
SolidOpt – A Multi-Model Software Optimization Framework

Vassil Vassilev, Alexander Penev, Martin Vassilev

Faculty of Mathematics and Informatics, University of Plovdiv “Paisii Hilendarski”
Plovdiv, Bulgaria

Abstract
This paper presents a framework, SolidOpt, which helps the
automated and dynamic lifelong optimization of software
systems. Usually, optimizations are a virtue of the (optimizing)
compilers. We suggest moving out the optimization facilities and
making them more accessible even to end-users during the entire
program life cycle. In order to achieve better results, SolidOpt
provides multiple representations and flow graphs. The work
presents some of the main ideas and principles of the
optimization framework and the advantages of using multiple
representations. We emphasize on the significance of the
environment and how it influences the optimal execution of the
computer programs. We examine a “continuous optimization”
approach, which considers program’s environment and perform
domain-specific optimizations. We illustrate the concept of these
advanced optimizations with examples.
Keywords: Software Optimization, Multi-model Architecture,
Software analysis, IL/bytecode Engineering.

1. Introduction

It is challenging to achieve system execution optimum in
some respect, performance for example, especially when
developing large software systems. There are techniques
for improving the system optimality in different aspects
and at different time of its life cycle. Almost every
technique needs an interactive intervention by system
developers to introduce the improvements. There are many
factors, which influence the system optimality. Few
software applications try to address some issues in this
field. However, most of them are concentrated in only
certain stages of the development life cycle of the software
application.

There are many frameworks, which contain elements for
software system analysis. In addition, there are
frameworks, which contain elements for software system
transformation (especially optimization). A good
combination between both kinds would enable the
application to perform focused, automated code
transformations. It would give a mechanism for better
optimality control during entire system life cycle.

Informally, software optimization is a performance
improvement of the target application (or more generally,

the use of less resources of the computer system). Two
major approaches can lead to a performance increase:

• Hardware – it consists of replacing the hardware of
the computer system with more productive
components. It has very clear disadvantages;

• Software – it consists of creation of more optimal
computer programs or tuning the performance of the
existing ones.

Our focus is on the software optimization. There are two
kinds of software optimization, depending on the way of
applying them:

• Manual – it is a very labor-intensive task. It includes
collecting information of how the system works.
Continuous tests for efficiency and correctness of the
changes should be made. Most of these kinds of
optimizations are in one criterion. One of the reasons
is that it is difficult to consider so many parameters,
to seek an eventual correlation between them and to
test and evaluate the accomplished result;

• Automatic – it includes applying diverse
optimization methods on the target program. The
methods suppose preliminary proof for semantic
equivalency of the transformed program (like an
optimizing compiler, for instance).

In some cases, even the optimizing compilers do not
produce always-optimal executable code. When compiling
large systems, the production of suboptimal code affects
negatively system’s overall performance. The optimization
modules in the compilers, including the Just-In-Time (JIT)
compilers, analyze different representations of the source
code and apply a set of optimizations. Moreover,
application of the optimization methods in JIT compilers is
limited by time, because they kick in only at application
start up. Some of the limitations of the built-in
optimizations in the translators are their:

• Static nature – they are applied once at compile time;
• General nature – specific information for the domain

is not used;
• Non-extensible nature – they are an essential part of

the translator and they cannot be easily extended by a
third-party developer.

A framework delivering synergy between analyses,
profiling and optimization of applications during their

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 32

2015 International Journal of Computer Science Issues

entire life cycle of software systems would minimize the
impact of the described issues. Our main goal is to develop
a framework, which contains utilities for lifelong analysis
and automated transformation of software systems. The
framework enables the development of:

• Self-optimizing software systems – systems, which
incorporate optimization methods and apply them on
themselves (their design and implementation is done
with the knowledge of the framework existence);

• Tools – they can be used for optimizing during
system’s entire life cycle.

SolidOpt supposes several roles of use:

• A developer role – the developer uses the framework
during programming to achieve optimality (with
exclusive knowledge of the framework and the
program model);

• An integrator role – the integrator uses tools based
on the framework to optimize implemented programs
(the integrator does not have knowledge of the
program model and the concept of the program);

• An end user role – the end user uses a program built
on top of the framework or tools, based on the
framework and makes extra settings on the
optimizing profiles. Statistics during the execution
can be used for extra personalization of the
optimization techniques.

Transformation methods of the framework use the
information, obtained from the analysis tools (static or
dynamic) to perform automated transformations. The goal
of SolidOpt is to provide building blocks to assemble
optimization tools. They should be able to
optimize .NET/Mono assemblies given only their binaries.
The framework should be able to provide multiple
representations (models) of the code and optimizations.
They should be implemented in an open, general, loosely
coupled and extensible way.

This paper is divided into sections as follows: Section 2,
Related Work, describes the related work in the domain;
Section 3, Architecture, introduces a common architecture
and argues about its usability in a few different cases;
Section 4, Implementation, gives a brief overview of the
implemented code models, flow models, optimization
methods and tools; Section 5, Advanced Optimizations,
presents a few research results in the area of continuous
self-optimization and program adaptability; Section 6,
Conclusion, summarizes the work and gives future
perspectives.

2. Related Work

Some of the most often used tools and frameworks for

analyzing software systems are FxCop [1], StyleCop [2],
Gendarme [3], FindBugs [4], PMD [5], Bandera [6], JLint
[7][8], ESC/Java [9]. More detailed information and
comparison between some of them is given in [10].

Gendarme is an extensible rule-based tool for finding
problems in .NET applications and libraries. Gendarme
inspects programs and libraries that contain code in CIL
[23] format (Mono and .NET). It looks for common
problems with the code, problems that a compiler does not
typically check or have not historically checked.

FindBugs is a bug pattern detector similar to Gandrame.
This tool analyzes Java bytecode and performs syntactic
checks and data flow analysis on program source code.
FindBugs uses a series of ad hoc techniques designed to
balance precision, efficiency and usability. One of the
main techniques FindBugs uses is to match syntactically
source code to known suspicious programming practices.

Bandera uses a completely different technique. In order to
use Bandera, the programmers annotate their source code
with specifications describing what should be checked, or
no specifications if the programmer only wants to verify
some standard synchronization properties. Bandera checks
for deadlocks if annotations are not present. Bandera
includes optional slicing and abstraction phases, followed
by model checking.

ATOM (Analysis Tools with OM) [11] is a single
framework for building a wide range of customized
program analysis tools. The user simply defines the tool-
specific details in instrumentation and analysis routines.
Building a basic block counting tool with ATOM requires
only a page of code. Vulcan [12] extends the main ideas of
ATOM. It performs both static and dynamic code
modifications in heterogeneous and distributed software
systems.

BARBER (Binary Refactoring browser for Java) [13] is a
tool for bytecode transformation such as Split Class, Glue
Class, Inline/Devirtualize Method, Remove Delegate and
Remove Visitor. Soot is a framework for optimizing Java
bytecode [14]. The framework is implemented in Java and
supports three intermediate representations for
representing Java bytecode: Baf, Jimple, and Grimp.

The LLVM project [15] aims to provide building blocks
for lifelong optimization. It relies on a well-defined
intermediate representation called bitcode or LLVM IR.
LLVM IR is in static single assignment (SSA) form, which
is very suitable for optimizations. Many of the ideas are
fundamental but they are oriented in building compilers,
which constrain the use of the framework. It does not

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 33

2015 International Journal of Computer Science Issues

provide more than one view of the program and the
optimizations are constrained by the low level LLVM IR.

Above-described systems do not support unified
mechanism for analysis, profiling and optimizing wide
range of arbitrary applications. Some of them are suitable
for only one programming language. Others are
concentrated only on analysis or transformation of the
system. Third, cover only part of the entire system life
cycle (mostly the development time).

3. Architecture

Programming languages are notations for describing
computations to people and to machines [22]. Software
can be treated as a prescription, solving concrete real-
world problem. Prescriptions or algorithms are models,
which describe part of the real world. Usually, that
software program is a (execution) model for solving a
given real-world problem.

With time the programming languages should get more
and more abstract and closer to the natural language, i.e. to
turn into a model, clearer to the developer. This opens a
semantic gap between the low-level models, which are
executable by concrete virtual execution systems (VES).
The gap is filled by a complex system reducing the high-
level model to a low-level one. The translation process
leads to loss of information about the high-level model and
often to a creation of suboptimal executable code. The
suboptimal translation is due to three main reasons:

• Missing or not very well implemented optimization
modules in the translator;

• Not using the full capabilities of the VES;
• Not using the whole information, which is available

in the high-level model.

A solution of these disadvantages is to bring the
optimization modules and algorithms outside of the
translators. This grants a better flexibility and
independence, because a third-party developer can extend
the optimization methods. In addition, this allows the
developers to add extra knowledge of the application
domain and perform more aggressive optimization
strategies. These strategies may not be valid in the
common case, because they are specific for the domain or
the concrete application.

During translation to an executable model, the translators
fill the semantic gap by constructing internally multiple
program models. These help the translation by reducing
the difference in the levels of abstraction of the input and
output models. Unfortunately, many transformations

between models often remain unclear and often
irreversible.

Our framework, SolidOpt, uses multiple models with clear
and observable mechanisms for transformation, which
allows more accurate translation (transformation) and
optimization of the computer programs. Figure 1 proposes
a multi-model architecture and generalizes the
transformation of the high-level software model into an
executable. Depending on the goals, the transformation
can work at different models.

In terms of SolidOpt, a transformation optimization
method (shortly called an optimization method or an
optimization) is a module, which transforms the software
program. This transformation should satisfy given
conditions. Often, these conditions are in the form of
metrics, which estimate system quality. The metrics
evaluate properties such as efficiency, energy consumption
and memory footprint. Some optimization methods can
use models of different levels of abstraction because of:

• More efficient operation of the method – there are
situations when an optimization can be applied at
several levels of abstractions. However, on each
level the optimization efficiency can vary. Therefore,
it is better to choose a model, upon which the
optimization has best result when applied;

• Easier implementation of the method – for example,
finding dead code is much easier using a control flow
graph model (the problem is reduced to graph
connectivity) than at source code level.

Fig. 1 Multiple Model Interaction.

Some methods require a concrete model. For instance, the
machine-dependent optimizations are made on low level of
abstraction (execution level). The implementation of a
method replacing multiplication by a power of two with a
left shift illustrates a machine-dependent optimization. A
key objective of SolidOpt is to give enough models for
applying optimization transformations.

Figure 1 demonstrates the relationship between models
and transformations. More concretely, it has the following
annotations:

...
1

0T −

0T

1
1T −

1T

1
1nT −
−

1nT −

nM

1
nMT −

nMT

1M

1MT

1

1
MT −

0M

0

1
MT −

0MT

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 34

2015 International Journal of Computer Science Issues

• iM – level of model abstraction, where [0;]i n∈ .

0M is the target model, i.e. the machine executable;

• 1,
i iM MT T − – model transformation, where [0;]i n∈ .

The level of abstraction is preserved;
• 1,i iT T − – trans-model transformation, where

[0; 1]i n∈ − . The level of abstraction is changed.

The scheme describes the relationship between models and
how to lower or raise the level of abstraction. In addition,
it shows the mechanism for transforming models.
Moreover, there may be more than one model at the same
level of abstraction. We call them models with same level
of abstraction. For example, lets assume the model 0M is
designed for a CISC processor. It is clear there can be a
model 0M ′ , that is designed for a RISC processor. We say
that 0M ′ and 0M of equivalent level of abstraction.

Forward direction (lowering the abstraction) is known as
compilation (denoted it with , [0; 1]

iMT i n∈ −). Increasing
the level of abstraction (opposite direction) is known as
decompilation (denoted with 1, [0; 1]

iMT i n− ∈ −). An
important part of the discussion is the existence and
acceptability of these transformations.

The existence of a generic transformation function
between models is not guaranteed. Sometimes using an
approximation of the model-transforming function is
admissible. For instance, the generation of suboptimal
code by the compiler may be partially a consequence of a
trade-off with this “satisfying” approximation. In this
particular example, the approximation satisfiability is only
because the compiler must generate semantically
equivalent models. Conversely, that satisfying
approximation may be unsatisfying in terms of optimal
execution. Models in SolidOpt’s model hierarchy are
selected to have adequate transformation functions. One of
the main goals of the framework is to change the
abstraction level of models with no information loss.
When there is no way to avoid loss of information, the loss
should be minimal.

Let us consider the transformations , [0;]

iMT i n∈ and
1, [0;]
iMT i n− ∈ . In essence, they are the transformations of a

model into the same model by improving it in some aspect.
1
iMT − aims to reverse the transformation made by

iMT . In
contrast to compilation and decompilation, the existence of
such a reverse function is not guaranteed. However, if
there was such a function, it could be used for easier
manipulation of the model. The functions

iMT are

important for the concept of the framework. They are used
to change the model, making it better in some aspect. The
idea can be described with first order logic. We can define
a predicate, which indicates whether the new model is
better from some perspective. Let us define the predicate

(,) () (),P m m m mµ µ′ ′= < which ()xµ is a function
determining the size of the program model ,ix M∈

[0;].i n∈ Each transformation, which satisfies ,P
improves the model in terms of achieving a minimum
amount of programming code.

Let us consider the following scheme:

Fig. 2 Refactoring/Obfuscation.

The scheme (Figure 2) represents the ith ([0;])i n∈
element of Figure 1. Lets assume that iM is the source
code of the program. The proposed scheme works well for
transformation processes such as source code refactoring
[16]. If one defines a predicate ,P that satisfies the
definition of refactoring and apply transformation

iMT and
the transformation satisfies the predicate, we can say that
we did refactoring on the code. In general, we say that we
did refactoring on the model iM . If 1

iMT − exists, we could
easily reverse the model without additional overhead into
prior to

iMT state, i.e. the applied transformation is
reversible. Quite naturally, in this scheme can be fit
another well-known technique for transformation of the
code – code obfuscation [17]. The technique uses code
transformation for other purpose – to make the reverse
engineering harder.

The methodology allows users to build optimization
methods, operating at different levels. It provides
flexibility in the development of sophisticated
optimizations such as merging of classes. In order to
achieve better results, some optimizations may need to
work on several abstraction levels of the model.

Using multi-model architecture decreases the productivity
of the system. In addition, it increases the overall
complexity of the framework. However, the purpose of our
framework is to provide a mechanism for optimizing

...
1

iT −

iT

1
1iT −
+

1iT +

iM

iMT

1
iMT −

...

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 35

2015 International Journal of Computer Science Issues

software applications and lower performance is acceptable
for the prototype. Optimizations compensate the lower
productivity of the framework: it is more important to
achieve greater efficiency of the target system. We have
ideas how to introduce self-optimizations to reduce
SolidOpt’s lower performance effect if it becomes a
bottleneck.

4. Implementation

The modularity of the concepts and the framework itself
allowed us to work on many different parts in parallel. We
can categorize the developments into Flow Models, Code
Models, Optimizations and Tools. They are briefly
presented in the following sections.

4.1 Flow Models

Control Flow Graph: A control flow graph (CFG) is a
graph representing the execution flow [19]. Every graph
node contains instructions grouped in basic blocks. Every
basic block contains only linear instructions, i.e.
instructions that do not change the control flow and that
are executed in a row – one after another. There is a
branch or a return instruction at the end of each basic
block and the next instruction starts a new basic block. The
edges of the built graph model are all possible branches
between the basic blocks. There are two types of branches
in SolidOpt:

• Structural – i.e. branches caused by the “normal”
possible changes in the control flow of the program;

• Exceptional – i.e. branches caused by the exception
handling in the control flow of the program.

The implementation of CFG in SolidOpt can be divided in
two steps: creating basic blocks and connecting them.
Each instruction is parsed and checked if it reflects certain
conditions. New basic blocks are created if the current
instruction is: the first instruction in the method body; an
exception handler start instruction; a terminator instruction
(instruction for branch, return, break, exception); has an
operand – an address pointing to other instruction. After
method body is split into basic blocks, they are connected
accordingly. Analyzing the last instruction of each basic
block produces the connections between the blocks. The
implementation of CFG in SolidOpt provides a
bidirectional connection between each basic block, i.e.
every block knows about the blocks the control flow may
jump to (called successors) and the blocks it is pointed to
(predecessors).

Call Graph: A call graph (CG) is implemented and it
models the connections between method calls in a method
body. The call graph contains nodes and edges constructed

by the following rules: the analyzed function creates the
root node; a function or a method call generates a node;
then the nodes are connected to their caller nodes.

4.2 Code Models

Three Address Code: Three-address code (TAC) is an
intermediate code representation where each statement
contains at most one operator on the right side of an
instruction [19]. The TAC is a sequence of instruction in
the form of A = B op C where A, B and C are
identifiers while “op” stands for operator [22]. The three
address instructions are based on two concepts – addresses
and instructions. The addresses can be names; constants;
or temporaries. The instructions can be: assignment
instructions; copy instructions; unconditional jumps;
conditional jumps; procedure calls; return instructions;
array manipulation instructions; address and pointer
instructions; type casts; etc. TAC instructions are executed
in numerical sequence unless forced otherwise by a
conditional or unconditional jump. SolidOpt uses a
simulation stack to turn the stack-based CIL into TAC.

Abstract Syntax Tree: The Abstract syntax tree (AST)
represents the source code as a hierarchical syntax
structure [22] in the form of a graph. A node represents
each operator in an expression and each operand creates a
child. It is true that an AST can be generated not just from
an expression but also from any construct and it introduces
more formal representation by omitting certain details
from the source code model. The AST is a suitable
representation for outlining the priorities of the operators
in an expression. Currently, SolidOpt supports TAC to
AST transformations.

4.3 Optimizations

The optimizations are a key ingredient in the framework
but they are only the tip of the iceberg. In order for an
optimization to be effective, it needs a lot of other
infrastructure. An optimization should work on a well-
defined model. It should use the model, which makes the
optimization most efficient. The optimization should
guarantee correctness. In the cases when it is domain-
specific, it should yield correctness boundaries and
expected errors. These concerns usually require the
optimization to be split into two parts: analysis part and
transformation part. The analysis part is responsible for
checking the feasibility and the impact of the optimization.
The transformation part changes the model to actually
apply it. Due to the limited manpower, we have focused
more on the implementation of the transformations parts of
the optimizations. Usually the driving part is done using
annotation attributes available in CLR and thus CLR-based
programming languages such as C#. As a proof of concept,

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 36

2015 International Journal of Computer Science Issues

we have implemented a few well-known optimizations
working on variety of models:

• Method inline – we implemented two versions: one
using the AST level and one using the CIL level. We
ran into different issues on both models and thus we
cannot say on which level the implementation was
easier. The performance improvement effects are
slightly in favor of the CIL level, because there are
less compilation steps and the control of what is
generated is better;

• Constant folding and propagation – it was trivial to
implement on AST level, because it consists of node
visitation and replacement;

• Dead code elimination – it was trivial to implement
using a CFG on CIL level;

• Overflow arithmetic removal – CIL offers such
target-dependent information explicitly. Its
implementation iterates over the instructions in the
method body and replaces overflow-checking
instructions by their non-checking versions.

4.4 Tools

SolidReflector is a plugin-based tool developed in the
context of SolidOpt [19]. SolidReflector uses SolidOpt as
a library, in order to build the multiple models of a .NET
assembly. A key goal of the tool is to make the multistage
compilation a little more comprehensive. Once the model
is built, it is extended with a graphical visualization,
showing implicit information such as nodes and edges in
the flow graphs, for example. Visual and non-visual code
models are bound together to create a hybrid graph of
models. It allows the models to be changed in flight.
Introduced changes to the model can be lowered to an
executable and run in simulation mode in a secure
environment. For instance, the nodes of method’s control
flow graph can be visually “rewired” using
SolidReflector’s graphical user interface. The change can
alter the semantics not only of the method itself, but the
entire program. After a change in a model by the user, the
modifications have to be compiled again into an assembly,
i.e. into executable code.

5. Advanced Optimizations

Software applications can be considered as a specimen,
from which optimal-working systems are generated. The
original source code remains unchanged and a subsystem
takes responsibility to generate an optimal incarnation. An
important advantage of the approach is that conceptually
different software transformations depending on the
objectives can be applied. Additionally, this reduces the
optimization-specific code in the actual program logic.

The existence of a specialized software subsystem allows
the division of the specimen, a blueprint produced by a
developer, and a model (for execution), produced by the
translator. Hence, in order to get better performance it is
not necessary to change the blueprint. In our point of view,
this is a key strength, because changing the source code
only for performance tuning makes it hard to read,
understand and maintain. In order this program
specialization to happen, many factors come into play,
such as user-system interaction and system’s surroundings.

5.1 Operational Environment

Software systems do not live in full independence. Usually,
they depend on many external factors such as the operating
system, for instance. Operating systems isolate the
application into processes. Software systems should be
considered as a combination of a process and its
operational environment. The operational environment can
constrain the process or change its behavior and may be
influential to its performance. The processes exist in this
environment and depend on its nature. The environment
consists of three main elements:

• Inter-process communication – communication
between two separate processes is done through data
exchange. The communication is two types – direct
and indirect. Direct communication happens by
sending messages (requests) and receives results.
Indirect approach is in communication with the
process through a third process (mediator). The type
of data and communications determine a great part of
the process behavior;

• Hardware – the characteristics of the hardware
components define many functional features of the
process. In the end, the hardware determines the
overall productivity;

• User interaction – the data exchange with the
application is usually mediated by a user interface.
The user defines user-specific control flow and data
flow of the application. The user-specific control
flow is a sequence of operations, requested by the
user. The user-specific data flow is the sequence of
exchanged data with the process. Both, user-specific
control and data flow define a user’s behavior with
an application.

The information about application’s operational
environment, including user’s behavior, determines
important factors about the optimal execution. This
information varies in the different stages of application’s
life cycle. It can be qualitatively and quantitatively
different in development time, deployment time and
production time. This is one of the reasons that we
consider optimization as a continuous process spanning
throughout entire optimization lifetime. Optimization in

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 37

2015 International Journal of Computer Science Issues

some parts of the life cycle can be even of a negative
effect overall. All optimization strategies should take into
account the collected usage information. Some strategies
include “adaptation” to the operational environment, some
to the user behavior and some to both. The following
example illustrates the idea:

 if (x == 1) {...}
 else if (x == 2) {...}
 ...
 else if (x == 30) {...}

From the collected runtime data the value that most often
gets x is 30 and we can order the rest by their statistical
expectations. Then one can apply the transformation of the
model reshuffling the order of the statements into:

 if (x == 30) {...}
 else if (x == 2) {...}
 ...
 else if (x == 1) {...}

Thus, the program is going to do (most often) 29
comparisons less, which increases its productivity while
keeping its semantics. The transformation changes the
program control flow based on the user's data flow.

The behavioral and environmental data broadens the
optimization horizon. However, the proper interpretation
of the information rather than information itself is more
important. Incorrectly interpreted reliable information
about the system can lead to much greater trouble than the
opposite (if we interpreted the information correctly we
could determine whether the information is incorrect).
There are several prominent data analysis techniques,
which can help with the data interpretation:

• Simple mathematical models and heuristic methods –
one can use data fitting in order to find admissible
heuristics and construct a feasible mathematical
model on top of them. This gives a relatively simple
but powerful mechanism for data interpretation and
management. Often finding such a “good” function
is not an easy task. When specificity of the data is
changed, it is necessary to restart the modeling
process. Mathematical models and heuristics
strongly depend on the problem area. For example, it
is easy to find a heuristic for the application size,
while it is hard to find such heuristic for a system
performance or for a system power saving plan [18].
The human factor is very important in the process;

• Statistical methods – there are many tools and
libraries, which perform data analysis [19]. They
build sophisticated statistical models, which allow
drawing statistics-based predictions. They can be
used to form better heuristic functions;

• Expert systems – using them gives flexibility in the
predictions. Expert systems can be applied in many
cases. They can control the optimization modules,
based on the knowledge of experts. They are able to
handle large amounts of data automatically. They
can be used in combination with statistical methods
to perform precise control over the optimization of
computer programs;

• Intelligent Systems – the next level is to use fully
automated systems that control the entire process of
optimization. This has advantages and disadvantages,
which are beyond the scope of this paper.

Another example for model adaptation according to the
operational environment is the architectural changes of the
hardware. For instance, the creation of a productive
application run on a VES with no cache memory (a micro
controller) suggests a specific transformation of the model.
Adding cache memory to the architecture of the VES (for
instance an Intel CPU) is an architectural change. On the
new architecture, the application may not achieve the
expected optimal execution. Considering the operational
environment makes optimizations much more effective.

5.2 Continuous Self-Optimization

SolidOpt can be used to create self-optimizing software
systems. In addition, they may collect behavioral
information and information about their operational
environment. We consider such a scenario as a software
evolution. The framework provides the building blocks,
which can be used to evolve the model’s optimality. The
evolution of model optimality is usually in a specific
direction, e.g. improving of a metric (such as the size of
the program, occupied memory, performance, and power
saving). We summarize the self-optimization by
introducing an architectural pattern shown on Figure 3.

Fig. 3 General Application Specialization.

Based on the collected information from the interaction
with the operational environment and program’s internal
behavior, an optimization strategy for the model can be
selected. The optimization of the application model creates

Abstract
Program Model

Concrete
Program Model0 ...

Concrete
Program ModelN

Transform

[Data0]

Transform[DataN]

Tr
an

sf
or

m
[D

at
a.

..]

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 38

2015 International Journal of Computer Science Issues

essentially a new executable with improved performance
with respect to the collected data. Since the data includes
user-application interaction, the multi-user applications
will have multiple datasets. Thus, either the optimizer will
have to produce a user-specific optimized copy or it should
find a good trade-off.

For each iteration, the collected data will be about an
application different from the initial. There are two major
scenarios for optimizations, which rely on the collected
data. They could be applied either to the initial application
or to the last produced optimal version. The latter case
should be better since it is supposed to converge much
quicker. Figure 4, illustrates the evolution in optimization.
The evolutionary pattern describes an endless optimization
loop, based on the relationship between the abstract
program model (APM), the concrete program model
(CPM) and their transformations.

Fig. 4 Application Transformation Evolution.

The initial model serves as a template to construct an
optimal concrete program model. The new program model
and its execution enable to collect new data for the next
cycle of evolution. The new program model can depend
on:

• The old model (CPMi-1) – helps reducing the time to
adapt (achieving system optimal operation);

• The abstract (initial) model – provides a way in case
the evolution of a specific model is impossible or the
data does not fit well the abstract model can be used
to restart the procedure;

• The data, collected from the operational environment
– ensures precise tuning of the optimizations.

The length of an evolution period strictly depends on the
specifics of the application. In addition, it depends on the
time needed to collect sufficient information about

interaction with the operational environment. The periods
can be of various intervals of time.

Model adaptability is the ability of the software system to
be a subject of an evolutionary process. Adaptation is a
time-dependent process. In situations where the time for
adaptation is years, it would be irrational to think that it is
useful. Therefore, an important property of the adaptability
is its feasibility. A decisive characteristic of systems in
terms of those facts is the adaptability of the model.
Highly specialized applications are more difficult for
adaptation, because of the specific knowledge,
incorporated during development.

5.3 Experimental Results

System configuration is essentially moving constants
outside the source code such that if they are changed no
recompilation will be needed [21]. However, it introduces
a significant overhead because of extra method calls and
reading configuration files.

Our approach to address this issue to collect statistics and
perform application specialization. Moreover, in the
particular case statistics may not be necessary, because big
parts of the configuration files change only in exceptional
circumstances. For instance, configuration parameters such
as system’s base folder location are changed only at
installation time.

Generation of a copy with inlined configuration
parameters speeds up the system dramatically. According
to our tests cases (see Table 1 in Appendix) we achieve
568–35725 orders of magnitude between SolidOpt
configuration assembly and INI file and 6–520 orders of
magnitude between SolidOpt configuration assembly and
XML file performance improvement depending on the
type of configuration parameters. As a bonus, we
guarantee type safety because the algorithm is able to
deduct the type based on its usage throughout the program.
The comparison is reading between 1 and 100 parameters
from:

• INI file format configuration – we used a C# wrapper
over Windows’s kernel function GetPrivateProfile-
String, responsible for “retrieving a string from the
specified section in an initialization file”;

• XML file format configuration – stored in the
app.config file and accessible through application’s
Properties.Settings.Default namespace;

• Inlined in the program configuration – a C#
assembly with constants which is JIT compiled on
application’s startup.

The domain-specific optimization parses the configuration
file and produces an assembly. The assembly is embedded

CPMi

APM
Optimization

Data
CPMi-1

Transformations

B
eh

av
io

ur

A
na

ly
si

s
D

at
a

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 39

2015 International Journal of Computer Science Issues

in the application, replacing all configuration file reads.
Thus, a new, specialized application is generated, i.e. the
original application remains unchanged and a new more
efficient one is generated. Following the terminology, the
original application is the APM and the specialized one – a
CPM. If the configuration file changes, the process is
repeated.

The improvement in productivity is evident. Making this
module of production quality and integrating it in
SolidOpt’s mainline is planned. Most applications depend
on configuration files and the optimization will have a
significant impact on the performance.

6. Conclusion

We presented SolidOpt – a multi-model software
optimization framework. We described its theoretical
scheme and showed some of its essential implementation
aspects. We showed some of its key properties such as
generality, openness, extensibility, flexibility and
modularity. We examined advanced software optimization
techniques and proved their usability. Some of the
preliminary tests and research give us enough certainty to
claim that the domain is very promising and further
research and development should be carried on. Especially
interesting is the research and development automated
methods for optimization, based on statistical evaluation of
the system operability (profiling).

Important next steps to increase the robustness of the
framework are the improvement of the AST and its
compilation and decompilation to other models. This
would enable more complex, close to source code
transformations such as code refactoring. In addition, we
are working on complex optimizations such as method
devirtualization [20] and better support for domain-
specific optimizations.

We plan to implement a TAC parser, which can build TAC
triplets from a text file. It would help SolidReflector to
provide a multi-model integrated development
environment. In other words, users could choose to modify
parts of the code or optimize it in a closer to the executable
way, using the TAC form. This is also true for the rest of
the models, however, they are scheduled with lower
development priority.

The analysis part of the optimization methods should be
enhanced, in order to achieve better automation of the
optimization methods for non-experts. More user-friendly
tools such as SolidReflector should be developed for more
domain-specific optimizations.

Appendix

The computations, present in Table 1 (see also Figure 5),
read the configuration parameters between 105 to 107 times
and measure the elapsed time. Then the results are
tabulated to 105, adjusting the elapsed time. The parameter
type is only relevant for the SolidOpt case whereas the
reads from XML or INI are strings by design.

Table 1: Domain-specific System Configuration Optimization.

Test Type Parameters
Elapsed Time

(ms)

SolidOpt Conf. 1 Integer 0.15

INI File 1 Integer 5359

XML File 1 Integer 78

SolidOpt 1 String 3.1

INI File 1 String 5344

XML File 1 String 78

SolidOpt Conf. 1 Integer, 1 String 17.2

INI File 1 Integer, 1 String 11984

XML File 1 Integer, 1 String 156

SolidOpt Conf. 20 String 90.7

INI File 20 String 121656

XML File 20 String 1329

SolidOpt Conf. 50 Integer, 50 String 1062

INI File 50 Integer, 50 String 603406

XML File 50 Integer, 50 String 7218

Fig. 5 Comparison of Domain-specific System Configuration
Optimization.

0.001

0.01

0.1

1

10

100

1000

1 Int 1 Str 1 Int,
1 Str

20 Str 50 Int,
50 Str

SolidOpt INI File XML File

Se
co

nd
(s

)

Legend:

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 40

2015 International Journal of Computer Science Issues

References
[1] FxCop, http://msdn.microsoft.com/en-us/library/bb429476.

aspx, (visited on 5 December 2014).
[2] StyleCop, http://stylecop.codeplex.com/, (visited on March

2015).
[3] Gendarme, http://www.mono-project.com/docs/tools+librar

ies/tools/gendarme/, (visited on February 2015).
[4] D. Hovemeyer, and W. Pugh, "Finding bugs is easy",

SIGPLAN Notices, Vol. 39, No. 12, 2004, pp. 92-106.
[5] PMD/Java, http://pmd.sourceforge.net, (visited on February

2015).
[6] J. Corbett, et al., "Bandera: Extracting Finite-state Models

from Java Source Code", in Proceedings of the 22nd
International Conference on Software Engineering, 2000, pp.
439-448.

[7] C. Artho, "Finding faults in multi-threaded programs", M.S.
thesis, Institute of Computer Systems, Federal Institute of
Technology, Zurich/Austin, 2001.

[8] Jlint, http://artho.com/jlint, (visited on February 2015).
[9] C. Flanagan, et al., "Extended Static Checking for Java", in

Proceedings of the ACM SIGPLAN'02 Conference on PLDI,
2002, pp. 234-245.

[10] N. Rutar, C. Almazan, and J. Foster, "A Comparison of Bug
Finding Tools for Java", in Proceedings of the 15th IEEE
International Symposium on Software Reliability
Engineering, 2004, pp. 245-256.

[11] A. Srivastava, and A. Eustace, "ATOM: A System for
Building Customized Program Analysis Tools", in
Proceedings of the SIGPLAN'94 Conference on PLDI, 1994,
pp. 196-205.

[12] A. Srivastava, A. Edwards, and H. Vo, "Vulcan: Binary
Transformation in a Distributed Environment", Microsoft
Research Technical Report, 2001, MSR-TR-2001-50.

[13] E. Tilevich, and Y. Smaragdakis, "Binary refactoring:
Improving code behind the scenes", in Proceedings of
ICSE'05, 2005, pp. 264-273.

[14] R. Vallée-Rai, et al., "SOOT – a Java Optimization
Framework", in CASCON'99, 1999, pp. 125-135.

[15] C. Lattner, and V. Adve, "LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation", in Proceedings of the International
Symposium on Code Generation and Optimization, 2004, pp.
75-86.

[16] M. Fowler, et al, Refactoring: Improving the Design of
Existing Programs, Addison Wesley Longman Inc., 1999.

[17] D. Low, "Protecting Java Code via Code Obfuscation",
ACM Crossroads, Vol. 4, No. 3, 1998, pp. 21-23.

[18] A. Varde, et al., "Comparing mathematical and heuristic
approaches for scientific data analysis", ACM Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 22, No. 1, 2008, pp. 53-69.

[19] V. Vassilev, M. Vassilev, and P. Petrova, "SolidReflector: A
multistage, Interactive, Decompilation Framework", in
International Conference From DeLC to VelSpace, 2014, pp.
49-58.

[20] K. Ishizaki, et al., "A Study of Devirtualization Techniques
for a Java Just-In-Time Compiler", in Proceedings of the
15th ACM SIGPLAN Conference on OOPSLA, 2000, pp.
294-310

[21] A. Penev, D. Dimov, and D. Kralchev, "Acceleration of
structured and heterogeneous configuration of the

applications", in Proceedings 36th conference of Union of
Bulgarian Mathematicians, 2007, pp. 327-331.

[22] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition), Addison
Wesley Longman Publishing Co. Inc., Boston, 2006.

[23] ECMA Team, Standard ECMA-335 (6th Edition), ECMA
International, Geneva, Switzerland, 2012.

Vassil Vassilev is pursuing his PhD degree in Computing at the
University of Plovdiv “Paisii Hilendarski”, Bulgaria. In 2010 he
completed his MSc degree in “Software Technologies” and in 2009
a BSc degree in “Informatics” at the same institution. Vassil has
around 5 years work experience at CERN. Currently, his research
interests are in the area of programming languages design and
implementation and software optimization. He is a member of the
ACM.

Alexander Penev received his PhD degree in Computing at the
University of Plovdiv “Paisii Hilendarski”, Bulgaria. In 1996, he
completed his MSc degree in “Mathematics – specialization
Informatics” at the same institution. Alexander has over 20 years
work experience at University of Plovdiv as an assistant professor.
Currently, his research interests are in the area of computer
graphics, programming languages design and implementation, and
software optimization.

Martin Vassilev received an MSc in “Software technologies” in the
University of Plovdiv in 2013. He completed his BSc in
"Informatics" a year earlier. Martin has a broad set of interests in
the field of software technologies. He is a Student member of the
ACM.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 41

2015 International Journal of Computer Science Issues

