HTTP protocol,

cookie and session management, security, and sometimes

SQL.

Most web frameworks today are using a set of commonly

accepted design patterns, such as active record and MVC.

Other design patterns, such as inversion of control are

making their way as standard features of web frameworks.

Although these patterns standardize a significant part of

the code and shift it into reusable libraries, we observe that

there remains code that is produced systematically while

implementing specific features.

One such situation that occurs very often is when there is a

need to specify hierarchy between the attributes of a model.

For example, a simple article may include more images or

comments. A researcher’s profile might include education,

publication, work, and similar lists of records. In such

cases, one needs to create separate tables in the database

for each of these lists, and relate them with foreign keys.

Then, a separate model class is needed for each of these

tables. For editing such records, a more complex user

interface needs to be created. The data sent to the server

needs to be separated to corresponding tables.

Another situation that involves systematic code creation is

managing hierarchies between models. Examples include

categories, page hierarchies and similar. In such cases,

additional columns should be added in the database,

provide support for editing relationships and models

should verify that these relationships form a correct

hierarchy. Furthermore, by avoiding more complex

solutions, the resulting implementations are often

suboptimal.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 2

2015 International Journal of Computer Science Issues

A third situation that we consider does not get the required

attention in web frameworks is the management of

multilingual content. Most web frameworks offer the

possibility of localizing the user interface. But, when it

comes to actual content translations, they do not offer

systematic solutions. Different known solutions can be

found to the problem of storing translations, but

programmers often need to manually specify the necessary

additional tables or columns. Editing and storing different

translations or retrieving correct translations produces a lot

of code that is mere duplication.

Given such situations, we consider that there is a need for

a higher level specification that includes support for

describing such concerns in a succinct manner. We have

considered existing standards for describing the document

structure, such as XML Schema [12] or UML [13], in the

perspective of using these as a specification language. In

one hand, these offer a wide range of specification

possibilities that makes them more complex, and require

additional specification restrictions to allow efficient code

generation. On the other hand, these would need to be

extended for easier specification of some features we want

to include.

3. A simple model based approach

In order to take into account the above situations, we have

considered a model for specifying web documents and an

approach for code generation based on this model. Figure

1 depicts the flow of this approach.

Fig. 1 Code generation based on entities.

The structure of documents is defined as separate entities.

We provide a minimal DSL for specifying these entities.

Although we have experimented with specifications in

different languages, we present below an XML-based

description as it is easier to read.

Entities are composed of fields that can be repeated and in

turn be composed of other fields. Fields refer to types that

are provided as separate reusable components. These

configurable types provide the information about how to

display, edit, sanitize, validate, and store a particular field.

Based on these entities, we generate the database schema

and the code for CRUD operations based on the MVC

pattern. Several models are generated to accommodate the

hierarchical structure of entities. These models call

corresponding types for validating each attribute. In a

similar way, views call types to generate the form

elements for corresponding attributes.

The approach based on code generation instead of

interpretation, allows developers further extensions and

customizations in derived classes.

4. Model specification

In order to present the model specification, we will use an

example of a study program. The reason of choosing such

an example is that it is sufficient to present the main

concepts behind our model and we can compare this to an

existing implementation of the same.

4.1 Entities

Each type of document is specified as a separate entity. An

entity represents the higher concept in the hierarchy and

includes all the relevant definition for a particular type of

document. It is defined as follows:

<entity id="Program" name="Study Program">
 ...
</entity>

The required attribute id should be a unique identifier of

the entity, since it is used in other entities to refer to this

entity. It will be used as a class name inside the generated

code and as a name for the corresponding table in the

database.

The required attribute name is a human-readable name of

the entity and will be used to identify this type of

documents in the user interface.

4.2 Fields

Each entity is composed of a list of fields. A simple field

can be specified inside an entity using the element field as

follows:

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 3

2015 International Journal of Computer Science Issues

<entity ...>
 <field id="name" name="Name" type="String" />
 ...
</entity>

The required attributes id and name have the same

meaning as in the declaration of an entity – id is used as a

name for the corresponding column in the table and as a

variable name inside the code, while name is used as a

label for the corresponding input element. These two

attributes will be present in every element of the

specification, since we need to refer to each of them in the

code or the generated user interface.

The other required type attribute, specifies the type of the

field. A String in this case specifies that the field name

will be edited using a standard HTML input of type text

and will be stored as a textual field in the database.

4.3 Types and Configuration

The type of a field is the first and one of the most

important abstractions that the model provides. Namely,

instead of using low-level data types such as the types

accepted by database systems, we define types at a higher

level that carry with them lot more meaning than simple

types. For example, we want to be able to define types that

correspond to an uploaded file, an image that is

automatically redimensioned, third-party hosted video and

similar. Therefore, types are also the main point of

extension of the model since we allow types to be

plugged-in as extensions that are reusable across different

applications.

For better reusability, types can be configured upon usage

on a particular entity instance. The configuration is

provided as a list of parameters. In our example of a study

program entity, we can use such configuration to constrain

the allowed HTML tags in a WYSIWYG editor and

constrain the value of ECTS to be inside a particular range

of integers.

<field id="description" name="Description"
 type="RichText">
 <param id="allowed_tags"
 value="p,em,strong,i,b,br,..." />
</field>

<field id="ects" name="ECTS" type="Integer">
 <param id="min" value="60" />
 <param id="max" value="240" />
</field>

It is important to state that each type can define its own

configuration parameters. Furthermore, the parameters are

not always related to validation of data but can be used for

any purpose. A parameter may specify the editor to use for

a type that provides multiple editors, choose the type of the

corresponding column in the database, or specify the

dimensions of an image that needs to be automatically

redimensioned after upload, or even specify the possible

values for an enumerated field as in the following example:

<field id="Cycle" name="Cycle" type="Enumerated">
 <param id="options">
 <option value="undergraduate"
 name="Undergraduate"/>
 <option value="postgraduate"
 name="Postgraduate"/>
 <option value="phd" name="PhD"/>
 </param>
</field>

The previous example will generate a drop-down list for

selecting one of the specified options, as shown in figure 2.

Fig. 2 Selection of values in enumerated fields.

In order to be functional, we have identified the following

responsibilities that each type should fulfill:

 Provide a list of configuration parameters with

default values

 Parse the configuration parameters from the

entity specification replacing the default values

 Return the underlying storage type, based on its

current configuration

 Return a default value for each type

 Produce the HTML code for displaying its

content

 Produce the HTML form elements and necessary

assets for editing such a field

 Convert the data from and to the underlying

storage type

 Validate and adjust the data before saving

4.4 Multilingual fields

Another important abstraction in our model is provided by

the concept of multilingual field. When managing

multilingual content, one needs to provide translations of

the documents in different languages. Generally, the

textual data needs to be translated while non-textual data

such as numbers and dates may be common to all the

languages. But still, in some cases textual data such as an

email does not need translation while an image might need

translation because it may contain textual content. In order

to accommodate these situations, we provide a mean of

specifying particular fields as being translatable, no matter

its type. This is done by adding a simple translate

attribute.

<field ... translate="true" />

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 4

2015 International Journal of Computer Science Issues

Although simple to define, this additional specification has

important consequences. These implications are discussed

in more detail in the next section.

4.5 Repeatable and optional fields

Repeating a particular field is another abstraction of the

model that makes a fundamental difference. The main idea

is that often we need to have multiple occurrences of a

particular field. In general, this implies the creation of

separate tables with a one-to-many relation. We abstract

this concept, by simply indicating that a field can be

repeated, as in the following example for attaching

multiple images to a document.

<field id="images" name="Images" type="Image"
 repeat="true" min-occurs="2" max-occurs="5"/>

The attributes min-occurs and max-occurs specify how

many times a field should and can be respectively

repeated.

When editing a document, the above specification should

produce a form that looks similar to the example shown in

figure 3.

Fig. 3 Repetition of fields.

The two required occurrences are visible from the

beginning, while the ‘+’ sign will allow to dynamically

add up to three more fields. When the maximum number

of occurrences has been reached, no more fields can be

added. Note that the same concept can be implemented

using other UI approaches.

If a field is not required, we can specify it as being

optional:

<field ... optional="true" />

Although optional fields may seem similar to repeating a

field a minimum of zero and a maximum of one times, in

essence optional fields have different meaning, they will

be visible but can be left empty and no additional tables

will be created.

4.6 Grouped fields

Often some fields conceptually belong together. We

provide a group element to specify that some fields belong

together. In a simple case, it allows us to display these

fields grouped together in the user interface and will have

no effect on the produced interface. In the general case,

this concept is necessary when we want to repeat such a

group of fields. We can consider a group equivalent to an

embedded document.

Since groups can be nested into other groups, it allows us

to define an arbitrary level of nested items. The following

example specifies that in a study program, we can create

from two up to six semesters, each containing an arbitrary

number of courses.

<group id="semesters" name="Semesters" repeat="true"
 min-occurs="2" max-occurs="6">
 <group id="courses" name="Courses" repeat="true">
 <field id="name" name="Name" translate="true"
 type="String"/>
 ...
 </group>
</group>

Each course is defined as a group, since it is composed of

multiple fields such as the name, description, number of

credits awarded and similar.

It is clear that each time some field or group is repeated,

we need to create a separate table in a relational database.

The implied relationship type will be one-to-many.

Additionally, such a relationship should be the equivalent

of a composition, meaning that the lifetime of the records

is tied to the lifetime of the document as a whole.

4.7 Relation fields

We already defined entities that specify all the parts that

compose a document. We still need sometimes to refer to

other types of documents defined by an external entity.

This is made possible by the belongsTo element as shown

in the following example:

<belongsTo id="department" name="Department"
 entity="Department" />

The example above defines that each program should be

attached to one department. When editing, a field allowing

the selection of a department should be generated.

Departments will exist as separate documents since the list

of departments needs to be dynamically managed and

other parts of the system refer to the same list of

departments.

Note that the only relationship type provided here is many-

to-one. We can create many-to-many relationships by

repeating the belongsTo element and even specify

cardinalities if needed. We do not introduce one-to-one

relationships, since we consider that such relationships

should be avoided and the necessary fields should be

embedded in a document. If absolutely necessary, such a

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 5

2015 International Journal of Computer Science Issues

relationship could be provided as a special type that is

used as a normal field.

4.8 Hierarchy

Documents belonging to a particular entity may be

organized in different ways. In some cases, we need to

allow manual ordering of instances. In other cases, we

need to organize the documents in a hierarchical way as a

tree. We provide for this a simple attribute hierarchy that

can be added to the entity element.

<entity ... hierarchy="tree">
 ...
</entity>

In addition to the default arbitrary ordering, we have

defined two particular hierarchies: ordered and tree.

An ordered hierarchy has the meaning that when

displaying a list, a way for ordering the documents should

be provided and a corresponding field for storing the

position of each element should be provided in the

corresponding table.

A tree hierarchy means that we need to provide a structure

in the database for storing the parent-child relationships

and provide a way for selecting a parent. Different

approaches for representing trees are discussed in the next

section.

Note that if we specified a relationship called parent within

the same entity, we will obtain a tree-like structure. Such

relationships still may be needed, but the hierarchy

attribute provides the primary organization of documents

belonging to the same entity and can be used in the user

interface to show the list of documents as a tree. As an

example, if we defined an entity Page, we can then

organize these pages and automatically produce menus and

URLs based on this hierarchy.

4.9 Automatic fields

We easily extend our system by creating special types that

can be used for particular purpose. Such an interesting

example is with the types Created and Modified that

provide fields that are not visible while editing but

generate the corresponding values when a document is

saved.

<field id="modified" name="Modified"
 type="Modified" />
<field id="created" name="Created" type="Created" />

5. Experimentations

In order to experiment with the model, we have specified

different models, among which the model of study

programs presented earlier. Based on these models, we

have generated the necessary database schema and MVC

based code for creating and editing the records. We have

experimented with integrating the code into different web

application frameworks. This section discusses some of

the most specific implementation aspects that we have

encountered.

5.1 Types

The entities we defined are based on rich types that are

provided as code. We have implemented several common

types among which text input, integer input, rich-text

editing, file upload and image upload and resize. These

types provide code for the different responsibilities defined

in the previous section. Defining such types might require

a significant work, but the rationale behind is the fact that

these types can be reused across applications, especially if

they allow a larger amount of configuration.

5.2 Repeating fields and order

When a field is declared to be repeatable, we need to store

multiple values for that field. In a relational database, a

separate table with one-to-many relation needs to be

created. In a previous example, we repeated semesters

inside a study program. Furthermore, a semester is

composed of a course that can be repeated. In order to

implement such a pattern, we generate separate tables for

semesters and courses as shown in the figure 4.

Fig. 4 Composition of repeatable fields.

Since there is an implicit order by which the fields are

repeated, we also need to add a column storing the order of

each repeated item. This order should be updated when

adding or reordering repeated fields while editing the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 6

2015 International Journal of Computer Science Issues

document. When the corresponding records are retrieved

from a database, they need to be ordered according to this

field. For example, the list of courses should be returned

according to the same order as edited, unless otherwise

specified by customizing the generated code.

5.3 Translation

When a field is specified as translatable, additional space

needs to be provided in the database for storing

translations for each active language. When such a

document is published, one should automatically retrieve

the translated data according to the current locale.

Moreover, in the user interface, when a document is

translated, only the translatable fields need to be editable.

There are different systematic approaches that are used in

web applications for storing translations to a relational

database. We list below some of the most frequent ones. A

simple approach consists in having different columns for

each language. Although the rationale behind such an

approach is that no table joins are necessary when

retrieving a record, it suffers in terms of flexibility: adding

a language requires significant changes to the database

schema. Moreover, if one doesn’t want to retrieve all the

translations, complex queries filtering the columns need to

be produced.

Another approach consists of providing a translation table

where each row refers to the table, the column and the row

of the original translated data. Such approach allows

partial translation of some documents, but produces a huge

translation table.

A third approach that we are using here consists in

creating a parallel table for translations containing the

columns that can be translated. A lang column separates

columns for each language. The figure 5 shows the

example of a course where the translation table contains

the fields name and description that are indicate as

translatable, while the field code is missing. By slight

modifications to the ActiveRecord pattern, this approach

can be used to automatically retrieve the translation for the

current locale, if present.

5.4 Naming of repeated fields

In order to avoid naming conflicts, we prefix tables by the

name of the containing group. Hence, the name for the

table corresponding to courses contained in semesters

which in turn are contained in a program becomes

“Program_semester_course”. We use the same systematic

naming for the corresponding models in the generated

code.

Fig. 5 Representation of translations.

5.5 Managing hierarchies

Another issue to consider during implementation is the

hierarchical organization among entities. In a way similar

to repeated fields, we generate an order field when the

specified hierarchy is ordered. When documents are listed

in the user interface, we allow users to reorder them.

In the case of a tree hierarchy, different approaches can be

used: parent-child, explicit-path or nested-set [13]. The

first approach consists of a simple one-to-many reflexive

relation. The explicit path approach consists in storing the

list of ancestors for each record. In our implementations,

we use the nested-set model which has the advantages of

fast retrieval of all the descendants or ancestors of a given

node. In this model, we add left, right and level fields to

encode the hierarchy, and provide an extension of models

with methods for managing the hierarchy. Note that, other

generation strategies may also be easily added.

5.6 Querying for records

Our approach focuses on generating code that follows the

common design patterns, Active Record being one of

them. In this sense, the generated models are fully

compliant with the underlying Object-Relational Mapping

libraries that also provide full-fledged relational query

possibilities. Although we could have considered a higher-

level query language designed upon this model, it will

imply breaking the usual design patterns which in turn

might be counterproductive.

5.7 Designing entities

In this work, our objective was to provide a well-defined

model for specification of entities. This is the reason why

we provide a domain-specific language. But, we have

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 7

2015 International Journal of Computer Science Issues

designed our model to allow the definition of these models

using a drag-and-drop interface. Combined with template

possibilities, such an approach might enable non-technical

users to define and use their own models.

5.8 Entity evolution and data migration

One of the main problems in software development is the

evolution of the software after deployment. In most cases,

when changing the underlying data models one wants to

migrate existing data to the new model. In such a scenario,

when the definition of an entity changes between versions,

it would be desirable to provide code for automatic

migration. By using difference between two versions of an

entity, some of these changes could be detected

automatically. Unfortunately, not all the changes can be

identified in the general case, even in a simpler model. If

we were to use an interactive drag-and-drop interface, we

could capture these changes and progressively apply

corresponding transformations in the database. Even then,

in order to reapply the same changes in a different

environment, we would need a well-defined sequence of

changes. Providing the means to define a sequence of

changes between two versions remains a future challenge.

5.9 Using NoSQL storage

In our work, we mainly covered relational databases that

require the generation of a schema and relationships for

repeated fields. In this sense, the generation is more

complex than that for NoSQL databases which generally

don’t require explicit schemas and/or provide native

support for lists and embedded documents. Nevertheless,

our models provide important information on how these

documents should be edited and validated before being

saved.

6. Conclusions and future work

In this work, we have tried to identify the systematic and

repetitive tasks while programming web applications,

based on today’s best practices. Then, we abstract these

into a descriptive model that includes a specification for

defining these as entities. These models, fully take into

account some of the most important concerns that arise

while developing web applications: managing multi-

lingual content; specifying the hierarchy of the internal

structure of the content; using rich, extensible and reusable

higher-level data types.

We use these models to automatically create concrete

database schemas and generate code for user interfaces for

content management. The generated code follows common

design patterns and allows further customizations using

standard OOP techniques. The generation of executable

code largely simplifies the gathering and specification of

requirements since it provides an advanced prototype out

of the box, allowing faster iteration cycles in rapid

application development approaches.

We consider that this approach can accommodate a large

number of information systems. Additional types can be

provided to handle storing and editing of more complex

data types and, since we generate code, further

customizations are possible for specific requirements.

The specification we provided can be conceptually

extended in different directions. One such direction we are

working on is to provide a simplified workflow model that

will be attached to entities. Based on the information

provided by the model, we associate change permissions to

different users, check that each change to the document

respects the workflow and automatically store a complete

history of changes to a given document.

Another direction for future development is to use the

information provided by entities for generation of RESTful

services [13] [14], customizable by additional

specifications.

Finally, we can use this model as a starting point for

adding semantic annotations to content. For a simpler and

straightforward example, microformat [16] annotations

can be added as attributes for entity fields and groups and

then reproduced when the content belonging to that entity

is displayed in a webpage.

References
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

patterns: elements of reusable object-oriented software,

Pearson Education, 1994.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlissides and P. S. Yu,

"Automatic code generation from design patterns," IBM

systems Journal, vol. 35, no. 2, pp. 151-171, 1996.

[3] G. E. Krasner and S. T. Pope, "A description of the model-

view-controller user interface paradigm in the smalltalk-80

system," Journal of object oriented programming, vol. 1,

no. 3, pp. 26-49, 1988.

[4] A. Leff and J. T. Rayfield, "Web-application development

using the model/view/controller design pattern," in

Proceedings of the Fifth IEEE International Enterprise

Distributed Object Computing Conference (EDOC'01),

2001.

[5] M. Fowler, Patterns of enterprise application architecture,

Addison-Wesley, 2003 (ISBN 978-0-321-12742-6).

[6] S. Kent, "Model driven engineering," Lecture Notes in

Computer Science, vol. 2335, pp. 286-298, 2002.

[7] B. Selic, "The pragmatics of model-driven development,"

IEEE software, vol. 20, no. 5, pp. 19-25, 2003.

[8] I. A. Niaz and J. Tanaka, "Code generation from UML

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

2015 International Journal of Computer Science Issues

statecharts," Intl. Conf. on Software Engineering and

Application (SEA, pp. 315-321, 2003.

[9] S. Kelly and J. P. Tolvanen, Domain-specific modeling:

enabling full code generation, John Wiley & Sons, 2008.

[10] J. Bentley, "Programming pearls: little languages,"

Communications of the ACM, vol. 29, no. 8, pp. 711-721,

1986.

[11] J. H. a. A. M. S. Marjan Mernik, "When and how to develop

domain-specific languages," ACM Computing Surveys, vol.

37, no. 4, pp. 316-344, 2005.

[12] D. C. Fallside and P. Walmsley, "XML schema part 0:

primer second edition," W3C recommendation, 2004.

[13] J. Rumbaugh, I. Jacobson and G. Booch, "Unified Modeling

Language Reference Manual," The. Pearson Higher

Education, 2004.

[14] M. J. Kamfonas, "Recursive hierarchies: The relational

taboo," The Relational Journal, vol. 27, 1992.

[15] R. T. Fielding, "Architectural styles and the design of

network-based software architectures," University of

California, Irvine, 2000.

[16] L. Richardson and S. Ruby, RESTful web services,

Sebastopol: O'Reilly, 2007.

[17] R. Khare and T. Çelik, "Microformats: a pragmatic path to

the semantic web," in Proceedings of the 15th international

conference on World Wide Web, ACM, 2006.

[18] P. Abrahamsson, J. Warsta, M. T. Siponen and J.

Ronkainen, "New directions on agile methods: a

comparative analysis," in Proceedings of the 25th

International Conference on Software Engineering, 2003.

Besnik Selimi received a Master degree in software engineering
(2004) and a Ph.D. degree in computer science from Joseph
Fourier University, Grenoble, France, in 2009. He is currently
assistant professor with South East European University. His
current research interests are in the fields of software engineering,
software testing, web applications and services, etc. He is a
member of ACM.

Artan Luma received a PhD degree in computer sciences from
South East European University, in 2010. He is currently assistant
professor with South East European University. His current
research interests are in cryptography, security, semantic web, etc.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

2015 International Journal of Computer Science Issues

