
Generating Test Cases for E-Commerce Systems

Abstract
Software testing is any activity aimed at evaluating a capability of a program or
system to determine that it meets its required results and detect defects.
In this paper main testing techniques are shortly described and their classification is

outlined. It focuses on Purpose Software Testing Techniques and examines different
examples for each and every testing technique.
Keywords: Software Testing, Correctness Testing, Performance Testing, Reliability
Testing, Security Testing

1. Introduction

Software Testing is the process of
executing a program or system for finding
any error or defect. Software Testing
Strategy helps to convert test case designs
into well- planned execution steps that will
result in the construction of successful
software. The primary goal of test cases is
to derive set of tests that have the highest
probability of uncovering the errors.

Software testing is a destructive process
of trying to find the errors. The main
purpose of testing is quality assurance,
reliability estimation, validation or
verification.

Despite its limitations, testing is an
important part in software development. It
is broadly deployed in every phase in the
software development cycle. Typically,
more than 50% percent of the development
time is spent in testing [9].

2. TESTING
Software testing is an activity used for
finding errors in software. It also verifies
and validates whether the program is
working correctly and smoothly with no
bugs. It analyzes the software system to
find such bugs. Also Software testing

confirms that either the software is
working according to the requirement
specifications or not. Software testing
includes a number of steps which is
designed to make sure that computer code
does what it was designed to do [10].

There is a dire need for Software testing
for if we fail to deliver a reliable, good
and error free software solution, our
project fails and we may lose clients. Thus,
in order to guarantee proper software
solution, we go for testing. We test for any
problem or error in the system, which can
make software unusable by the client. We
make software testers test the system and
help in finding out the bugs in the system
to fix them on time [2]. Software testing is
a process of measuring the quality of the
developed software. It is also a process of
uncovering bugs in a program and makes it
active. It is a useful process for executing
the program.
In order to ensure the software quality, one
conducts software testing in every phase of
the software development process. A
complete software testing should cover the
entire life cycle of software product. [1]

Khalid Alzubi
Albalqa Applied University, Salt, Jordan

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 327

2015 International Journal of Computer Science Issues

2.1 Software Testing Objectives:
Main goals of testing can be quality
assurance, reliability estimation, validation
or verification. Testing includes other
objectives:

 Testing is the process of executing a
program to find errors.

 A good test case is one for finding an
undiscovered error with a high probability.

 A successful test is one that discovers an
undiscovered error.

 The software that works better can be
tested more efficiently.

 Testing is the process that identifies the
correctness and completeness of the
software.

2.2 Software Testability
The test can be good and efficient
depending on the software itself, and here
a checklist for the software testability is
needed

 Operability – when it works better, it can
be tested more efficiently.

 Observability - what you test is what you
see.

 Controllability – controlling the software
better makes testing more automated and
optimized.

 Decomposability - problems can be
isolated and retested intelligently more
quickly by controlling the scope of testing.
 Simplicity - we can test quickly if the
test is less complex.
 Stability – with few changes,
disrupting testing is minimized.
 Understandability - the more
information known, the smarter the testing.

3. Software testing classification
Testing methods and testing techniques are
different and serve multiple purposes in

different life cycle phases; they are
classified into four groups.
By purpose Classification, software testing
can be divided into correctness testing
(White-box testing, Black-box testing,
Gray-box testing), performance testing,
reliability testing and security test.
By life-cycle phase Classification,
software testing can be classified into the
following categories: requirements phase
testing, design phase testing, program
phase testing, evaluating test results,
installation phase testing, acceptance
testing and maintenance testing.
By scope Classification, software testing
can be categorized as follows: unit testing,
component testing, integration testing, and
system testing.
By Fault Based Methods Classification,
which include Error Based Testing, Fault
seeding, mutation testing, and fault
injection, among others.

4. Test cases
4.1 Test case definition
IEEE Standard 610 (1990) defines test
case as follows:
“(1) a set of test inputs, execution
conditions, and expected results developed
for a particular objective, such as to
exercise a particular program path or to
verify compliance with a specific
requirement.
“(2) (IEEE Std 829-1983) Documentation
specifying inputs, predicted results, and a
set of execution conditions for a test
item.”[1]
Then a test case is a question is put to the
program. The test goal is to gain
information as to whether the program will
pass or fail the test.
When running tests and test cases, try to
achieve some points:

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 328

2015 International Journal of Computer Science Issues

 Find bugs and report.
 Fix these bugs.

4.2 Writing a good test case
Test cases can be “good” in different ways.
There’s no simple style or prescription for
writing “good” test cases.
According to the architecture of the system,
90% of the system complexity is in the
module analyzing. In this case, it is clear
that the test-case selection and test method
should be different.
Testing may not cover some of the
important sides of the application or system,
for instance, by selecting only the expected
interactions when testing an application or
testing only some subset of the specified
functions. In most cases, it is more
important to focus on determining the
technical correctness of a system. It is
needed to prioritize all requirements and the
functions that are likely to contain critical
problems. Most existing applications are too
complex to test in every possible way,
through all possible paths and states.
Prioritizing the paths and scenarios that are
tested first is useful, timesaving lesson for a
test team, especially when resources are
limited.

Testing activities can fail in many ways;
however, most problems can be prevented
with the following practices:
• form a suitable test team with the
appropriate means for performing the tests
at hand.
• make testing an integral part of software
development.
• employ management changing processes.
• ensure requirement traceability to and
from tests.
• automate test specification and
execution.
• Testability design.

Given the complexity of current and
expected software and communications
systems, it is expected that software testing
will become even more complicated. Then,
even more strong tools and methodologies
will emerge over time. Manual testing is
becoming a less viable alternative, and
integration with the overall design
processes and tools will prove necessary to
keep pace in testing these complex current
and future systems.

5. Purpose Software Testing
Techniques
The most prevalent techniques of software
testing are classified by purpose. Fig. 1
Represent software testing techniques
which are classified by purpose

Fig.1 software testing techniques [5]

a. Correctness Testing
Correctness is the minimum requirement
of software, the essential purpose of
testing. Correctness testing will need some
type of oracle, to tell the right behavior
from the wrong one. The tester may or

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 329

2015 International Journal of Computer Science Issues

may not know the inside details of the
software module under test, e.g. control
flow, data flow, etc. Therefore, either a
white-box point of view or black-box point
of view can be taken in testing software.
We must note that the black-box and
white-box ideas are not limited in
correctness testing only [9].

Correctness Test case example

Testing for an input box accept numbers
from 1 to 1000 then there is no use in
writing thousand test cases for all 1000
valid input numbers plus other test cases
for invalid data.

Using equivalence partitioning method,
test cases can be divided into three sets of
input data called as classes. Each test case
is a representative of respective class.

So test cases were divided into three
equivalence classes of some valid and
invalid inputs.
1) One input data class with all valid
inputs. Pick a single value from range 1 to
1000 as a valid test case. If you select
other values between 1 and 1000 then
result is going to be the same. So, one test
case for valid input data should be
sufficient.

2) Input data class with all values below
lower limit. I.e. any value below 1, as an
invalid input data test case.
3) Input data with any value greater than
1000 to represent third invalid input class.
So using equivalence partitioning means
that you have categorized all possible test
cases into three classes. Test cases with
other values from any class should give
you the same result [14].

b. Performance Testing

Not all software systems have
specifications on performance explicitly.
But every system will have implicit
performance requirements. The software
should not take infinite time or infinite
resource to execute. "Performance bugs"
are sometimes used to refer to those design
problems in software that cause the system
performance to degrade.

Performance has always been a great
concern and a driving force of computer
evolution. Performance evaluation of a
software system usually includes: resource
usage, throughput, and response time and
queue lengths detailing the average or
maximum number of tasks waiting to be
serviced by selected resources. Typical
resources that need to be considered
include network bandwidth requirements,
CPU cycles, disk space, disk access
operations, and memory usage. The goal
of performance testing can be performance
bottleneck identification, performance
comparison and evaluation, etc [9].
Test case generation requirements:
 Performance test cases should
cover the most used scenarios of end-
users’ behavior in the system (website,
application) to emulate load.
 Include to test cases steps with
user actions which performance you
want to measure.
 Separate performance test cases
by logical parts of the system which
you are going to test.
 Number of performance test
cases should be as small as possible,
but enough to cover important points
(typical number is 5-15).

 Number of steps in performance test
case should be as small as possible, but

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 330

2015 International Journal of Computer Science Issues

enough to repeat usual user steps
(typical number is 3-10).

 If system has some caching rules on
the server side test case should be
written in a way that allows avoiding
influence of caching mechanism on
performance testing results.

 Test case may describe real user's
behavior [16].

Test case example

Writing a test case for performance testing
is basically writing a simple Requirement
Specification for a piece of software .Just
as with any specification, it should be
unambiguous and as complete as possible.

Fig.2 Performance example [15].

c. Reliability Testing

‘Reliability Testing’ is very important,
as it pinpoints all the failures of a
system and removes them before the
system is deployed. Reliability testing
is related to many aspects of software
in which testing process is included;
this testing process is an effective
sampling method to measure software
reliability. Estimation model is
prepared in reliability testing which is
used to analyze the data to estimate the
present and predict future reliability of
software [5].
Based on reliability information, the
risk of using software can also be
evaluated.

d. Security Testing
Security Testing makes sure that only the
authorized person can access the program
and only the authorized personnel can
access the functions available to their
security level. Security testing is very
helpful for the tester for finding and fixing
problems. It ensures that the system will
run for a long time without any major
problem. It also ensures that the systems
used by any organization are secured
against any unauthorized attack [10].
With the development of the Internet,

software security problems are becoming
even more serious.
Many critical software applications have
integrated security measures against
malicious attacks. Simulated security
attacks can be performed to find weakness
points.

Test case example

Before beginning to write a test case:
1) It is important to segregate based on
Roles (something like Admin, Manager,

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 331

2015 International Journal of Computer Science Issues

and Supervisor etc.)
2) Delve into the negative scenario for a
particular event initially before taking up
the positive scenarios. This will ensure
continuity of the test cases and will greatly
help [13]. The table below shows an
example for security testing.

N0
.

Action Test
steps

Pas
s
/fai
l

1 Invoke the
application by
typing the URL
“http://....;

The
browser
should
be
invoked
and the
applicati
on login
page
should
appear.

Verify the login security
for the Project Lead.

2
Login with
login name
as
“abhilash”
and
password
as
“password5
6″.

The user
should
be
logged in
and be
directed
to the
Home
page.

3
Verify the menu
structure on the
Home page.

The
home
page
should
contain
the
following
menu
structure
.

–
Projects
– Tasks
–
Dashboa
rd
–
Reports
– Skills

4
Verify the
menu
dropdown
for the
“Projects”
menu.

The
“Projects
” menu
should
contain
the
following
menu
items.
– Create
Task
– Create
Build
– Create
Module

Like this you will need to
cover the other menus too.

End of verification for the
Project Lead.

Table1 security example[13].

6. CONCLUSION
Software testing is an important technique
for the improvement and measurement of a
software system quality.
In this paper we proposed that Software
testing can be very costly. A good way to
cut down time and cost is to generate good
test cases.
A few cases and examples are considered
in this study and they are only used to
provide a clear explanation regarding
testing techniques.

REFERENCES
[1] Cem Kaner, J. D. (2003). What Is a Good

Test Case? Proceedings of Florida Institute of

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 332

2015 International Journal of Computer Science Issues

Technology Department of Computer
Sciences STAR East.

[2] Gandhi, G., & Garg, S. Implementing
Software Testing Model Approach for Efficient
Bug Finding with Yin-Yang Testing Theory on
Java Application.

[3] Jovanovic, I. (2008). Software testing
methods and techniques. IM Jovanovic is with
the Inzenjering, Mat, 26.

[4] Khan, M. E. (2011). Different Approaches
to White Box Testing Technique for Finding
Errors. International Journal of Software
Engineering and Its Applications, 5(3).

[5] Khan, M. E. (2010). Different forms of
software testing techniques for finding
errors. International Journal of Computer
Science Issues, May, 7(3), 11-16.

[6] Luo, L. (2001). Software testing
techniques. Institute for software research
international Carnegie mellon university
Pittsburgh, PA, 15232(1-19), 19

[7] Nidhra, S., & Dondeti, J. (2012). BLACK
BOX AND WHITE BOX TESTING
TECHNIQUES–ALiterature
REVIEW. International Journal of Embedded
Systems and Applications (IJESA), 2(2), 29-
50.

[8] Nirpal, P. B., & Kale, K. V. (2011). A Brief
Overview Of Software Testing
Metrics. International Journal on Computer
Science and Engineering (IJCSE),3(1).

[9] Pan, J. (1999). Software testing. Retrieved
September, 2, 2013.

[10] Pardeshi, S. N. Study of Testing
Strategies and availableTools. International
Journal of Scientific and Research
Publications, ISSN, 2250-3153.

[11] Thakare, S., Chavan, S., & Chawan, P.
M. Software Testing Strategies and
Techniques..

[12] Williams, L. (2004). Testing overview
and black-box testing techniques. Alamat
situs: http://www. agile. csc. ncsu. edu/
SEMaterials/BlackBox. Pdf.

[13]https://eccentricabhi.wordpress.com/2009/
07/15/writing-test-cases-for-security-test-role-
based/ [26/12/2014]

[14] http://www.softwaretestinghelp.com/what-
is-boundary-value-analysis-and-equivalence-
partitioning/ [26/12/2014]

[15] http://www.myloadtest.com/how-to-write-
a-performance-test-case/ [26/12/2014]

[16]
http://loadtestcrew.com/2013/02/performance-
test-cases/ [26/12/2014]

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 333

2015 International Journal of Computer Science Issues

