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Abstract 
We present OMP2HMPP, a tool that, in a first step, 

automatically translates OpenMP code into various possible 

transformations of HMPP. In  a second  step  OMP2HMPP 

executes all  variants to  obtain the  performance and  power 

consumption  of each  transformation. The resulting trade-off can 

be used to choose the more convenient version. 

After  running the  tool  on a set  of codes  from  the Polybench 

benchmark we show  that the  best  automatic transformation is 

equivalent  to  a manual one  done  by  an  expert. Compared 

with original OpenMP code running in 2 quad-core processors 

we obtain an average speed-up of 31× and 5.86× factor in 

operations per watt. 

Keywords: Source to source compiler, GPGPU, HMPP, 

parallel computing, program understanding, compiler 

optimization. 

1. Introduction

High-performance computers are based more and 

more in heterogeneous architectures. The specialization of 

computational units and the adoption of different models 

of computation in various nodes, allow systems to increase 

performance and energy efficiency.  GPGPUs were 

discovered as promising vehicles for general-purpose high-

performance computing and have become a popular part of 

such heterogeneous architectures since these give in most 

of the studied cases a great speed-up compared to parallel 

CPU versions. Accelerators (Nvidia GPU, Intel Xeon 

Phi...) are gaining market share: 28% of systems have one 

or more accelerators installed (2011/2012 survey [16]). 

There is a  continuous increase in  the  number of topics 

that are  interested in  accelerators as  a  way  to  compute 

their calculations faster. However, the effort needed to 

program them might become a hurdle for their wider 

adoption. Some languages have been to offer 

programmability for general purpose computing i.e. 

Compute Unified Device Architecture (CUDA) [20], 

HMPP [[17], [5]], RapidMind [15], PeakStream [22] or, 

CTM [19].  However, GPGPUs programming alternatives 

are complex and error-prone, compared to programming 

general purpose CPUs and parallel programming models 

such as OpenMP [22].  In  this paper we present automatic 

transformation tool  on  the  source code  oriented to  work 

with General Propose  Units for  Graphic 

Processing(GPGPUs). This new tool (OMP2HMPP) is in 

the category of source-to-source code transformations and 

seek to facilitate the generation of code for GPGPUs. 

OMP2HMPP is able to run specific sections on 

accelerators, so that the program executes more efficiently 

on heterogeneous platform. OMP2HMPP was initially 

developed for the systematic exploration of the large set of 

possible transformations to determine the optimal one in 

terms performance (both energy and time consumption). 

OMP2HMPP grows upon with knowledge of the existing 

alternatives for GPGPUs programming, studying the use of 

the most promising for its output (HMPP). Since HMPP 

offers the easiest way to apply the migration because is a 

directive-based language. Meta-information added in 

the  source code  of the  application does  not  change 

the  semantic of the  original code  thus simplifying the 

kernel creation. Additionally it offers an incremental way 

of migrating applications by first declaring and generating 

kernels of critical to later manage data transfers and 

finishing by optimizing kernel performance and data 

synchronization. They  address the  remote execution 

(RPC) of functions or regions of code  on GPUs and  

many-core accelerators as  well  as  the  transfer of data to 

and  from  the  target device  memory. In addition, most of 

the other alternatives rely on a stream programming style 

but a program written for a given platform cannot run on 

another one.  HMPP takes a radically different approach. 

A HMPP application can be compiled with an off-the-shelf 

compiler and run without any specific run-time to produce 

a conventional native binary. Moreover, thanks to its 

dynamic linking mechanism, a HMPP application is able to 

make use of either a new accelerator or an improved 

codelet without having to recompile the application source. 

This way we aim at preserving legacy codes and insulate 

them from frequent hardware platform changes that tend to 

characterize hybrid multi-cores, e.g. fast GPU architecture 

evolution. As we aforementioned, the  existing 

programming alternatives(HMPP inclusive) for GPGPUs 
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programming, are  still  more  complex,  due  to the  

hardware complexity, than programming general-purpose 

CPUs and  parallel programming models such  as 

OpenMP. For this reason OMP2HMPP is thought to avoid  

this task to the  programmer. To simplify the 

transformation task, OMP2HMPP will reuse existing 

source codes that were designed to describe parallelism 

using OpenMP directives. High-performance computing 

(HPC) community which has been commonly using a 

couple of standards: MPI and OpenMP. OpenMP is better 

oriented to support of multi-platform shared memory 

parallel programming in C/C++.  It defines an interface for 

parallel applications on wide platforms range: form the 

desktop to the supercomputer. As a natural extension, 

OpenMP could be combined with the use of HMPP to 

study the performance and energy efficiency trade-off. 

On those bases, we developed OMP2HMPP tool 

which is able to: 

—Run specific sections of the proposed code on 

accelerators. OMP2HMPP combines the use of CPU 

parallel code and GPU so that the program can execute 

more efficiently on a heterogeneous platform. 

—Do systematic exploration of the large set of 

possible transformations from pragma-annotated code to 

determine the optimal transformation. 

—Introduce GPGPU acceleration that could not 

be optimal but would provide a good trade-off between 

performance and development effort, avoiding going 

through new learning curve. It will give a comparison of 

all the possible combinations of OpenMP and HMPP 

configurations, in terms of time and energy spent executing 

each code section. 

OMP2HMPP is a Source to Source compiler (S2S) 

based on BSCs Mercurium framework [18] that generates 

HMPP code from OpenMP. Mercurium [3] gives us a 

source-to-source compilation infrastructure aimed at fast 

prototyping and supports C and C++ languages. This 

platform is mainly used in the Nanos environment to 

implement OpenMP but since it is quite extensible it has 

been used to implement other programming models or 

compiler transformations. 

Extending Mercurium is achieved using a plugin 

architecture, where plugins represent several phases of the 

compiler. These plugins are written in C++ and 

dynamically loaded by the compiler according to the 

selected configuration. Code transformations are 

implemented to the source code (there is no need to know 

or modify the internal syntactic representation of the 

compiler). 

OMP2HMPP uses Mercurium to implement our S2S 

transformation phases, providing OMP2HMPP with an 

abstract representation of the input source code: the 

Abstract Syntax Tree (AST). AST provides an easy access 

to source code structure representation, the table of 

symbols and the context of these. 

1.1 HMPP Directives 

The  proposed tool  is  able  to  combine the  use  of the  

following  HMPP directives with the  original 

OpenMP directives: 

—Callsite: Specifies the use of a codelet at a given 

point in the program. Related data transfers and 

synchronization points that are inserted elsewhere in the 

application have to use the same label. 

—Codelet:  Specifies that a version of the function 

following must be optimized for a given hardware. 

—Group:  Allows the declaration of a group of 

codelet. 

—Advanced Load: Uploads data before the 

execution of the codelet. 

—Delegate Store:  Represents the opposite of the 

advancedload directive in the sense that it downloads 

output data from the HWA to the host. 

—Synchronize:  Specifies to wait until the 

completion of an asynchronous callsite execution. 

—Release:  Specifies when to release the HWA for a 

group or a stand-alone codelet. 

—No Update:  This property specifies that the data is 

already available on the HWA and so that no transfer is 

needed. When this property is set, no transfer is done on 

the considered argument. 

—Target: Specifies one or more targets for which the 

codelet must be generated. It means that according to the 

target specified, if the corresponding hardware is available 

AND the codelet implementation for this hardware is also 

available, this one will be executed. Otherwise, the next 

target specified in the list will be tried. OMP2HMPP 

always use CUDA since we will test it in a server without 

OpenCL support. 

With these directives OMP2HMPP is able to create a 

version that in the most of the cases rarely will differs from 

a hand-coded HMPP version of the original problem. 

 

1.2 Related Work 

Dominant GPU programming models have 

traditionally been CUDA and OpenCL [8] Working Group 

2008.In recent years; many source-to-source compiler 

alternatives have been proposed to overcome the GPGPU 

programming complexity. Among them, some that are 

similar to the tool proposed in this paper are presented for 

discussion. Opposite to OMP2HMPP, the following 

methods produce direct transformation to CUDA language, 

not to HMPP, which means that the CUDA programming 

complexity is directly exposed to the final user. 
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Some of the proposals extend, in one way or another, the 

current standards such a C/C++, OpenMP, etc.  2014]. On 

the other hand, there are proposals that do not require any 

language extension to transform the source code directly 

from CPU to GPUs. 

One of the examples that include language extensions 

is proposed in [21].  CAPS, CRAY, Nvidia and PGI, 

(members of the OpenMP Language Committee) published 

OpenACC in November 2011.  OpenACC has been 

proposed as standard for directive-based standard 

programming as it contributes to the specification of 

OpenMP for accelerators. In the same way, but not with 

the same consensus that OpenACC, in [10], a 

programming interface called OpenMPC is presented. This 

paper shows and extensive analysis of the actual state of 

the art in OpenMP to CUDA source-to-source compilers 

and CUDA optimizer. OpenMPC provides an abstraction 

of the complexity of CUDA programming model and 

increases its automation though user-assistance tuning 

system. Both, OpenMPC and OpenACC, require time to 

understand the new proposed directives, and to manually 

optimize the data transfer between CPU and GPU.  

Opposite to both, OMP2HMPP adds just two new 

OpenMP directives and the programmer can forgets to deal 

with new languages and their underlying optimization. 

Another option is hiked directive-based language [6], 

which is a set of directives for CUDA computation and 

data attributes in a sequential program. However, hiked has  

the  same programming paradigm than CUDA; even  

though it hides the  CUDA language syntax, the  

complexity of the  CUDA  programming and  memory 

model  is directly exposed to programmers.  Moreover, in 

contrast to OMP2HMPP, hiked does not provide any 

transfer optimization. Finally [11] and [1], propose an 

OpenMP compiler for hybrid CPU/GPU computing 

architecture. In these papers they propose to add a 

directive to OpenMP in order to choose where the 

OpenMP block must be executed (CPU/GPU). The 

process is full hide to the programmer and is a direct 

translated to CUDA. Again, it does not provide any 

transfer optimization. There are fewer proposals that try to 

directly transform C/C++ code to CUDA without the need 

of any new language extension. [4] present a tool  that uses  

unimodular loop transformation theory to  analyze the  

loops  that could  be  transformed to  work  in  parallel 

kernels either OpenMP or CUDA trough ROSE[14] 

compiler. Par4All [1] transform codes originally wrote in 

C or FORTRAN to OpenMP, CUDA or OpenCL. Par4All 

uses polyhedral model for analysis and transforms C/C++ 

source code and adds OpenMP directives where the 

program thinks that can be useful. This transformation 

allows the re-factorization of the newly created OpenMP 

blocks to GPGPUs kernels by moving OpenMP directives 

to CUDA language. However, this transformation does not 

take into account the kernel data-flow context and this lead 

to non-optimal results in data-transfers. Nevertheless, both 

tools tool, and the tools studied in [7] could be useful to 

transform sequential codes to be input codes in 

OMP2HMPP tool. 

For  source-to-source compiler infrastructure, there are  

many possible solutions as  LLVM  [9], PIPS , Cetus, 

ROSE  and  the  used  Mercurium since it gives us support 

to C/C++ source codes is more friendly to work with his 

intermediate representation trough an well documented 

API that allows extensions in that one as was demonstrated 

in [12] and [13]. 

2. S2S Transformations 

OMP2HMPP implementation is a pipeline of S2S 

compiler transformations that transform OpenMP code to 

HMPP. This pipeline has two compiler phases to devote to 

following transformation steps (Outline and Inline). 

The first phase (outline phase) transforms pragma 

OpenMP block into HMPP codelet and callsite. In order to 

solve problems that can appear related to the  use of global 

variables inside HMPP kernels and with the  call of 

functions not allowed in the  device, the  second compiler 

phase will check the  scope of all the  variables used  in 

codelet and, at the same time will transform function calls  

doing  an inline inside the  codelet (inline phase). Figure 1 

shows the work-flow of the transformation process. This 

procedure is detailed in the following subsections. 

 

 
Figure 1: S2S Transformation Phases 
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OMP2HMPP generates multiple implementations 

which differ in the use of different HMPP pragma 

parameter configurations, then compiles and executes them 

collecting the elapsed time and energy consumed in every 

execution. Results can be plotted in order to obtain the 

trade-off curves that will allow obtaining the optimal 

working point. These processes performed after source to 

source transformation process are described in Figure 2. 

 

Figure 2: S2S Transformation Process 

2.1 Outline Phase 

The outline phase is responsible of the inline 

transformation (transforming OpenMP blocks to HMPP 

kernels and calls). Such phase find all the OpenMP 

instructions in the input code, and then detect the start and 

end of the pragma block.  

Once this detection is finished, the outline phase 

declares a function with the same functionality of the 

pragma block. Table 1 gives an example of the 

transformation implemented in this phase. The left side 

shows the original code, while the right side shows the 

code after outlining transformations. 

 

The  outline phase is divided in two stages: The  first  

one  is named compilation stage, and  is liable for the  

source-to-source transformation, the  understand of the  

programmer source code and, the  generation of different 

versions. The second stage is called optimization, and is 

devoted to improvement of the code proposed by the 

programmer. 

 

2.1.1 Compilation  

 

The compiler has to deal with all the OpenMP 

standard directives i.e. shared, private, reduction, and so 

on. There are  two  possible scenarios, OpenMP blocks  

can  be expressed as simple blocks  where OMP2HMPP 

tool  will  transform this blocks  into  HMPP codelet, or a  

group of blocks where the  compilation will transform 

OpenMP parallel blocks either into HMPP codelet groups, 

and  therefore share variables between these codelet 

groups, or will divide  in simple blocks  being  able to  

specify  individually where these blocks  will  be  

computed as  is  shown in  Table 2,  exploring the 

capabilities of the  heterogeneous architecture. 

Each of the  found  OpenMP blocks  will  be 

transformed generating a new  source code version, and 

moreover OMP2HMPP explore all the  possible HMPP 

configurations that can be used  in these blocks, that 

implies that the  number of generated versions will grow 

exponentially as we have more  OpenMP blocks  to 

transform. To solve that, we create two new OpenMP 

directives that give to the user the possibility to generate 

the final chosen version in doing smaller explorations of all 

the possible versions that can be generated. These 

directives allow the user to explore the generated versions 

block by block. The set of new directives are described in 

the following list and exemplified in Figure 3. 

Table 1: S2S Transformation Process 

OPENMP HMPP 
int main() 

{ 

 ... 

#pragma omp parallel for check 

 for(i=0;i<row;++i){ 

  for(j=0);j<col;++j){ 

   result[i][j] = 0; 

   array[i*j] = mat[i][j]; 

   for(k=0;k<row;++k){ 

    a=0; 

    while(a<10) { 

     result[i][j] += mat1[i][k]*mat2[k][j]*array[i*j]; 

     a++ 

    } 

   } 

  } 

 } 

... 

} 

#pragma hmpp _intr_for__ol_3_main codelet, target = CUDA, 

            args[result,array].io=inout, args[array].size={row*col}, & 

#pragma hmpp & args[*].transfer=auto 

void _intr_for__ol_3_main(int i, int row, int j, int result[row][col], 

     int *array, int mat1[row][col], int k, int a, int mat2[row][col]) 

{ 

for(i=0;i<row;++i){ 

  for(j=0);j<col;++j){ 

   result[i][j] = 0; 

   array[i*j] = mat[i][j]; 

   for(k=0;k<row;++k){ 

    a=0; 

    while(a<10) { 

     result[i][j] += mat1[i][k]*mat2[k][j]*array[i*j]; 

     a++ 

}}}}} 

 

int main() { 

... 

#pragma hmpp _inst_for__ol_3_main callsite 

_instr_for__ol_3_main(i,row,j,col,result,array,mat1,k,a,mat2); 

... 

} 
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Figure 3: New Directives Explanation 

 

—CHECK: The  OpenMP blocks  with a  pragma set  

#pragma omp  parallel for check,  will  be transformed 

using all  the  HMPP possible configurations, including the  

no-transformation, which  will keep  the  actual OpenMP 

block as in the  original code. 

—FIXED: The programmer will fix a transformation 

for a certain block by giving information flags for the next 

execution of OMP2HMPP. I.e. #pragma omp parallel for 

fixed (10, 1, 0). 

 

The programmer can explore all the possible 

configurations of HMPP for a certain OpenMP block, and 

with the report generated by OMP2HMPP decide which is 

the best configuration, as will be explained in section 3. 

This configuration could be established for the following 

executions of OMP2HMPP using the FIXED directive. 

FIXED directive is full complemented with a set of three 

flags that are described in Figure 4. This flags have an 

internal binary representation that we transform into 

decimal one in order to compress the length in OpenMP 

pragma instruction specification. 

Table 2: OpenMP Block Division 

OPENMP HMPP 
int main() 

{ 

 ... 

#pragma omp parallel shared(myTableOut,myTable) check 

  for (; (index < iterations); index++ ) 

    {  

    #pragma omp for 

    for (i=SPANI; i <  WORKSIZE - SPANI; i++) { 

      for (j=SPANJ; j < LINESIZE - SPANJ; j++) { 

             ... 

      } 

    } 

      theDiffNorm = 0.0; 

      diffsum=theDiffNorm; 

#pragma omp for reduction(+:diffsum) 

     for (i = 1;i < (1 + MAXM + 1) - 1; i++) { 

        for (j = 1;j < (1 + MAXN + 1) – 1;j++) { 

           … 

       } 

     } 

theDiffNorm=diffsum; 

    } 

#pragma omp parallel for reduction(+:diffsum) fixed(10,1,0) 

    for (i = 1;i < (1 + MAXM + 1) - 1; i++){ 

        for (j = 1;j < (1 + MAXN + 1) - 1;j++){ 

           ... 

        } 

    }   

displayRegion( myTable); 

  return 0; 

} 

int main() 

{ 

#pragma hmpp <group1> group, target=CUDA 

#pragma hmpp <group1> mapbyname, myTableOut 

... 

#pragma hmpp <group1> _instr_for4_ol_13_main advancedload, 

args[myTableOut], args[myTableOut].addr="myTableOut" 

    int a = 0; 

    double diffsum = 0.0; 

    for (;(index < iterations);index++)  { 

#pragma hmpp <group1> _instr_for4_ol_13_main callsite,  

                     args[myTableOut].noupdate=true 

        _instr_for4_ol_13_main(i, j, a, myTable, myTableOut); 

        theDiffNorm = 0.0; 

        diffsum = theDiffNorm; 

#pragma hmpp <group1> _instr_for4_ol_13_main delegatedstore, 

               args[myTableOut], 

args[myTableOut].addr="myTableOut" 

#pragma omp parallel for reduction(+:diffsum) shared(myTable) 

private(i, j) 

        for (i = 1; i < (1 + 5000 + 1) - 1; i++) { 

            for (j = 1; j < (1 + 5000 + 1) - 1; j++) { 

                ... 

            } 

        } 

        theDiffNorm = diffsum; 

    } 

#pragma hmpp <group1> _instr_for4_ol_20_main callsite, 

                     args[myTableOut].noupdate=true 

    _instr_for4_ol_20_main(i, j, myTableOut, myTable, a, &diffsum); 

    displayRegion(myTable); 

#pragma hmpp <group1> release 

    return 0; 

} 

 

Table 3: OpenMP Reduction Directive 

OPENMP HMPP 
#pragma omp parallel for reduction(+:diffsum) shared(myTable) check 

for (i = 1;i < (1 + MAXM + 1) - 1; i++) 

{ 

  for (j = 1;j < (1 + MAXN + 1) - 1;j++) 

  { 

    double diff = myTableOut[i][j] - myTable[i][j]; 

    double diffmul = diff * diff; 

    diffsum += diffmul; 

    myTable[i][j] = myTableOut[i][j]; 

  } 

} 

#pragma hmpp _instr_for__ol_75_main codelet, target = CUDA,  

             args[myTable].io=inout, args[myTableOut].io=in,  

      args[diffsum_reduced].io=inout, 

args[diffsum_reduced].size={1} 

void _instr_for__ol_75_main(int i, int j, double 

myTableOut[5002][5002], double myTable[5002][5002],  

       double *diffsum_reduced) 

{ 

    double diffsum = *diffsum_reduced; 

#pragma hmppcg gridify(i, j), reduce(+:diffsum) 

    for (i = 1; i < (1 + 5000 + 1) - 1; i++) 

    { 

        for (j = 1; j < (1 + 5000 + 1) - 1; j++) 

        { 

            double diff = myTableOut[i][j] - myTable[i][j]; 

            double diffmul = diff * diff; 

            diffsum += diffmul; 

            myTable[i][j] = myTableOut[i][j]; 

        } 

    } 

    *diffsum_reduced = diffsum; 

} 
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Figure 4: FIXED Directive Flags Explanation 

The detection for each variable being passed as value, 

copy or reference (see example in III) allows 

distinguishing the context of the variables inside every 

block.  This allows the exploration of all the possible 

transformations for one OpenMP block OMP2HMPP. 

Also, OMP2HMPP has to treat in different ways array and 

matrix parameter passing .HMPP distinction requirements 

impose detecting when both of them are used, as shown in 

me. 

The compilation stage take more control of how the 

outlived kernel is divided detecting the variables that 

define the two outer for loops and, using this information, 

define the grid division with the use of the hmppcg gridify 

directive. We illustrate an example of this case in Table 3. 

As aforementioned, OMP2HMPP deals with all the  

possible OpenMP directives, to show an example of this 

we shown how it works with the  use  of the  reduction 

directive, which  is a safe  way  of joining work  from  all  

threads  after construct. OMP2HMPP simulate the pass by 

reference with variable in reduction directive diffsum. The 

result of this transformation is shown in Table 3.  

Table 5: Example of Contextual Analysis with noUpdate directive calls. 

OPENMP HMPP 
int main() 

{ 

  int index =0; 

  double theDiffNorm = 1; 

  double RefDiffNorm = 0; 

  int iterations = 99; 

  int worksize=WORKSIZE, linesize=LINESIZE; 

  int i,j,o,a; 

  double diffsum,diff,diffmul; 

  init( myTable,  myTableOut); 

  for (index=0; (index < iterations); index++ ) 

    {  

  #pragma omp parallel for shared(myTableOut) check 

    for (i=SPANI; i <  WORKSIZE - SPANI; i++) { 

      for (j=SPANJ; j < LINESIZE - SPANJ; j++) { 

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ])  

                +sin(myTable[i][j+SPANJ]) 

+cos(myTable[i+SPANI][j]); 

 myTableOut[i][j] = neighbor/3; 

      } 

    } 

      theDiffNorm = 0.0; 

      diffsum=theDiffNorm; 

    #pragma omp parallel for reduction(+:diffsum) shared(myTable) check 

      for (i = 1;i < (1 + MAXM + 1) - 1; i++) 

 { 

     for (j = 1;j < (1 + MAXN + 1) - 1;j++) 

     { 

  diff = myTableOut[i][j] - myTable[i][j]; 

  diffmul = diff * diff; 

  diffsum += diffmul; 

  myTable[i][j] = myTableOut[i][j]; 

     } 

 } 

 theDiffNorm=diffsum; 

 

    } 

 displayRegion( myTable); 

  return 0; 

} 

int main() 

{ 

#pragma hmpp <group0_12> group, target=CUDA 

#pragma hmpp <group0_12> mapbyname, myTable,myTableOut 

    int index = 0; 

    double theDiffNorm = 1; 

    double RefDiffNorm = 0; 

    int iterations = 99; 

    int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1); 

    int i, j, o, a; 

    double diffsum, diff, diffmul; 

    init(myTable, myTableOut); 

#pragma hmpp <group0_12> _instr_for12_ol_12_main advancedload, 

args[myTable, myTableOut], args[myTable].addr="myTable", 

    args[myTableOut].addr="myTableOut" 

    for (index = 0; 

        (index < iterations); 

        index++) 

    { 

#pragma hmpp <group0_12> _instr_for12_ol_12_main callsite, 

                          args[myTable, myTableOut].noupdate=true 

        _instr_for12_ol_12_main(i, j, myTable, myTableOut); 

        theDiffNorm = 0.0; 

        diffsum = theDiffNorm; 

#pragma hmpp <group0_12> _instr_for12_ol_17_main callsite,  

                  args[myTableOut, myTable].noupdate=true 

        _instr_for12_ol_17_main(i, j, diff, myTableOut, myTable, 

diffmul, &diffsum, a); 

        theDiffNorm = diffsum; 

    } 

#pragma hmpp <group0_12> _instr_for12_ol_17_main delegatedstore, 

                         args[myTable], args[myTable].addr="myTable" 

    displayRegion(myTable); 

#pragma hmpp <group0_12> release 

    printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm, 

RefDiffNorm); 

    return 0; 

} 

 

Table 4: Example of Contextual Analysis with noUpdate directive codelet 

HMPP 

 
#pragma hmpp <group0_12> _instr_for12_ol_12_main codelet, args[myTable, myTableOut].io=in 

void _instr_for42_ol_12_main(int i, int j, double myTable[5002][5002], double myTableOut[5002][5002]) 

{ 

#pragma hmppcg gridify(i, j) 

    for (i = 1; 

        i < (1 + 5000 + 1) - 1; 

        i++) 

    { 

        for (j = 1; 

            j < (1 + 5000 + 1) - 1; 

            j++) 

        { 

            double neighbor = cos(myTable[i - 1][j]) + sin(myTable[i][j - 1]) + sin(myTable[i][j + 1]) + cos(myTable[i + 1][j]); 

            myTableOut[i][j] = neighbor / 3; 

        } 

    } 

} 
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2.1.2 Optimization 

 

This stage improves the code proposed by the 

programmer by exploiting some context situations. The 

optimization reduces the number of transfers between CPU 

and GPU understanding the variable context of the 

OpenMP kernels. 

In order to implement the optimization task, 

OMP2HMPP must perform an accurate contextual analysis 

of the original code. For that, OMP2HMPP does a 

contextual information study, taking care of each array or 

matrix variables needed in each of the marked OpenMP 

kernels that have to be transformed. Through this analysis 

OMP2HMPP is able to understand the following variable 

context: 

—determine the kind access (write/read) 

—Determine the host where is used (CPU/GPU) 

—The scope of the instruction where the variable is 

used (Loop detection) 

 

We show a simple example of that context 

understanding in Figure 5. Variables A and C are used 

inside the OpenMP block. OMP2HMPP uses that 

information to select the best use of HMPP directives that 

minimize the number of data transfers. In Figure 5, 

OMP2HMPP has two variables to analyze A and C. In the  

case  of A, A has  to be uploaded to GPU,  but  is not  

necessary to download it after the kernel call  because 

there is no read of that variable until the  end  of the  code. 

In  the case  of variable C, C has  to be downloaded from  

GPU  to CPU,  but  there is no need  to upload that to GPU  

since  the kernel do not do a read of C inside. With that 

information, OMP2HMPP will use an advancedload in the 

case of A and will put that directive as close as possible to 

the last  rite expression, to optimize the data transfer and  

improve the  performance of the  generated code as  shown 

in Figure 6a.  In the case of C, OMP2HMPP will put a 

delegatestore directive, as far as possible of the kernel call, 

and that will increase the performance of the generated 

code, as is shown in Figure 8a. Figure 6b and Figure 8b 

illustrate the use of a bad transfer policy in the same 

problems. 

 

Table 6: Loop Dealing Example 

OPENMP HMPP 
int main() 

{ 

     

  int index =0; 

  double theDiffNorm = 1; 

  double RefDiffNorm = 0; 

  int iterations = 99; 

  int worksize=WORKSIZE, linesize=LINESIZE; 

  int i,j,o,a; 

  double diffsum,diff,diffmul; 

  init( myTable,  myTableOut); 

  for (index=0; (index < iterations); index++ ) 

    {  

  #pragma omp parallel for shared(myTableOut)  

    for (i=SPANI; i <  WORKSIZE - SPANI; i++) { 

      for (j=SPANJ; j < LINESIZE - SPANJ; j++) { 

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ]) 

                +sin(myTable[i][j+SPANJ]) 

+cos(myTable[i+SPANI][j]); 

 myTableOut[i][j] = neighbor/3; 

      } 

    } 

      theDiffNorm = 0.0; 

      diffsum=theDiffNorm; 

      a=0; 

    #pragma omp parallel for reduction(+:diffsum) shared(myTable) check 

      for (i = 1;i < (1 + MAXM + 1) - 1; i++) 

 { 

     for (j = 1;j < (1 + MAXN + 1) - 1;j++) 

     { 

  diff = myTableOut[i][j] - myTable[i][j]; 

  diffmul = diff * diff; 

  diffsum += diffmul; 

                  a=2; 

  myTable[i][j] = myTableOut[i][j]; 

     } 

 } 

 theDiffNorm=diffsum; 

 

    } 

 displayRegion( myTable); 

  return 0; 

} 

int main() 

{ 

#pragma hmpp <group0_46> group, target=CUDA 

#pragma hmpp <group0_46> mapbyname, myTable 

    int index = 0; 

    double theDiffNorm = 1; 

    double RefDiffNorm = 0; 

    int iterations = 99; 

    int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1); 

    int i, j, o, a; 

    double diffsum, diff, diffmul; 

    for(int l=0;l<20;l++) { 

        init(myTable, myTableOut); 

    } 

#pragma hmpp <group0_46> _instr_for46_ol_17_main advancedload, 

  args[myTable], args[myTable].addr="myTable" 

    for (index = 0;(index < iterations); 

        index++) 

    { 

#pragma omp parallel for shared(myTableOut) private(i,j) 

        for (i = 1;  i < (1 + 5000 + 1) - 1;  i++) 

        { 

            for (j = 1; j < (1 + 5000 + 1) - 1; j++) 

            { 

                double neighbor = cos(myTable[i - 1][j])  

                  + sin(myTable[i][j - 1])  

    + sin(myTable[i][j + 1])  

    + cos(myTable[i + 1][j]); 

                myTableOut[i][j] = neighbor / 3; 

            } 

        } 

        theDiffNorm = 0.0; 

        diffsum = theDiffNorm; 

        a = 0; 

#pragma hmpp <group0_46> _instr_for46_ol_17_main callsite, 

    args[myTable].noupdate=true, 

    asynchronous 

        _instr_for46_ol_17_main(i, j, diff, myTableOut, myTable,                     

diffmul, &diffsum, a); 

#pragma hmpp <group0_46> _instr_for46_ol_17_main synchronize 

#pragma hmpp <group0_46> _instr_for46_ol_17_main delegatedstore, 

     args[diffsum_reduced], 

     

args[diffsum_reduced].addr="&diffsum" 

#pragma hmpp <group0_46> _instr_for46_ol_17_main delegatedstore,  

     args[myTable],  

args[myTable].addr="myTable" 

        theDiffNorm = diffsum; 

    } 

    displayRegion(myTable); 

#pragma hmpp <group0_46> release 

    printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm, 

RefDiffNorm); 

    return 0; 

} 
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Figure 5: Context Analysis Example 

 
(a) 

 
(b) 

Figure 6: Advanced Load Directive Optimization. (a) Variables are loded 

as near as possible of the last CPU write. (b) Variables are loaded when 

kernel is invoked. 

Moreover, OMP2HMPP can deal with context 

situations in which the source code contains nested loops.  

OMP2HMPP determines if an operation on a variable is 

made inside a loop and then adapts the data transfer to the 

proper context situation Figure 7 and Figure 9 illustrate an 

example with possible load the value of the variable a is 

required to compute the value of C. Since the last write in 

CPU of A is inside a loop with a different nested level than 

the GPU block, OMP2HMPP has to backtrack the nesting 

of loops to find the block shared by both loops.  Then, 

similar than Figure 7, OMP2HMPP optimizes the load of 

A adding the advancedload directive as close as possible to 

the end of the loop. We could have the inverse problem 

changing the block that is computed in GPU, as shown in 

Figure 9. In this Figure, the result of the GPU kernel is 

needed in CPU to compute C that is not at the same loop 

level.  In that case,  the  optimum way  to add  the  

delegatestore directive, will be just before  the  start of the  

nested loops where the  computation of C is located.  

 

 

Figure 7: Data Transfer in Loops Example 

Table 7: Example of Contextual Analysis with noUpdate directive calls. 

OPENMP HMPP 
int main() 

{ 

  int index =0; 

  double theDiffNorm = 1; 

  double RefDiffNorm = 0; 

  int iterations = 99; 

  int worksize=WORKSIZE, linesize=LINESIZE; 

  int i,j,o,a; 

  double diffsum,diff,diffmul; 

  init( myTable,  myTableOut); 

  for (index=0; (index < iterations); index++ ) 

    {  

  #pragma omp parallel for shared(myTableOut) check 

    for (i=SPANI; i <  WORKSIZE - SPANI; i++) { 

      for (j=SPANJ; j < LINESIZE - SPANJ; j++) { 

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ])  

                +sin(myTable[i][j+SPANJ]) 

+cos(myTable[i+SPANI][j]); 

 myTableOut[i][j] = neighbor/3; 

      } 

    } 

      theDiffNorm = 0.0; 

      diffsum=theDiffNorm; 

    #pragma omp parallel for reduction(+:diffsum) shared(myTable) check 

      for (i = 1;i < (1 + MAXM + 1) - 1; i++) 

 { 

     for (j = 1;j < (1 + MAXN + 1) - 1;j++) 

     { 

  diff = myTableOut[i][j] - myTable[i][j]; 

  diffmul = diff * diff; 

  diffsum += diffmul; 

  myTable[i][j] = myTableOut[i][j]; 

     } 

 } 

 theDiffNorm=diffsum; 

 

    } 

 displayRegion( myTable); 

  return 0; 

} 

int main() 

{ 

#pragma hmpp <group0_12> group, target=CUDA 

#pragma hmpp <group0_12> mapbyname, myTable,myTableOut 

    int index = 0; 

    double theDiffNorm = 1; 

    double RefDiffNorm = 0; 

    int iterations = 99; 

    int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1); 

    int i, j, o, a; 

    double diffsum, diff, diffmul; 

    init(myTable, myTableOut); 

#pragma hmpp <group0_12> _instr_for12_ol_12_main advancedload, 

args[myTable,myTableOut], args[myTable].addr="myTable", 

    args[myTableOut].addr="myTableOut" 

    for (index = 0; 

        (index < iterations); 

        index++) 

    { 

#pragma hmpp <group0_12> _instr_for12_ol_12_main callsite, 

                          args[myTable, myTableOut].noupdate=true 

        _instr_for12_ol_12_main(i, j, myTable, myTableOut); 

        theDiffNorm = 0.0; 

        diffsum = theDiffNorm; 

#pragma hmpp <group0_12> _instr_for12_ol_17_main callsite,  

                  args[myTableOut, myTable].noupdate=true 

        _instr_for12_ol_17_main(i, j, diff, myTableOut, myTable, 

diffmul, &diffsum, a); 

        theDiffNorm = diffsum; 

    } 

#pragma hmpp <group0_12> _instr_for12_ol_17_main delegatedstore, 

                         args[myTable], args[myTable].addr="myTable" 

    displayRegion(myTable); 

#pragma hmpp <group0_12> release 

    printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm, 

RefDiffNorm); 

    return 0; 

} 
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(a) 

 
(b) 

Figure 8: Delegate Store Directive Optimization. (a) Variables are 

download as far as possible of the kernel finish, next to the first CPU 

read. (b) Variables are downloaded when kernel finish. 

Table 6 shows a more complex example of the loop 

context understanding.  OMP2HMPP is able to understand 

more complex context inside loops situations decreasing in 

these unnecessary transfer repetitions between CPU→GPU 

and GPU→CPU. OMP2HMPP understands that a previous 

read inside the same loop context of the marked OpenMP 

block to transform is at the same time the next read by 

doing loop unrolling. This  ability is shown in the  first  

Advanced Load  HMPP directive of Table 5, which  is put  

outside the  loop where is the  last use  of myTable and  

myTableOut. This also affects the other appearances of the 

same directives in Table 6. In these cases  OMP2HMPP 

avoids to upload the variable myTable in each  iteration of 

the  loop, since  the  OpenMP block  marked to be 

transformed is inside a loop and  the  previous CPU 

instructions are  reading this variable. Table 5 also 

illustrates how OMP2HMPP downloads this variable from 

GPU to CPU after finishing of the current iteration in order 

to have the update its value, which has been modified in 

GPU. 

 
Figure 9: Data Transfer in Loops Example 

We extended the problem to have a better 

Table 8: Output CSV Spreadsheet example from OMP2HMPP using Jacobi Source code. 

Version/Measure Signature Time Expended(ms.) Energy Consumption(J.) 

Original(OpenMP)  0, 0, 0 59500 17428 
Adv_loaddelStoreNoUpdate... 9, 1, 0 9611 3401,55 
Adv_loadRel... 11, 3, 0 10530,2 3819,2 
Adv_loadRel... 11, 1, 0 10572,4 4109,9 
Adv_loadRel... 10, 1, 0 10844,4 3974,2 
... ... ... ... 

 

Table 9: Inline Transformation. 

OPENMP HMPP 
void g(int &a,int b) 

{ 

    int r=2; 

    int c=1; 

    a=a+r+2; 

    int ret = a+b+c+r*2; 

} 

int f(int a) 

{ 

    return a+1; 

 

} 

 

int main() 

{ 

  int l; 

  int x=2; 

  l=f(1)+f(2)+g(x,6); 

  l=l*g(x,2); 

  return 1; 

} 

int deletedFunctionBodyNamed_g = 1; 

int deletedFunctionBodyNamed_f = 1; 

int main() 

{ 

    int l; 

    int x = 2; 

    int _p_0_f_0 = 1; 

    int _return_0; 

    { 

        int ret_f0; 

        ret_f0 = _p_0_f_0 + 1; 

        _return_0 = ret_f0; 

    } 

    int _p_0_f_1 = 2; 

    int _return_1; 

    { 

        int ret_f1; 

        ret_f1 = _p_0_f_1 + 1; 

        _return_1 = ret_f1; 

    } 

    int *_p_0_g_2 = &x; 

    int _p_1_g_2 = 6; 

    int _return_2; 

    { 

        int r = 2; 

        int c = 1; 

        *_p_0_g_2 = *_p_0_g_2 + r + 2; 

        int ret = *_p_0_g_2 + _p_1_g_2 + c + r * 2; 

        int ret_g2; 

        ret_g2 = ret; 

        _return_2 = ret_g2; 

    } 

    l = _return_0 + _return_1 + _return_2; 

    int *_p_0_g_3 = &x; 

    int _p_1_g_3 = 2; 

    int _return_3; 

    { 

        int r = 2; 

        int c = 1; 

        *_p_0_g_3 = *_p_0_g_3 + r + 2; 

        int ret = *_p_0_g_3 + _p_1_g_3 + c + r * 2; 

        int ret_g3; 

        ret_g3 = ret; 

        _return_3 = ret_g3; 

    } 

    l = l * _return_3; 

    return 1; 

} 
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understanding of the use of the contextual information of 

the use of group, mapbyname, noupdate or asynchronous 

directives. After  the  use  of any  variable by  the  GPU,  if 

that variable is  not  written in  CPU  before  the  next  read 

in  GPU,  the  optimization phase will keep  the  variable in 

GPU  without downloading it to CPU  and  automatically 

create a group of HMPP codelet using group directive, 

even  if it was  not  specified in  the  original OpenMP 

source code. The creation of this group will represent that 

both kernels can share this variable by just load transfer 

CPU→GPU and one download transfer GPU→CPU with 

the use of mapbyname directive. OMP2HMPP includes 

option to use asynchronicity in kernel invocation when that 

can be beneficial. OMP2HMPP extracts information of the 

next usage of the kernel variables and adds the 

asynchronous HMPP directive taking that use in account. 

Finally, noupdate directive will be used  to keep  variables 

in  GPU  that are  not  updated in  CPU  as  shown in  

Table 5 where we illustrate the  kernel call  and in  Table 4 

where we  show the  codelet transforming these variables 

into  input parameters. This transformation keeps the 

variables myTable and myTableOut in GPU and just does 

one load/download transfer. 

2.2 Inline Phase 

This phase takes any function call in the input code 

and then detects his body declaration identifying the 

declaration of the needed function parameters, to create a 

block of code that has the same meaning. At the same time 

this phase is responsible for checking the scope of the 

variable to detect any wrong usage of global variables 

inside HMPP codelet.  

We can see in Table 9 an example of this procedure. 

Left sideshows the original code, and the right one the 

code after inline transformations. 

We add a declaration of all the needed parameters 

inline is added to change their name inside this block by 

the pattern name p x f y, where x is the position of the 

parameter in the function call, f is the name of the inlined 

function, and y is an index in order to avoid re-declaration. 

The index y increases each time that a function is inlined. 

In addition, we declare a new variables ret_fy, ret and 

_return_y , these variables deal with return parameters of 

the original function. The inline phase divides an 

expression which is formed by a mathematical expression 

of the results of a set of function calls, each of the function 

call. All results of the function calls are stored in return y 

variables and then the original expression is computed 

using these new variable values. 

In the first lines of the code transformed by 

OMP2HMPP appear that global informative variables.  

These variables are created in order specify to the 

programmer which are the functions that have been 

inlined.  

3. Results 

The elapsed time and energy consumption used for 

the parallel execution of the code with different options are 

presented in the file report file generated by OMP2HMPP 

tool. This file is a comma separated value file that has all 

the information needed in order to do its further analysis. 

OMP2HMPP can do several executions of each of the 

generated versions on different input codes to extract the 

median of time and energy spends in their execution. 

 

 
Figure 10: Speed Up Comparison 

 

Table 8 illustrates an example of CSV results in a 

spreadsheet application. The first column shows the name 

of the generated file, the second column a unique signature 

(referred to the selected version of HMPP directives by the 

use of OMP2HMPP FIXED directive), and in the 

following columns the values for the time and energy 

measurements. 
 

  

  
Figure 11: Energy/Time Trade-off. (a) LU. (b) LU Detailed. (c) GEMM. 

(d) GEMM Detailed. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 12: GOPS/W. (a) 2MM. (b) 3MM. (c) LU. (d) GEMM (e) 

Covariance 

The generated versions were executed in B505 blade, 

equipped with 2 quad-core Intel Westmere-EP E5640 2.66 

GHz CPUs, 24 GB of memory, and 2 Nvidia Tesla M2050 

GPUs. This blade is equipped with energy meters which 

can be accessed by the BMC (Baseboard Management 

Controller), the embedded micro-controller that manages 

the blade: power-on/off of the blade, its temperature, the 

ventilation, and the energy consumption. The energy 

consumed by the components of the chassis (AC-DC 

transformer, Chassis management module, Interconnect 

switches, etc.) is not taken into account since they are 

outside the blades. The energy consumption is given in 

Watt-hour (Wh.) we can transform this values to Joules 

applying the corresponding factor conversion 3600Joule = 

1Wh. The measured energy includes the following units: 

—Active CPU 

—Idle CPU 

—Memory 

—GPUs 

An example of performance analysis of the codes 

generated by OMP2HMPP, is performed on a set of codes 

extracted from the Polybench [23] benchmark and then. 

We compare the execution of OMP2HMPP resulting codes 

with the original OpenMP version, and also with a hand-

coded CUDA version and with a sequential version of the 

same problem. Figure 10 shows the speedup comparison 

for the selected problems. This figure shows that 

OMP2HMPP produces good transformation of the original 

OpenMP code, obtaining an average speed up of 113×. 

The best speedup of an automatically generated version is 

still a bit lower that the obtained for the CUDA hand-

coded code version with that has an average speed up of 

1.7×. Moreover, the average speedup obtained when we 

compare the generated code to the original OpenMP 

version is 31× that is a large gain in performance for a 

programmer that additionally does not need to have any 

knowledge in GPGPU programming. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 13: Energy/Time trade-off. (a) 2MM. (b) 2MM Detailed. (c) 

3MM. (d) 3MM detailed. (e) Covariance. (f) Covariance Detailed. 

OMP2HMPP measured energy and time for all the 

generated of all the problems in the benchmark. Figure 13 

and Figure 11 shown those measurements and allows 

selecting the right implementation according to the desired 

working point. The left column in these figures shows the 

full set of generated versions and the right one detail the 

best ones.  Figure 13 and Figure 11illustrate that some of 

the cases there is a real trade-off between energy and time. 

 

Finally, Figure 12 presents the energy efficiency (in 

GOPS/w) for all cases. These results manifest that the 

generated versions increase the number of operations per 

watt that can be done after the re-factorization done by 

OMP2HMPP. 

3. Conclusions 

We have built an OMP2HMPP source to source 

compiler oriented to provide GPGPU programmers a 

powerful tool that will facilitate the study of all the 

transformations that can be done of an OpenMP block into 
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any possible HMPP codelet and callsite. These 

transformations can be compared at the same time with the 

non-transformation of the proposed block that combines 

CPU and GPU by using parallel shared memory 

computation (CPU, GPGPUs). With our automatic 

transformations the programmer avoids learning the 

meaning of HMPP directives and, more important, obtains 

a good performance analysis that allows a smart selection 

of the best version according to its requirements. By using 

OMP2HMPP on the Polybench benchmark subset we 

obtain an average speed up of 31x and an average increase 

of energy efficiency of 5.86x, comparing the generated 

version with the best results coming from OpenMP 

version. OMP2HMPP tool produces solution that rarely 

differs from the best HMPP hand-coded version. We 

notice that a CUDA hand-coded version CUDA obtains a 

speedup near 1.7x compared with the version the best 

speedup of OMP2HMPP. The automatic translation 

provided by our tool can be also useful for experimented 

users that want to have, with minimal effort, a GPGPU 

flavor of the code partitioning and mapping for any given 

problem from which better performance with additional 

clever transformations. Current version of the tool has 

some limitations with the OMP2HMPP expansion. One of 

these limitations is that in the actual version of 

OMP2HMPP we generate a maximum of twenty-one 

possible configurations for each simple OpenMP block and 

this number of generated version grows exponentially 

when we try to transform many simple OpenMP block at 

the same time or a groups of OpenMP parallel blocks. This 

is caused because the versions that OMP2HMPP proposes 

are either considering the possibility of full HMPP source 

codes or creating possible solutions that combine the use 

of OpenMP and HMPP. Then, its result is a huge number 

of versions that can complicate considerably the final 

analysis. OMP2HMPP will solve this issue in future 

versions, to minimize the execution time needed for higher 

number of version. This will be done by improving the 

optimization stage with the capability to delete some 

redundant versions or a priori inefficient versions. Then, 

OMP2HMPP propose the smallest set of possible versions 

with the smarter pragma combination of OpenMP and 

HMPP. 

OMP2HMPP will do this task separating each of the 

OpenMP annotated pragma and creating from those a new 

program with their outline their context. After that, each of 

this sub-programs will be compiled and executed to 

establish if it is efficient (in terms of its potential to obtain 

good results) to optimize the CPU parallel block under a 

pre-established metric. This capability will save testing 

time and OMP2HMPP still will give to the programmer 

the versions to check the best trade-off between execution 

time and energy consumption. 
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