
OMP2HMPP: Compiler Framework for Energy-Performance

Trade-off Analysis of Automatically Generated Codes

Albert Saà-Garriga1, David Castells-Rufas2 and Jordi Carrabina3

1 Dept. Microelectronics and Electronic Systems, Universitat Autònoma de Barcelona

Bellaterra, Barcelona 08193, Spain.

Abstract
We present OMP2HMPP, a tool that, in a first step,

automatically translates OpenMP code into various possible

transformations of HMPP. In a second step OMP2HMPP

executes all variants to obtain the performance and power

consumption of each transformation. The resulting trade-off can

be used to choose the more convenient version.

After running the tool on a set of codes from the Polybench

benchmark we show that the best automatic transformation is

equivalent to a manual one done by an expert. Compared

with original OpenMP code running in 2 quad-core processors

we obtain an average speed-up of 31× and 5.86× factor in

operations per watt.

Keywords: Source to source compiler, GPGPU, HMPP,

parallel computing, program understanding, compiler

optimization.

1. Introduction

High-performance computers are based more and

more in heterogeneous architectures. The specialization of

computational units and the adoption of different models

of computation in various nodes, allow systems to increase

performance and energy efficiency. GPGPUs were

discovered as promising vehicles for general-purpose high-

performance computing and have become a popular part of

such heterogeneous architectures since these give in most

of the studied cases a great speed-up compared to parallel

CPU versions. Accelerators (Nvidia GPU, Intel Xeon

Phi...) are gaining market share: 28% of systems have one

or more accelerators installed (2011/2012 survey [16]).

There is a continuous increase in the number of topics

that are interested in accelerators as a way to compute

their calculations faster. However, the effort needed to

program them might become a hurdle for their wider

adoption. Some languages have been to offer

programmability for general purpose computing i.e.

Compute Unified Device Architecture (CUDA) [20],

HMPP [[17], [5]], RapidMind [15], PeakStream [22] or,

CTM [19]. However, GPGPUs programming alternatives

are complex and error-prone, compared to programming

general purpose CPUs and parallel programming models

such as OpenMP [22]. In this paper we present automatic

transformation tool on the source code oriented to work

with General Propose Units for Graphic

Processing(GPGPUs). This new tool (OMP2HMPP) is in

the category of source-to-source code transformations and

seek to facilitate the generation of code for GPGPUs.

OMP2HMPP is able to run specific sections on

accelerators, so that the program executes more efficiently

on heterogeneous platform. OMP2HMPP was initially

developed for the systematic exploration of the large set of

possible transformations to determine the optimal one in

terms performance (both energy and time consumption).

OMP2HMPP grows upon with knowledge of the existing

alternatives for GPGPUs programming, studying the use of

the most promising for its output (HMPP). Since HMPP

offers the easiest way to apply the migration because is a

directive-based language. Meta-information added in

the source code of the application does not change

the semantic of the original code thus simplifying the

kernel creation. Additionally it offers an incremental way

of migrating applications by first declaring and generating

kernels of critical to later manage data transfers and

finishing by optimizing kernel performance and data

synchronization. They address the remote execution

(RPC) of functions or regions of code on GPUs and

many-core accelerators as well as the transfer of data to

and from the target device memory. In addition, most of

the other alternatives rely on a stream programming style

but a program written for a given platform cannot run on

another one. HMPP takes a radically different approach.

A HMPP application can be compiled with an off-the-shelf

compiler and run without any specific run-time to produce

a conventional native binary. Moreover, thanks to its

dynamic linking mechanism, a HMPP application is able to

make use of either a new accelerator or an improved

codelet without having to recompile the application source.

This way we aim at preserving legacy codes and insulate

them from frequent hardware platform changes that tend to

characterize hybrid multi-cores, e.g. fast GPU architecture

evolution. As we aforementioned, the existing

programming alternatives(HMPP inclusive) for GPGPUs

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

2015 International Journal of Computer Science Issues

programming, are still more complex, due to the

hardware complexity, than programming general-purpose

CPUs and parallel programming models such as

OpenMP. For this reason OMP2HMPP is thought to avoid

this task to the programmer. To simplify the

transformation task, OMP2HMPP will reuse existing

source codes that were designed to describe parallelism

using OpenMP directives. High-performance computing

(HPC) community which has been commonly using a

couple of standards: MPI and OpenMP. OpenMP is better

oriented to support of multi-platform shared memory

parallel programming in C/C++. It defines an interface for

parallel applications on wide platforms range: form the

desktop to the supercomputer. As a natural extension,

OpenMP could be combined with the use of HMPP to

study the performance and energy efficiency trade-off.

On those bases, we developed OMP2HMPP tool

which is able to:

—Run specific sections of the proposed code on

accelerators. OMP2HMPP combines the use of CPU

parallel code and GPU so that the program can execute

more efficiently on a heterogeneous platform.

—Do systematic exploration of the large set of

possible transformations from pragma-annotated code to

determine the optimal transformation.

—Introduce GPGPU acceleration that could not

be optimal but would provide a good trade-off between

performance and development effort, avoiding going

through new learning curve. It will give a comparison of

all the possible combinations of OpenMP and HMPP

configurations, in terms of time and energy spent executing

each code section.

OMP2HMPP is a Source to Source compiler (S2S)

based on BSCs Mercurium framework [18] that generates

HMPP code from OpenMP. Mercurium [3] gives us a

source-to-source compilation infrastructure aimed at fast

prototyping and supports C and C++ languages. This

platform is mainly used in the Nanos environment to

implement OpenMP but since it is quite extensible it has

been used to implement other programming models or

compiler transformations.

Extending Mercurium is achieved using a plugin

architecture, where plugins represent several phases of the

compiler. These plugins are written in C++ and

dynamically loaded by the compiler according to the

selected configuration. Code transformations are

implemented to the source code (there is no need to know

or modify the internal syntactic representation of the

compiler).

OMP2HMPP uses Mercurium to implement our S2S

transformation phases, providing OMP2HMPP with an

abstract representation of the input source code: the

Abstract Syntax Tree (AST). AST provides an easy access

to source code structure representation, the table of

symbols and the context of these.

1.1 HMPP Directives

The proposed tool is able to combine the use of the

following HMPP directives with the original

OpenMP directives:

—Callsite: Specifies the use of a codelet at a given

point in the program. Related data transfers and

synchronization points that are inserted elsewhere in the

application have to use the same label.

—Codelet: Specifies that a version of the function

following must be optimized for a given hardware.

—Group: Allows the declaration of a group of

codelet.

—Advanced Load: Uploads data before the

execution of the codelet.

—Delegate Store: Represents the opposite of the

advancedload directive in the sense that it downloads

output data from the HWA to the host.

—Synchronize: Specifies to wait until the

completion of an asynchronous callsite execution.

—Release: Specifies when to release the HWA for a

group or a stand-alone codelet.

—No Update: This property specifies that the data is

already available on the HWA and so that no transfer is

needed. When this property is set, no transfer is done on

the considered argument.

—Target: Specifies one or more targets for which the

codelet must be generated. It means that according to the

target specified, if the corresponding hardware is available

AND the codelet implementation for this hardware is also

available, this one will be executed. Otherwise, the next

target specified in the list will be tried. OMP2HMPP

always use CUDA since we will test it in a server without

OpenCL support.

With these directives OMP2HMPP is able to create a

version that in the most of the cases rarely will differs from

a hand-coded HMPP version of the original problem.

1.2 Related Work

Dominant GPU programming models have

traditionally been CUDA and OpenCL [8] Working Group

2008.In recent years; many source-to-source compiler

alternatives have been proposed to overcome the GPGPU

programming complexity. Among them, some that are

similar to the tool proposed in this paper are presented for

discussion. Opposite to OMP2HMPP, the following

methods produce direct transformation to CUDA language,

not to HMPP, which means that the CUDA programming

complexity is directly exposed to the final user.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 10

2015 International Journal of Computer Science Issues

Some of the proposals extend, in one way or another, the

current standards such a C/C++, OpenMP, etc. 2014]. On

the other hand, there are proposals that do not require any

language extension to transform the source code directly

from CPU to GPUs.

One of the examples that include language extensions

is proposed in [21]. CAPS, CRAY, Nvidia and PGI,

(members of the OpenMP Language Committee) published

OpenACC in November 2011. OpenACC has been

proposed as standard for directive-based standard

programming as it contributes to the specification of

OpenMP for accelerators. In the same way, but not with

the same consensus that OpenACC, in [10], a

programming interface called OpenMPC is presented. This

paper shows and extensive analysis of the actual state of

the art in OpenMP to CUDA source-to-source compilers

and CUDA optimizer. OpenMPC provides an abstraction

of the complexity of CUDA programming model and

increases its automation though user-assistance tuning

system. Both, OpenMPC and OpenACC, require time to

understand the new proposed directives, and to manually

optimize the data transfer between CPU and GPU.

Opposite to both, OMP2HMPP adds just two new

OpenMP directives and the programmer can forgets to deal

with new languages and their underlying optimization.

Another option is hiked directive-based language [6],

which is a set of directives for CUDA computation and

data attributes in a sequential program. However, hiked has

the same programming paradigm than CUDA; even

though it hides the CUDA language syntax, the

complexity of the CUDA programming and memory

model is directly exposed to programmers. Moreover, in

contrast to OMP2HMPP, hiked does not provide any

transfer optimization. Finally [11] and [1], propose an

OpenMP compiler for hybrid CPU/GPU computing

architecture. In these papers they propose to add a

directive to OpenMP in order to choose where the

OpenMP block must be executed (CPU/GPU). The

process is full hide to the programmer and is a direct

translated to CUDA. Again, it does not provide any

transfer optimization. There are fewer proposals that try to

directly transform C/C++ code to CUDA without the need

of any new language extension. [4] present a tool that uses

unimodular loop transformation theory to analyze the

loops that could be transformed to work in parallel

kernels either OpenMP or CUDA trough ROSE[14]

compiler. Par4All [1] transform codes originally wrote in

C or FORTRAN to OpenMP, CUDA or OpenCL. Par4All

uses polyhedral model for analysis and transforms C/C++

source code and adds OpenMP directives where the

program thinks that can be useful. This transformation

allows the re-factorization of the newly created OpenMP

blocks to GPGPUs kernels by moving OpenMP directives

to CUDA language. However, this transformation does not

take into account the kernel data-flow context and this lead

to non-optimal results in data-transfers. Nevertheless, both

tools tool, and the tools studied in [7] could be useful to

transform sequential codes to be input codes in

OMP2HMPP tool.

For source-to-source compiler infrastructure, there are

many possible solutions as LLVM [9], PIPS , Cetus,

ROSE and the used Mercurium since it gives us support

to C/C++ source codes is more friendly to work with his

intermediate representation trough an well documented

API that allows extensions in that one as was demonstrated

in [12] and [13].

2. S2S Transformations

OMP2HMPP implementation is a pipeline of S2S

compiler transformations that transform OpenMP code to

HMPP. This pipeline has two compiler phases to devote to

following transformation steps (Outline and Inline).

The first phase (outline phase) transforms pragma

OpenMP block into HMPP codelet and callsite. In order to

solve problems that can appear related to the use of global

variables inside HMPP kernels and with the call of

functions not allowed in the device, the second compiler

phase will check the scope of all the variables used in

codelet and, at the same time will transform function calls

doing an inline inside the codelet (inline phase). Figure 1

shows the work-flow of the transformation process. This

procedure is detailed in the following subsections.

Figure 1: S2S Transformation Phases

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 11

2015 International Journal of Computer Science Issues

OMP2HMPP generates multiple implementations

which differ in the use of different HMPP pragma

parameter configurations, then compiles and executes them

collecting the elapsed time and energy consumed in every

execution. Results can be plotted in order to obtain the

trade-off curves that will allow obtaining the optimal

working point. These processes performed after source to

source transformation process are described in Figure 2.

Figure 2: S2S Transformation Process

2.1 Outline Phase

The outline phase is responsible of the inline

transformation (transforming OpenMP blocks to HMPP

kernels and calls). Such phase find all the OpenMP

instructions in the input code, and then detect the start and

end of the pragma block.

Once this detection is finished, the outline phase

declares a function with the same functionality of the

pragma block. Table 1 gives an example of the

transformation implemented in this phase. The left side

shows the original code, while the right side shows the

code after outlining transformations.

The outline phase is divided in two stages: The first

one is named compilation stage, and is liable for the

source-to-source transformation, the understand of the

programmer source code and, the generation of different

versions. The second stage is called optimization, and is

devoted to improvement of the code proposed by the

programmer.

2.1.1 Compilation

The compiler has to deal with all the OpenMP

standard directives i.e. shared, private, reduction, and so

on. There are two possible scenarios, OpenMP blocks

can be expressed as simple blocks where OMP2HMPP

tool will transform this blocks into HMPP codelet, or a

group of blocks where the compilation will transform

OpenMP parallel blocks either into HMPP codelet groups,

and therefore share variables between these codelet

groups, or will divide in simple blocks being able to

specify individually where these blocks will be

computed as is shown in Table 2, exploring the

capabilities of the heterogeneous architecture.

Each of the found OpenMP blocks will be

transformed generating a new source code version, and

moreover OMP2HMPP explore all the possible HMPP

configurations that can be used in these blocks, that

implies that the number of generated versions will grow

exponentially as we have more OpenMP blocks to

transform. To solve that, we create two new OpenMP

directives that give to the user the possibility to generate

the final chosen version in doing smaller explorations of all

the possible versions that can be generated. These

directives allow the user to explore the generated versions

block by block. The set of new directives are described in

the following list and exemplified in Figure 3.

Table 1: S2S Transformation Process

OPENMP HMPP
int main()

{

 ...

#pragma omp parallel for check

 for(i=0;i<row;++i){

 for(j=0);j<col;++j){

 result[i][j] = 0;

 array[i*j] = mat[i][j];

 for(k=0;k<row;++k){

 a=0;

 while(a<10) {

 result[i][j] += mat1[i][k]*mat2[k][j]*array[i*j];

 a++

 }

 }

 }

 }

...

}

#pragma hmpp _intr_for__ol_3_main codelet, target = CUDA,

 args[result,array].io=inout, args[array].size={row*col}, &

#pragma hmpp & args[*].transfer=auto

void _intr_for__ol_3_main(int i, int row, int j, int result[row][col],

 int *array, int mat1[row][col], int k, int a, int mat2[row][col])

{

for(i=0;i<row;++i){

 for(j=0);j<col;++j){

 result[i][j] = 0;

 array[i*j] = mat[i][j];

 for(k=0;k<row;++k){

 a=0;

 while(a<10) {

 result[i][j] += mat1[i][k]*mat2[k][j]*array[i*j];

 a++

}}}}}

int main() {

...

#pragma hmpp _inst_for__ol_3_main callsite

_instr_for__ol_3_main(i,row,j,col,result,array,mat1,k,a,mat2);

...

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 12

2015 International Journal of Computer Science Issues

Figure 3: New Directives Explanation

—CHECK: The OpenMP blocks with a pragma set

#pragma omp parallel for check, will be transformed

using all the HMPP possible configurations, including the

no-transformation, which will keep the actual OpenMP

block as in the original code.

—FIXED: The programmer will fix a transformation

for a certain block by giving information flags for the next

execution of OMP2HMPP. I.e. #pragma omp parallel for

fixed (10, 1, 0).

The programmer can explore all the possible

configurations of HMPP for a certain OpenMP block, and

with the report generated by OMP2HMPP decide which is

the best configuration, as will be explained in section 3.

This configuration could be established for the following

executions of OMP2HMPP using the FIXED directive.

FIXED directive is full complemented with a set of three

flags that are described in Figure 4. This flags have an

internal binary representation that we transform into

decimal one in order to compress the length in OpenMP

pragma instruction specification.

Table 2: OpenMP Block Division

OPENMP HMPP
int main()

{

 ...

#pragma omp parallel shared(myTableOut,myTable) check

 for (; (index < iterations); index++)

 {

 #pragma omp for

 for (i=SPANI; i < WORKSIZE - SPANI; i++) {

 for (j=SPANJ; j < LINESIZE - SPANJ; j++) {

 ...

 }

 }

 theDiffNorm = 0.0;

 diffsum=theDiffNorm;

#pragma omp for reduction(+:diffsum)

 for (i = 1;i < (1 + MAXM + 1) - 1; i++) {

 for (j = 1;j < (1 + MAXN + 1) – 1;j++) {

 …

 }

 }

theDiffNorm=diffsum;

 }

#pragma omp parallel for reduction(+:diffsum) fixed(10,1,0)

 for (i = 1;i < (1 + MAXM + 1) - 1; i++){

 for (j = 1;j < (1 + MAXN + 1) - 1;j++){

 ...

 }

 }

displayRegion(myTable);

 return 0;

}

int main()

{

#pragma hmpp <group1> group, target=CUDA

#pragma hmpp <group1> mapbyname, myTableOut

...

#pragma hmpp <group1> _instr_for4_ol_13_main advancedload,

args[myTableOut], args[myTableOut].addr="myTableOut"

 int a = 0;

 double diffsum = 0.0;

 for (;(index < iterations);index++) {

#pragma hmpp <group1> _instr_for4_ol_13_main callsite,

 args[myTableOut].noupdate=true

 _instr_for4_ol_13_main(i, j, a, myTable, myTableOut);

 theDiffNorm = 0.0;

 diffsum = theDiffNorm;

#pragma hmpp <group1> _instr_for4_ol_13_main delegatedstore,

 args[myTableOut],

args[myTableOut].addr="myTableOut"

#pragma omp parallel for reduction(+:diffsum) shared(myTable)

private(i, j)

 for (i = 1; i < (1 + 5000 + 1) - 1; i++) {

 for (j = 1; j < (1 + 5000 + 1) - 1; j++) {

 ...

 }

 }

 theDiffNorm = diffsum;

 }

#pragma hmpp <group1> _instr_for4_ol_20_main callsite,

 args[myTableOut].noupdate=true

 _instr_for4_ol_20_main(i, j, myTableOut, myTable, a, &diffsum);

 displayRegion(myTable);

#pragma hmpp <group1> release

 return 0;

}

Table 3: OpenMP Reduction Directive

OPENMP HMPP
#pragma omp parallel for reduction(+:diffsum) shared(myTable) check

for (i = 1;i < (1 + MAXM + 1) - 1; i++)

{

 for (j = 1;j < (1 + MAXN + 1) - 1;j++)

 {

 double diff = myTableOut[i][j] - myTable[i][j];

 double diffmul = diff * diff;

 diffsum += diffmul;

 myTable[i][j] = myTableOut[i][j];

 }

}

#pragma hmpp _instr_for__ol_75_main codelet, target = CUDA,

 args[myTable].io=inout, args[myTableOut].io=in,

 args[diffsum_reduced].io=inout,

args[diffsum_reduced].size={1}

void _instr_for__ol_75_main(int i, int j, double

myTableOut[5002][5002], double myTable[5002][5002],

 double *diffsum_reduced)

{

 double diffsum = *diffsum_reduced;

#pragma hmppcg gridify(i, j), reduce(+:diffsum)

 for (i = 1; i < (1 + 5000 + 1) - 1; i++)

 {

 for (j = 1; j < (1 + 5000 + 1) - 1; j++)

 {

 double diff = myTableOut[i][j] - myTable[i][j];

 double diffmul = diff * diff;

 diffsum += diffmul;

 myTable[i][j] = myTableOut[i][j];

 }

 }

 *diffsum_reduced = diffsum;

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 13

2015 International Journal of Computer Science Issues

Figure 4: FIXED Directive Flags Explanation

The detection for each variable being passed as value,

copy or reference (see example in III) allows

distinguishing the context of the variables inside every

block. This allows the exploration of all the possible

transformations for one OpenMP block OMP2HMPP.

Also, OMP2HMPP has to treat in different ways array and

matrix parameter passing .HMPP distinction requirements

impose detecting when both of them are used, as shown in

me.

The compilation stage take more control of how the

outlived kernel is divided detecting the variables that

define the two outer for loops and, using this information,

define the grid division with the use of the hmppcg gridify

directive. We illustrate an example of this case in Table 3.

As aforementioned, OMP2HMPP deals with all the

possible OpenMP directives, to show an example of this

we shown how it works with the use of the reduction

directive, which is a safe way of joining work from all

threads after construct. OMP2HMPP simulate the pass by

reference with variable in reduction directive diffsum. The

result of this transformation is shown in Table 3.

Table 5: Example of Contextual Analysis with noUpdate directive calls.

OPENMP HMPP
int main()

{

 int index =0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize=WORKSIZE, linesize=LINESIZE;

 int i,j,o,a;

 double diffsum,diff,diffmul;

 init(myTable, myTableOut);

 for (index=0; (index < iterations); index++)

 {

 #pragma omp parallel for shared(myTableOut) check

 for (i=SPANI; i < WORKSIZE - SPANI; i++) {

 for (j=SPANJ; j < LINESIZE - SPANJ; j++) {

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ])

 +sin(myTable[i][j+SPANJ])

+cos(myTable[i+SPANI][j]);

 myTableOut[i][j] = neighbor/3;

 }

 }

 theDiffNorm = 0.0;

 diffsum=theDiffNorm;

 #pragma omp parallel for reduction(+:diffsum) shared(myTable) check

 for (i = 1;i < (1 + MAXM + 1) - 1; i++)

 {

 for (j = 1;j < (1 + MAXN + 1) - 1;j++)

 {

 diff = myTableOut[i][j] - myTable[i][j];

 diffmul = diff * diff;

 diffsum += diffmul;

 myTable[i][j] = myTableOut[i][j];

 }

 }

 theDiffNorm=diffsum;

 }

 displayRegion(myTable);

 return 0;

}

int main()

{

#pragma hmpp <group0_12> group, target=CUDA

#pragma hmpp <group0_12> mapbyname, myTable,myTableOut

 int index = 0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1);

 int i, j, o, a;

 double diffsum, diff, diffmul;

 init(myTable, myTableOut);

#pragma hmpp <group0_12> _instr_for12_ol_12_main advancedload,

args[myTable, myTableOut], args[myTable].addr="myTable",

 args[myTableOut].addr="myTableOut"

 for (index = 0;

 (index < iterations);

 index++)

 {

#pragma hmpp <group0_12> _instr_for12_ol_12_main callsite,

 args[myTable, myTableOut].noupdate=true

 _instr_for12_ol_12_main(i, j, myTable, myTableOut);

 theDiffNorm = 0.0;

 diffsum = theDiffNorm;

#pragma hmpp <group0_12> _instr_for12_ol_17_main callsite,

 args[myTableOut, myTable].noupdate=true

 _instr_for12_ol_17_main(i, j, diff, myTableOut, myTable,

diffmul, &diffsum, a);

 theDiffNorm = diffsum;

 }

#pragma hmpp <group0_12> _instr_for12_ol_17_main delegatedstore,

 args[myTable], args[myTable].addr="myTable"

 displayRegion(myTable);

#pragma hmpp <group0_12> release

 printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm,

RefDiffNorm);

 return 0;

}

Table 4: Example of Contextual Analysis with noUpdate directive codelet

HMPP

#pragma hmpp <group0_12> _instr_for12_ol_12_main codelet, args[myTable, myTableOut].io=in

void _instr_for42_ol_12_main(int i, int j, double myTable[5002][5002], double myTableOut[5002][5002])

{

#pragma hmppcg gridify(i, j)

 for (i = 1;

 i < (1 + 5000 + 1) - 1;

 i++)

 {

 for (j = 1;

 j < (1 + 5000 + 1) - 1;

 j++)

 {

 double neighbor = cos(myTable[i - 1][j]) + sin(myTable[i][j - 1]) + sin(myTable[i][j + 1]) + cos(myTable[i + 1][j]);

 myTableOut[i][j] = neighbor / 3;

 }

 }

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 14

2015 International Journal of Computer Science Issues

2.1.2 Optimization

This stage improves the code proposed by the

programmer by exploiting some context situations. The

optimization reduces the number of transfers between CPU

and GPU understanding the variable context of the

OpenMP kernels.

In order to implement the optimization task,

OMP2HMPP must perform an accurate contextual analysis

of the original code. For that, OMP2HMPP does a

contextual information study, taking care of each array or

matrix variables needed in each of the marked OpenMP

kernels that have to be transformed. Through this analysis

OMP2HMPP is able to understand the following variable

context:

—determine the kind access (write/read)

—Determine the host where is used (CPU/GPU)

—The scope of the instruction where the variable is

used (Loop detection)

We show a simple example of that context

understanding in Figure 5. Variables A and C are used

inside the OpenMP block. OMP2HMPP uses that

information to select the best use of HMPP directives that

minimize the number of data transfers. In Figure 5,

OMP2HMPP has two variables to analyze A and C. In the

case of A, A has to be uploaded to GPU, but is not

necessary to download it after the kernel call because

there is no read of that variable until the end of the code.

In the case of variable C, C has to be downloaded from

GPU to CPU, but there is no need to upload that to GPU

since the kernel do not do a read of C inside. With that

information, OMP2HMPP will use an advancedload in the

case of A and will put that directive as close as possible to

the last rite expression, to optimize the data transfer and

improve the performance of the generated code as shown

in Figure 6a. In the case of C, OMP2HMPP will put a

delegatestore directive, as far as possible of the kernel call,

and that will increase the performance of the generated

code, as is shown in Figure 8a. Figure 6b and Figure 8b

illustrate the use of a bad transfer policy in the same

problems.

Table 6: Loop Dealing Example

OPENMP HMPP
int main()

{

 int index =0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize=WORKSIZE, linesize=LINESIZE;

 int i,j,o,a;

 double diffsum,diff,diffmul;

 init(myTable, myTableOut);

 for (index=0; (index < iterations); index++)

 {

 #pragma omp parallel for shared(myTableOut)

 for (i=SPANI; i < WORKSIZE - SPANI; i++) {

 for (j=SPANJ; j < LINESIZE - SPANJ; j++) {

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ])

 +sin(myTable[i][j+SPANJ])

+cos(myTable[i+SPANI][j]);

 myTableOut[i][j] = neighbor/3;

 }

 }

 theDiffNorm = 0.0;

 diffsum=theDiffNorm;

 a=0;

 #pragma omp parallel for reduction(+:diffsum) shared(myTable) check

 for (i = 1;i < (1 + MAXM + 1) - 1; i++)

 {

 for (j = 1;j < (1 + MAXN + 1) - 1;j++)

 {

 diff = myTableOut[i][j] - myTable[i][j];

 diffmul = diff * diff;

 diffsum += diffmul;

 a=2;

 myTable[i][j] = myTableOut[i][j];

 }

 }

 theDiffNorm=diffsum;

 }

 displayRegion(myTable);

 return 0;

}

int main()

{

#pragma hmpp <group0_46> group, target=CUDA

#pragma hmpp <group0_46> mapbyname, myTable

 int index = 0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1);

 int i, j, o, a;

 double diffsum, diff, diffmul;

 for(int l=0;l<20;l++) {

 init(myTable, myTableOut);

 }

#pragma hmpp <group0_46> _instr_for46_ol_17_main advancedload,

 args[myTable], args[myTable].addr="myTable"

 for (index = 0;(index < iterations);

 index++)

 {

#pragma omp parallel for shared(myTableOut) private(i,j)

 for (i = 1; i < (1 + 5000 + 1) - 1; i++)

 {

 for (j = 1; j < (1 + 5000 + 1) - 1; j++)

 {

 double neighbor = cos(myTable[i - 1][j])

 + sin(myTable[i][j - 1])

 + sin(myTable[i][j + 1])

 + cos(myTable[i + 1][j]);

 myTableOut[i][j] = neighbor / 3;

 }

 }

 theDiffNorm = 0.0;

 diffsum = theDiffNorm;

 a = 0;

#pragma hmpp <group0_46> _instr_for46_ol_17_main callsite,

 args[myTable].noupdate=true,

 asynchronous

 _instr_for46_ol_17_main(i, j, diff, myTableOut, myTable,

diffmul, &diffsum, a);

#pragma hmpp <group0_46> _instr_for46_ol_17_main synchronize

#pragma hmpp <group0_46> _instr_for46_ol_17_main delegatedstore,

 args[diffsum_reduced],

args[diffsum_reduced].addr="&diffsum"

#pragma hmpp <group0_46> _instr_for46_ol_17_main delegatedstore,

 args[myTable],

args[myTable].addr="myTable"

 theDiffNorm = diffsum;

 }

 displayRegion(myTable);

#pragma hmpp <group0_46> release

 printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm,

RefDiffNorm);

 return 0;

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 15

2015 International Journal of Computer Science Issues

Figure 5: Context Analysis Example

(a)

(b)

Figure 6: Advanced Load Directive Optimization. (a) Variables are loded

as near as possible of the last CPU write. (b) Variables are loaded when

kernel is invoked.

Moreover, OMP2HMPP can deal with context

situations in which the source code contains nested loops.

OMP2HMPP determines if an operation on a variable is

made inside a loop and then adapts the data transfer to the

proper context situation Figure 7 and Figure 9 illustrate an

example with possible load the value of the variable a is

required to compute the value of C. Since the last write in

CPU of A is inside a loop with a different nested level than

the GPU block, OMP2HMPP has to backtrack the nesting

of loops to find the block shared by both loops. Then,

similar than Figure 7, OMP2HMPP optimizes the load of

A adding the advancedload directive as close as possible to

the end of the loop. We could have the inverse problem

changing the block that is computed in GPU, as shown in

Figure 9. In this Figure, the result of the GPU kernel is

needed in CPU to compute C that is not at the same loop

level. In that case, the optimum way to add the

delegatestore directive, will be just before the start of the

nested loops where the computation of C is located.

Figure 7: Data Transfer in Loops Example

Table 7: Example of Contextual Analysis with noUpdate directive calls.

OPENMP HMPP
int main()

{

 int index =0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize=WORKSIZE, linesize=LINESIZE;

 int i,j,o,a;

 double diffsum,diff,diffmul;

 init(myTable, myTableOut);

 for (index=0; (index < iterations); index++)

 {

 #pragma omp parallel for shared(myTableOut) check

 for (i=SPANI; i < WORKSIZE - SPANI; i++) {

 for (j=SPANJ; j < LINESIZE - SPANJ; j++) {

 double neighbor=cos(myTable[i-SPANI][j]) +sin(myTable[i][j-

SPANJ])

 +sin(myTable[i][j+SPANJ])

+cos(myTable[i+SPANI][j]);

 myTableOut[i][j] = neighbor/3;

 }

 }

 theDiffNorm = 0.0;

 diffsum=theDiffNorm;

 #pragma omp parallel for reduction(+:diffsum) shared(myTable) check

 for (i = 1;i < (1 + MAXM + 1) - 1; i++)

 {

 for (j = 1;j < (1 + MAXN + 1) - 1;j++)

 {

 diff = myTableOut[i][j] - myTable[i][j];

 diffmul = diff * diff;

 diffsum += diffmul;

 myTable[i][j] = myTableOut[i][j];

 }

 }

 theDiffNorm=diffsum;

 }

 displayRegion(myTable);

 return 0;

}

int main()

{

#pragma hmpp <group0_12> group, target=CUDA

#pragma hmpp <group0_12> mapbyname, myTable,myTableOut

 int index = 0;

 double theDiffNorm = 1;

 double RefDiffNorm = 0;

 int iterations = 99;

 int worksize = (1 + 5000 + 1), linesize = (1 + 5000 + 1);

 int i, j, o, a;

 double diffsum, diff, diffmul;

 init(myTable, myTableOut);

#pragma hmpp <group0_12> _instr_for12_ol_12_main advancedload,

args[myTable,myTableOut], args[myTable].addr="myTable",

 args[myTableOut].addr="myTableOut"

 for (index = 0;

 (index < iterations);

 index++)

 {

#pragma hmpp <group0_12> _instr_for12_ol_12_main callsite,

 args[myTable, myTableOut].noupdate=true

 _instr_for12_ol_12_main(i, j, myTable, myTableOut);

 theDiffNorm = 0.0;

 diffsum = theDiffNorm;

#pragma hmpp <group0_12> _instr_for12_ol_17_main callsite,

 args[myTableOut, myTable].noupdate=true

 _instr_for12_ol_17_main(i, j, diff, myTableOut, myTable,

diffmul, &diffsum, a);

 theDiffNorm = diffsum;

 }

#pragma hmpp <group0_12> _instr_for12_ol_17_main delegatedstore,

 args[myTable], args[myTable].addr="myTable"

 displayRegion(myTable);

#pragma hmpp <group0_12> release

 printf("theDiffNorm:%.12g RefDiffNorm=%.12g;", theDiffNorm,

RefDiffNorm);

 return 0;

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 16

2015 International Journal of Computer Science Issues

(a)

(b)

Figure 8: Delegate Store Directive Optimization. (a) Variables are

download as far as possible of the kernel finish, next to the first CPU

read. (b) Variables are downloaded when kernel finish.

Table 6 shows a more complex example of the loop

context understanding. OMP2HMPP is able to understand

more complex context inside loops situations decreasing in

these unnecessary transfer repetitions between CPU→GPU

and GPU→CPU. OMP2HMPP understands that a previous

read inside the same loop context of the marked OpenMP

block to transform is at the same time the next read by

doing loop unrolling. This ability is shown in the first

Advanced Load HMPP directive of Table 5, which is put

outside the loop where is the last use of myTable and

myTableOut. This also affects the other appearances of the

same directives in Table 6. In these cases OMP2HMPP

avoids to upload the variable myTable in each iteration of

the loop, since the OpenMP block marked to be

transformed is inside a loop and the previous CPU

instructions are reading this variable. Table 5 also

illustrates how OMP2HMPP downloads this variable from

GPU to CPU after finishing of the current iteration in order

to have the update its value, which has been modified in

GPU.

Figure 9: Data Transfer in Loops Example

We extended the problem to have a better

Table 8: Output CSV Spreadsheet example from OMP2HMPP using Jacobi Source code.

Version/Measure Signature Time Expended(ms.) Energy Consumption(J.)

Original(OpenMP) 0, 0, 0 59500 17428
Adv_loaddelStoreNoUpdate... 9, 1, 0 9611 3401,55
Adv_loadRel... 11, 3, 0 10530,2 3819,2
Adv_loadRel... 11, 1, 0 10572,4 4109,9
Adv_loadRel... 10, 1, 0 10844,4 3974,2
...

Table 9: Inline Transformation.

OPENMP HMPP
void g(int &a,int b)

{

 int r=2;

 int c=1;

 a=a+r+2;

 int ret = a+b+c+r*2;

}

int f(int a)

{

 return a+1;

}

int main()

{

 int l;

 int x=2;

 l=f(1)+f(2)+g(x,6);

 l=l*g(x,2);

 return 1;

}

int deletedFunctionBodyNamed_g = 1;

int deletedFunctionBodyNamed_f = 1;

int main()

{

 int l;

 int x = 2;

 int _p_0_f_0 = 1;

 int _return_0;

 {

 int ret_f0;

 ret_f0 = _p_0_f_0 + 1;

 _return_0 = ret_f0;

 }

 int _p_0_f_1 = 2;

 int _return_1;

 {

 int ret_f1;

 ret_f1 = _p_0_f_1 + 1;

 _return_1 = ret_f1;

 }

 int *_p_0_g_2 = &x;

 int _p_1_g_2 = 6;

 int _return_2;

 {

 int r = 2;

 int c = 1;

 *_p_0_g_2 = *_p_0_g_2 + r + 2;

 int ret = *_p_0_g_2 + _p_1_g_2 + c + r * 2;

 int ret_g2;

 ret_g2 = ret;

 _return_2 = ret_g2;

 }

 l = _return_0 + _return_1 + _return_2;

 int *_p_0_g_3 = &x;

 int _p_1_g_3 = 2;

 int _return_3;

 {

 int r = 2;

 int c = 1;

 *_p_0_g_3 = *_p_0_g_3 + r + 2;

 int ret = *_p_0_g_3 + _p_1_g_3 + c + r * 2;

 int ret_g3;

 ret_g3 = ret;

 _return_3 = ret_g3;

 }

 l = l * _return_3;

 return 1;

}

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 17

2015 International Journal of Computer Science Issues

understanding of the use of the contextual information of

the use of group, mapbyname, noupdate or asynchronous

directives. After the use of any variable by the GPU, if

that variable is not written in CPU before the next read

in GPU, the optimization phase will keep the variable in

GPU without downloading it to CPU and automatically

create a group of HMPP codelet using group directive,

even if it was not specified in the original OpenMP

source code. The creation of this group will represent that

both kernels can share this variable by just load transfer

CPU→GPU and one download transfer GPU→CPU with

the use of mapbyname directive. OMP2HMPP includes

option to use asynchronicity in kernel invocation when that

can be beneficial. OMP2HMPP extracts information of the

next usage of the kernel variables and adds the

asynchronous HMPP directive taking that use in account.

Finally, noupdate directive will be used to keep variables

in GPU that are not updated in CPU as shown in

Table 5 where we illustrate the kernel call and in Table 4

where we show the codelet transforming these variables

into input parameters. This transformation keeps the

variables myTable and myTableOut in GPU and just does

one load/download transfer.

2.2 Inline Phase

This phase takes any function call in the input code

and then detects his body declaration identifying the

declaration of the needed function parameters, to create a

block of code that has the same meaning. At the same time

this phase is responsible for checking the scope of the

variable to detect any wrong usage of global variables

inside HMPP codelet.

We can see in Table 9 an example of this procedure.

Left sideshows the original code, and the right one the

code after inline transformations.

We add a declaration of all the needed parameters

inline is added to change their name inside this block by

the pattern name p x f y, where x is the position of the

parameter in the function call, f is the name of the inlined

function, and y is an index in order to avoid re-declaration.

The index y increases each time that a function is inlined.

In addition, we declare a new variables ret_fy, ret and

_return_y , these variables deal with return parameters of

the original function. The inline phase divides an

expression which is formed by a mathematical expression

of the results of a set of function calls, each of the function

call. All results of the function calls are stored in return y

variables and then the original expression is computed

using these new variable values.

In the first lines of the code transformed by

OMP2HMPP appear that global informative variables.

These variables are created in order specify to the

programmer which are the functions that have been

inlined.

3. Results

The elapsed time and energy consumption used for

the parallel execution of the code with different options are

presented in the file report file generated by OMP2HMPP

tool. This file is a comma separated value file that has all

the information needed in order to do its further analysis.

OMP2HMPP can do several executions of each of the

generated versions on different input codes to extract the

median of time and energy spends in their execution.

Figure 10: Speed Up Comparison

Table 8 illustrates an example of CSV results in a

spreadsheet application. The first column shows the name

of the generated file, the second column a unique signature

(referred to the selected version of HMPP directives by the

use of OMP2HMPP FIXED directive), and in the

following columns the values for the time and energy

measurements.

Figure 11: Energy/Time Trade-off. (a) LU. (b) LU Detailed. (c) GEMM.

(d) GEMM Detailed.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

2015 International Journal of Computer Science Issues

(a)

(b)

(c)

(d)

(e)

Figure 12: GOPS/W. (a) 2MM. (b) 3MM. (c) LU. (d) GEMM (e)

Covariance

The generated versions were executed in B505 blade,

equipped with 2 quad-core Intel Westmere-EP E5640 2.66

GHz CPUs, 24 GB of memory, and 2 Nvidia Tesla M2050

GPUs. This blade is equipped with energy meters which

can be accessed by the BMC (Baseboard Management

Controller), the embedded micro-controller that manages

the blade: power-on/off of the blade, its temperature, the

ventilation, and the energy consumption. The energy

consumed by the components of the chassis (AC-DC

transformer, Chassis management module, Interconnect

switches, etc.) is not taken into account since they are

outside the blades. The energy consumption is given in

Watt-hour (Wh.) we can transform this values to Joules

applying the corresponding factor conversion 3600Joule =

1Wh. The measured energy includes the following units:

—Active CPU

—Idle CPU

—Memory

—GPUs

An example of performance analysis of the codes

generated by OMP2HMPP, is performed on a set of codes

extracted from the Polybench [23] benchmark and then.

We compare the execution of OMP2HMPP resulting codes

with the original OpenMP version, and also with a hand-

coded CUDA version and with a sequential version of the

same problem. Figure 10 shows the speedup comparison

for the selected problems. This figure shows that

OMP2HMPP produces good transformation of the original

OpenMP code, obtaining an average speed up of 113×.

The best speedup of an automatically generated version is

still a bit lower that the obtained for the CUDA hand-

coded code version with that has an average speed up of

1.7×. Moreover, the average speedup obtained when we

compare the generated code to the original OpenMP

version is 31× that is a large gain in performance for a

programmer that additionally does not need to have any

knowledge in GPGPU programming.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: Energy/Time trade-off. (a) 2MM. (b) 2MM Detailed. (c)

3MM. (d) 3MM detailed. (e) Covariance. (f) Covariance Detailed.

OMP2HMPP measured energy and time for all the

generated of all the problems in the benchmark. Figure 13

and Figure 11 shown those measurements and allows

selecting the right implementation according to the desired

working point. The left column in these figures shows the

full set of generated versions and the right one detail the

best ones. Figure 13 and Figure 11illustrate that some of

the cases there is a real trade-off between energy and time.

Finally, Figure 12 presents the energy efficiency (in

GOPS/w) for all cases. These results manifest that the

generated versions increase the number of operations per

watt that can be done after the re-factorization done by

OMP2HMPP.

3. Conclusions

We have built an OMP2HMPP source to source

compiler oriented to provide GPGPU programmers a

powerful tool that will facilitate the study of all the

transformations that can be done of an OpenMP block into

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 19

2015 International Journal of Computer Science Issues

any possible HMPP codelet and callsite. These

transformations can be compared at the same time with the

non-transformation of the proposed block that combines

CPU and GPU by using parallel shared memory

computation (CPU, GPGPUs). With our automatic

transformations the programmer avoids learning the

meaning of HMPP directives and, more important, obtains

a good performance analysis that allows a smart selection

of the best version according to its requirements. By using

OMP2HMPP on the Polybench benchmark subset we

obtain an average speed up of 31x and an average increase

of energy efficiency of 5.86x, comparing the generated

version with the best results coming from OpenMP

version. OMP2HMPP tool produces solution that rarely

differs from the best HMPP hand-coded version. We

notice that a CUDA hand-coded version CUDA obtains a

speedup near 1.7x compared with the version the best

speedup of OMP2HMPP. The automatic translation

provided by our tool can be also useful for experimented

users that want to have, with minimal effort, a GPGPU

flavor of the code partitioning and mapping for any given

problem from which better performance with additional

clever transformations. Current version of the tool has

some limitations with the OMP2HMPP expansion. One of

these limitations is that in the actual version of

OMP2HMPP we generate a maximum of twenty-one

possible configurations for each simple OpenMP block and

this number of generated version grows exponentially

when we try to transform many simple OpenMP block at

the same time or a groups of OpenMP parallel blocks. This

is caused because the versions that OMP2HMPP proposes

are either considering the possibility of full HMPP source

codes or creating possible solutions that combine the use

of OpenMP and HMPP. Then, its result is a huge number

of versions that can complicate considerably the final

analysis. OMP2HMPP will solve this issue in future

versions, to minimize the execution time needed for higher

number of version. This will be done by improving the

optimization stage with the capability to delete some

redundant versions or a priori inefficient versions. Then,

OMP2HMPP propose the smallest set of possible versions

with the smarter pragma combination of OpenMP and

HMPP.

OMP2HMPP will do this task separating each of the

OpenMP annotated pragma and creating from those a new

program with their outline their context. After that, each of

this sub-programs will be compiled and executed to

establish if it is efficient (in terms of its potential to obtain

good results) to optimize the CPU parallel block under a

pre-established metric. This capability will save testing

time and OMP2HMPP still will give to the programmer

the versions to check the best trade-off between execution

time and energy consumption.

4. Acknowledgments

This work was partly supported by the European

cooperative ITEA2 projects 09011 H4H and 10021

MANY, the CATRENE project CA112 HARP, the

Spanish Ministerio de Economía y Competitividad project

IPT-2012-0847-430000, the Spanish Ministerio de

Industria, Turismo y Comercio projects and TSI-020100-

2010-1036, TSI-020400-2010-120. The authors thank

BULL SAS and CAPS Entreprise for their support.

References
[1] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S.

Guelton, J. O. McMahon, F.-X. Pasquier, G. Péan, P.

Villalon, et al. Par4all: From convex array regions to

heterogeneous computing. In IMPACT 2012: Second

International Workshop on Polyhedral Compilation

Techniques HiPEAC 2012, 2012.

[2] E. Ayguadé, R. M. Badia, P. Bellens, D. Cabrera, A. Duran,

R. Ferrer, M. Gonzàlez, F. Igual, D. Jiménez-Gonzàlez, J.

Labarta, et al. Extending openmp to survive the

heterogeneous multi-core era. International Journal of

Parallel Programming, 38(5-6):440–459, 2010.

[3] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé,

and J. Labarta. Nanos mercurium: a research compiler for

openmp. In Proceedings of the European Workshop on

OpenMP, volume 8, 2004.

[4] P. Cantiello, B. Di Martino, and F. Piccolo. Unimodular

loop transformations with source-to-source translation for

gpus. In Algorithms and Architectures for Parallel

Processing, pages 186–195. Springer, 2013.

[5] R. Dolbeau, S. Bihan, and F. Bodin. Hmpp: A hybrid multi-

core parallel programming environment. In Workshop on

General Purpose Processing on Graphics Processing Units

(GPGPU 2007), 2007.

[6] T. D. Han and T. S. Abdelrahman. hi cuda: a high-level

directive-based language for gpu programming. In

Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, pages 52–61.

ACM, 2009.

[7] E. Kallel, Y. Aoudni, and M. Abid. ” openmp” automatic

parallelization tools: An empirical comparative evaluation.

International Journal of Computer Science Issues (IJCSI),

10(4), 2013.

[8] Khronos OpenCL Working Group. The OpenCL

Specification, version 1.0.29, 8 December 2008.

[9] C. Lattner and V. Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Code

Generation and Optimization, 2004. CGO 2004.

International Symposium on, pages 75–86. IEEE, 2004.

[10] S. Lee, S.-J. Min, and R. Eigenmann. Openmp to gpgpu: a

compiler framework for automatic translation and

optimization. ACM Sigplan Notices, 44(4):101–110, 2009.

[11] H.-F. Li, T.-Y. Liang, and J.-L. Jiang. An openmp compiler

for hybrid cpu/gpu computing architecture. In Intelligent

Networking and Collaborative Systems (INCoS), 2011

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 20

2015 International Journal of Computer Science Issues

Third International Conference on, pages 209–216. IEEE,

2011.

[12] A. Saa-Garriga, D. Castells-Rufas, and J. Carrabina.

Omp2hmpp: Hmpp source code generation from programs

with pragma extensions. arXiv preprint arXiv:1407.6932,

2014.

[13] A. Saa-Garriga, D. Castells-Rufas, and J. Carrabina.

Omp2mpi: Automatic mpi code generation from openmp

programs. arXiv preprint arXiv:1502.02921, 2015.

[14] D. J. Quinlan. Rose: Compiler support for object-oriented

frameworks. Parallel Processing Letters, 10(2/3):215–226,

2000.

[15] Rapid. home page, Mar. 2009.

[16] C. Willard, A. Snell, and L. Sergervall. Hpc user site census:

Systems, 2012.

[17] CAPS. Openhmpp directives, Mar. 2007.

[18] Nanos. Mercurium, Mar. 2004.

[19] A. CTM. Technical reference manual, Mar. 2006.

[20] NVIDIA. Cuda sdk, Mar. 2007.

[21] OpenACC Working Group. The OpenACC Application

Programming Interface, Version 1.0. November 2011.

[22] OpenMP. The openmp api, Mar. 1997.

PeakStream. home page, Mar. 2006.

[23] L.-N. Pouchet. Polybench: The polyhedral benchmark suite,

2012.

Albert Saà-Garriga received his B.Sc. degree in Computer

Science and M.Sc. degree in Computer Vision and Artificial
Intelligence from Universitat Autònoma de Barcelona (UAB),
Bellaterra, Spain. He is currently at CEPHIS (Hardware-
Software Prototypes and Solutions Lab), research center at
the UAB, where he is doing his Ph.D. studies. His main
research interests include parallel computing, source to
source compilers and computer vision systems.

David Castells-Rufas received his B.Sc. degree in Computer
Science from Universitat Autònoma de Barcelona. He holds a
M.Sc. in Research in Microelectronics from Universitat
Autònoma de Barcelona. He is currently the head of the
Embedded Systems unit at CAIAC Research Centre at
Universitat Autònoma de Barcelona (UAB), where he is doing
his Ph.D. studies. His primary research interests include
parallel computing, Network-on-Chip Based Multiprocessor
Systems, and parallel programming models. He is also
associate lecturer in the Microelectronics department of the
same university.

Jordi Carrabina leads CAIAC Research Centre at Universitat
Autònoma de Barcelona (Spain), member of Catalan IT
network TECNIO. He received his PhD degree from
Universitat Autònoma de Barcelona. His main interests are
Microelectronic Systems oriented to Embedded Platform-
based Design using System Level Design Methodologies
using SoC/NoC Architectures and Printed Microelectronics
Technologies in the Ambient Intelligence Domain. He is a
Prof. T. at Universitat Autònoma de Barcelona where is
Teaching EE and CS at the Engineering School and in the MA
of Micro & Nanoelectronics Engineering and Multimedia
technologies, at UAB and Embedded Systems at UPV-EHU.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 21

2015 International Journal of Computer Science Issues

