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Abstract 
This paper presents a framework, SolidOpt, which helps the 
automated and dynamic lifelong optimization of software 
systems. Usually, optimizations are a virtue of the (optimizing) 
compilers. We suggest moving out the optimization facilities and 
making them more accessible even to end-users during the entire 
program life cycle. In order to achieve better results, SolidOpt 
provides multiple representations and flow graphs. The work 
presents some of the main ideas and principles of the 
optimization framework and the advantages of using multiple 
representations. We emphasize on the significance of the 
environment and how it influences the optimal execution of the 
computer programs. We examine a “continuous optimization” 
approach, which considers program’s environment and perform 
domain-specific optimizations. We illustrate the concept of these 
advanced optimizations with examples. 
Keywords: Software Optimization, Multi-model Architecture, 
Software analysis, IL/bytecode Engineering. 

1. Introduction 

It is challenging to achieve system execution optimum in 
some respect, performance for example, especially when 
developing large software systems. There are techniques 
for improving the system optimality in different aspects 
and at different time of its life cycle. Almost every 
technique needs an interactive intervention by system 
developers to introduce the improvements. There are many 
factors, which influence the system optimality. Few 
software applications try to address some issues in this 
field. However, most of them are concentrated in only 
certain stages of the development life cycle of the software 
application. 
 
There are many frameworks, which contain elements for 
software system analysis. In addition, there are 
frameworks, which contain elements for software system 
transformation (especially optimization). A good 
combination between both kinds would enable the 
application to perform focused, automated code 
transformations. It would give a mechanism for better 
optimality control during entire system life cycle. 
 
Informally, software optimization is a performance 
improvement of the target application (or more generally, 

the use of less resources of the computer system). Two 
major approaches can lead to a performance increase: 

• Hardware – it consists of replacing the hardware of 
the computer system with more productive 
components. It has very clear disadvantages; 

• Software – it consists of creation of more optimal 
computer programs or tuning the performance of the 
existing ones. 

 
Our focus is on the software optimization. There are two 
kinds of software optimization, depending on the way of 
applying them: 

• Manual – it is a very labor-intensive task. It includes 
collecting information of how the system works. 
Continuous tests for efficiency and correctness of the 
changes should be made. Most of these kinds of 
optimizations are in one criterion. One of the reasons 
is that it is difficult to consider so many parameters, 
to seek an eventual correlation between them and to 
test and evaluate the accomplished result; 

• Automatic – it includes applying diverse 
optimization methods on the target program. The 
methods suppose preliminary proof for semantic 
equivalency of the transformed program (like an 
optimizing compiler, for instance). 

 
In some cases, even the optimizing compilers do not 
produce always-optimal executable code. When compiling 
large systems, the production of suboptimal code affects 
negatively system’s overall performance. The optimization 
modules in the compilers, including the Just-In-Time (JIT) 
compilers, analyze different representations of the source 
code and apply a set of optimizations. Moreover, 
application of the optimization methods in JIT compilers is 
limited by time, because they kick in only at application 
start up. Some of the limitations of the built-in 
optimizations in the translators are their: 

• Static nature – they are applied once at compile time; 
• General nature – specific information for the domain 

is not used; 
• Non-extensible nature – they are an essential part of 

the translator and they cannot be easily extended by a 
third-party developer. 

 
A framework delivering synergy between analyses, 
profiling and optimization of applications during their 
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entire life cycle of software systems would minimize the 
impact of the described issues. Our main goal is to develop 
a framework, which contains utilities for lifelong analysis 
and automated transformation of software systems. The 
framework enables the development of: 

• Self-optimizing software systems – systems, which 
incorporate optimization methods and apply them on 
themselves (their design and implementation is done 
with the knowledge of the framework existence); 

• Tools – they can be used for optimizing during 
system’s entire life cycle. 

 
SolidOpt supposes several roles of use: 

• A developer role – the developer uses the framework 
during programming to achieve optimality (with 
exclusive knowledge of the framework and the 
program model); 

• An integrator role – the integrator uses tools based 
on the framework to optimize implemented programs 
(the integrator does not have knowledge of the 
program model and the concept of the program); 

• An end user role – the end user uses a program built 
on top of the framework or tools, based on the 
framework and makes extra settings on the 
optimizing profiles. Statistics during the execution 
can be used for extra personalization of the 
optimization techniques. 

 
Transformation methods of the framework use the 
information, obtained from the analysis tools (static or 
dynamic) to perform automated transformations. The goal 
of SolidOpt is to provide building blocks to assemble 
optimization tools. They should be able to 
optimize .NET/Mono assemblies given only their binaries. 
The framework should be able to provide multiple 
representations (models) of the code and optimizations. 
They should be implemented in an open, general, loosely 
coupled and extensible way. 
 
This paper is divided into sections as follows: Section 2, 
Related Work, describes the related work in the domain; 
Section 3, Architecture, introduces a common architecture 
and argues about its usability in a few different cases; 
Section 4, Implementation, gives a brief overview of the 
implemented code models, flow models, optimization 
methods and tools; Section 5, Advanced Optimizations, 
presents a few research results in the area of continuous 
self-optimization and program adaptability; Section 6, 
Conclusion, summarizes the work and gives future 
perspectives. 

2. Related Work 

Some of the most often used tools and frameworks for 

analyzing software systems are FxCop [1], StyleCop [2], 
Gendarme [3], FindBugs [4], PMD [5], Bandera [6], JLint 
[7][8], ESC/Java [9]. More detailed information and 
comparison between some of them is given in [10]. 
 
Gendarme is an extensible rule-based tool for finding 
problems in .NET applications and libraries. Gendarme 
inspects programs and libraries that contain code in CIL 
[23] format (Mono and .NET). It looks for common 
problems with the code, problems that a compiler does not 
typically check or have not historically checked. 
 
FindBugs is a bug pattern detector similar to Gandrame. 
This tool analyzes Java bytecode and performs syntactic 
checks and data flow analysis on program source code. 
FindBugs uses a series of ad hoc techniques designed to 
balance precision, efficiency and usability. One of the 
main techniques FindBugs uses is to match syntactically 
source code to known suspicious programming practices. 
 
Bandera uses a completely different technique. In order to 
use Bandera, the programmers annotate their source code 
with specifications describing what should be checked, or 
no specifications if the programmer only wants to verify 
some standard synchronization properties. Bandera checks 
for deadlocks if annotations are not present. Bandera 
includes optional slicing and abstraction phases, followed 
by model checking. 
 
ATOM (Analysis Tools with OM) [11] is a single 
framework for building a wide range of customized 
program analysis tools. The user simply defines the tool-
specific details in instrumentation and analysis routines. 
Building a basic block counting tool with ATOM requires 
only a page of code. Vulcan [12] extends the main ideas of 
ATOM. It performs both static and dynamic code 
modifications in heterogeneous and distributed software 
systems. 
 
BARBER (Binary Refactoring browser for Java) [13] is a 
tool for bytecode transformation such as Split Class, Glue 
Class, Inline/Devirtualize Method, Remove Delegate and 
Remove Visitor. Soot is a framework for optimizing Java 
bytecode [14]. The framework is implemented in Java and 
supports three intermediate representations for 
representing Java bytecode: Baf, Jimple, and Grimp. 
 
The LLVM project [15] aims to provide building blocks 
for lifelong optimization. It relies on a well-defined 
intermediate representation called bitcode or LLVM IR. 
LLVM IR is in static single assignment (SSA) form, which 
is very suitable for optimizations. Many of the ideas are 
fundamental but they are oriented in building compilers, 
which constrain the use of the framework. It does not 
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provide more than one view of the program and the 
optimizations are constrained by the low level LLVM IR. 
 
Above-described systems do not support unified 
mechanism for analysis, profiling and optimizing wide 
range of arbitrary applications. Some of them are suitable 
for only one programming language. Others are 
concentrated only on analysis or transformation of the 
system. Third, cover only part of the entire system life 
cycle (mostly the development time). 

3. Architecture 

Programming languages are notations for describing 
computations to people and to machines [22]. Software 
can be treated as a prescription, solving concrete real-
world problem. Prescriptions or algorithms are models, 
which describe part of the real world. Usually, that 
software program is a (execution) model for solving a 
given real-world problem. 
 
With time the programming languages should get more 
and more abstract and closer to the natural language, i.e. to 
turn into a model, clearer to the developer. This opens a 
semantic gap between the low-level models, which are 
executable by concrete virtual execution systems (VES). 
The gap is filled by a complex system reducing the high-
level model to a low-level one. The translation process 
leads to loss of information about the high-level model and 
often to a creation of suboptimal executable code. The 
suboptimal translation is due to three main reasons: 

• Missing or not very well implemented optimization 
modules in the translator; 

• Not using the full capabilities of the VES; 
• Not using the whole information, which is available 

in the high-level model. 
 
A solution of these disadvantages is to bring the 
optimization modules and algorithms outside of the 
translators. This grants a better flexibility and 
independence, because a third-party developer can extend 
the optimization methods. In addition, this allows the 
developers to add extra knowledge of the application 
domain and perform more aggressive optimization 
strategies. These strategies may not be valid in the 
common case, because they are specific for the domain or 
the concrete application. 
 
During translation to an executable model, the translators 
fill the semantic gap by constructing internally multiple 
program models. These help the translation by reducing 
the difference in the levels of abstraction of the input and 
output models. Unfortunately, many transformations 

between models often remain unclear and often 
irreversible. 
 
Our framework, SolidOpt, uses multiple models with clear 
and observable mechanisms for transformation, which 
allows more accurate translation (transformation) and 
optimization of the computer programs. Figure 1 proposes 
a multi-model architecture and generalizes the 
transformation of the high-level software model into an 
executable. Depending on the goals, the transformation 
can work at different models.  
 
In terms of SolidOpt, a transformation optimization 
method (shortly called an optimization method or an 
optimization) is a module, which transforms the software 
program. This transformation should satisfy given 
conditions. Often, these conditions are in the form of 
metrics, which estimate system quality. The metrics 
evaluate properties such as efficiency, energy consumption 
and memory footprint. Some optimization methods can 
use models of different levels of abstraction because of: 

• More efficient operation of the method – there are 
situations when an optimization can be applied at 
several levels of abstractions. However, on each 
level the optimization efficiency can vary. Therefore, 
it is better to choose a model, upon which the 
optimization has best result when applied; 

• Easier implementation of the method – for example, 
finding dead code is much easier using a control flow 
graph model (the problem is reduced to graph 
connectivity) than at source code level. 

 

 

Fig. 1  Multiple Model Interaction. 

Some methods require a concrete model. For instance, the 
machine-dependent optimizations are made on low level of 
abstraction (execution level). The implementation of a 
method replacing multiplication by a power of two with a 
left shift illustrates a machine-dependent optimization. A 
key objective of SolidOpt is to give enough models for 
applying optimization transformations. 
 
Figure 1 demonstrates the relationship between models 
and transformations. More concretely, it has the following 
annotations: 

...
1

0T −

0T

1
1T −

1T

1
1nT −
−

1nT −

nM

1
nMT −

nMT

1M

1MT

1

1
MT −

0M

0

1
MT −

0MT

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 34

2015 International Journal of Computer Science Issues



• iM  – level of model abstraction, where [0; ]i n∈ . 

0M  is the target model, i.e. the machine executable; 

• 1,
i iM MT T −  – model transformation, where [0; ]i n∈ . 

The level of abstraction is preserved; 
• 1,i iT T − – trans-model transformation, where  

[0; 1]i n∈ − . The level of abstraction is changed. 
 
The scheme describes the relationship between models and 
how to lower or raise the level of abstraction. In addition, 
it shows the mechanism for transforming models. 
Moreover, there may be more than one model at the same 
level of abstraction. We call them models with same level 
of abstraction. For example, lets assume the model 0M  is 
designed for a CISC processor. It is clear there can be a 
model 0M ′ , that is designed for a RISC processor. We say 
that 0M ′  and 0M  of equivalent level of abstraction. 
 
Forward direction (lowering the abstraction) is known as 
compilation (denoted it with , [0; 1]

iMT i n∈ − ). Increasing 
the level of abstraction (opposite direction) is known as 
decompilation  (denoted  with  1, [0; 1]

iMT i n− ∈ − ).  An 
important part of the discussion is the existence and 
acceptability of these transformations. 
 
The existence of a generic transformation function 
between models is not guaranteed. Sometimes using an 
approximation of the model-transforming function is 
admissible. For instance, the generation of suboptimal 
code by the compiler may be partially a consequence of a 
trade-off with this “satisfying” approximation. In this 
particular example, the approximation satisfiability is only 
because the compiler must generate semantically 
equivalent models. Conversely, that satisfying 
approximation may be unsatisfying in terms of optimal 
execution. Models in SolidOpt’s model hierarchy are 
selected to have adequate transformation functions. One of 
the main goals of the framework is to change the 
abstraction level of models with no information loss. 
When there is no way to avoid loss of information, the loss 
should be minimal. 
 
Let us consider the transformations , [0; ]

iMT i n∈  and 
1, [0; ]
iMT i n− ∈ . In essence, they are the transformations of a 

model into the same model by improving it in some aspect. 
1
iMT −  aims to reverse the transformation made by 

iMT . In 
contrast to compilation and decompilation, the existence of 
such a reverse function is not guaranteed. However, if 
there was such a function, it could be used for easier 
manipulation of the model. The functions 

iMT  are 

important for the concept of the framework. They are used 
to change the model, making it better in some aspect. The 
idea can be described with first order logic. We can define 
a predicate, which indicates whether the new model is 
better from some perspective. Let us define the predicate 

( , ) ( ) ( ),P m m m mµ µ′ ′= <  which ( )xµ  is a function 
determining the size of the program model ,ix M∈  

[0; ].i n∈  Each transformation, which satisfies ,P  
improves the model in terms of achieving a minimum 
amount of programming code. 
 
Let us consider the following scheme: 

 

Fig. 2  Refactoring/Obfuscation. 

The scheme (Figure 2) represents the ith ( [0; ])i n∈  
element of Figure 1. Lets assume that iM  is the source 
code of the program. The proposed scheme works well for 
transformation processes such as source code refactoring 
[16]. If one defines a predicate ,P  that satisfies the 
definition of refactoring and apply transformation 

iMT  and 
the transformation satisfies the predicate, we can say that 
we did refactoring on the code. In general, we say that we 
did refactoring on the model iM . If  1

iMT −  exists, we could 
easily reverse the model without additional overhead into 
prior to

iMT state, i.e. the applied transformation is 
reversible. Quite naturally, in this scheme can be fit 
another well-known technique for transformation of the 
code – code obfuscation [17]. The technique uses code 
transformation for other purpose – to make the reverse 
engineering harder. 
 
The methodology allows users to build optimization 
methods, operating at different levels. It provides 
flexibility in the development of sophisticated 
optimizations such as merging of classes. In order to 
achieve better results, some optimizations may need to 
work on several abstraction levels of the model. 
 
Using multi-model architecture decreases the productivity 
of the system. In addition, it increases the overall 
complexity of the framework. However, the purpose of our 
framework is to provide a mechanism for optimizing 
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software applications and lower performance is acceptable 
for the prototype. Optimizations compensate the lower 
productivity of the framework: it is more important to 
achieve greater efficiency of the target system. We have 
ideas how to introduce self-optimizations to reduce 
SolidOpt’s lower performance effect if it becomes a 
bottleneck. 

4. Implementation 

The modularity of the concepts and the framework itself 
allowed us to work on many different parts in parallel. We 
can categorize the developments into Flow Models, Code 
Models, Optimizations and Tools. They are briefly 
presented in the following sections. 

4.1 Flow Models 

Control Flow Graph: A control flow graph (CFG) is a 
graph representing the execution flow [19]. Every graph 
node contains instructions grouped in basic blocks. Every 
basic block contains only linear instructions, i.e. 
instructions that do not change the control flow and that 
are executed in a row – one after another. There is a 
branch or a return instruction at the end of each basic 
block and the next instruction starts a new basic block. The 
edges of the built graph model are all possible branches 
between the basic blocks. There are two types of branches 
in SolidOpt: 

• Structural – i.e. branches caused by the “normal” 
possible changes in the control flow of the program; 

• Exceptional – i.e. branches caused by the exception 
handling in the control flow of the program. 

 
The implementation of CFG in SolidOpt can be divided in 
two steps: creating basic blocks and connecting them. 
Each instruction is parsed and checked if it reflects certain 
conditions. New basic blocks are created if the current 
instruction is: the first instruction in the method body; an 
exception handler start instruction; a terminator instruction 
(instruction for branch, return, break, exception); has an 
operand – an address pointing to other instruction. After 
method body is split into basic blocks, they are connected 
accordingly. Analyzing the last instruction of each basic 
block produces the connections between the blocks. The 
implementation of CFG in SolidOpt provides a 
bidirectional connection between each basic block, i.e. 
every block knows about the blocks the control flow may 
jump to (called successors) and the blocks it is pointed to 
(predecessors). 
 
Call Graph: A call graph (CG) is implemented and it 
models the connections between method calls in a method 
body. The call graph contains nodes and edges constructed 

by the following rules: the analyzed function creates the 
root node; a function or a method call generates a node; 
then the nodes are connected to their caller nodes. 

4.2 Code Models 

Three Address Code: Three-address code (TAC) is an 
intermediate code representation where each statement 
contains at most one operator on the right side of an 
instruction [19]. The TAC is a sequence of instruction in 
the form of A = B op C where A, B and C are 
identifiers while “op” stands for operator [22]. The three 
address instructions are based on two concepts – addresses 
and instructions. The addresses can be names; constants; 
or temporaries. The instructions can be: assignment 
instructions; copy instructions; unconditional jumps; 
conditional jumps; procedure calls; return instructions; 
array manipulation instructions; address and pointer 
instructions; type casts; etc. TAC instructions are executed 
in numerical sequence unless forced otherwise by a 
conditional or unconditional jump. SolidOpt uses a 
simulation stack to turn the stack-based CIL into TAC. 
 
Abstract Syntax Tree: The Abstract syntax tree (AST) 
represents the source code as a hierarchical syntax 
structure [22] in the form of a graph. A node represents 
each operator in an expression and each operand creates a 
child. It is true that an AST can be generated not just from 
an expression but also from any construct and it introduces 
more formal representation by omitting certain details 
from the source code model. The AST is a suitable 
representation for outlining the priorities of the operators 
in an expression. Currently, SolidOpt supports TAC to 
AST transformations. 

4.3 Optimizations 

The optimizations are a key ingredient in the framework 
but they are only the tip of the iceberg. In order for an 
optimization to be effective, it needs a lot of other 
infrastructure. An optimization should work on a well-
defined model. It should use the model, which makes the 
optimization most efficient. The optimization should 
guarantee correctness. In the cases when it is domain-
specific, it should yield correctness boundaries and 
expected errors. These concerns usually require the 
optimization to be split into two parts: analysis part and 
transformation part. The analysis part is responsible for 
checking the feasibility and the impact of the optimization. 
The transformation part changes the model to actually 
apply it. Due to the limited manpower, we have focused 
more on the implementation of the transformations parts of 
the optimizations. Usually the driving part is done using 
annotation attributes available in CLR and thus CLR-based 
programming languages such as C#. As a proof of concept, 
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we have implemented a few well-known optimizations 
working on variety of models: 

• Method inline – we implemented two versions: one 
using the AST level and one using the CIL level. We 
ran into different issues on both models and thus we 
cannot say on which level the implementation was 
easier. The performance improvement effects are 
slightly in favor of the CIL level, because there are 
less compilation steps and the control of what is 
generated is better; 

• Constant folding and propagation – it was trivial to 
implement on AST level, because it consists of node 
visitation and replacement; 

• Dead code elimination – it was trivial to implement 
using a CFG on CIL level; 

• Overflow arithmetic removal – CIL offers such 
target-dependent information explicitly. Its 
implementation iterates over the instructions in the 
method body and replaces overflow-checking 
instructions by their non-checking versions. 

4.4 Tools 

SolidReflector is a plugin-based tool developed in the 
context of SolidOpt [19]. SolidReflector uses SolidOpt as 
a library, in order to build the multiple models of a .NET 
assembly. A key goal of the tool is to make the multistage 
compilation a little more comprehensive. Once the model 
is built, it is extended with a graphical visualization, 
showing implicit information such as nodes and edges in 
the flow graphs, for example. Visual and non-visual code 
models are bound together to create a hybrid graph of 
models. It allows the models to be changed in flight. 
Introduced changes to the model can be lowered to an 
executable and run in simulation mode in a secure 
environment. For instance, the nodes of method’s control 
flow graph can be visually “rewired” using 
SolidReflector’s graphical user interface. The change can 
alter the semantics not only of the method itself, but the 
entire program. After a change in a model by the user, the 
modifications have to be compiled again into an assembly, 
i.e. into executable code. 

5. Advanced Optimizations 

Software applications can be considered as a specimen, 
from which optimal-working systems are generated. The 
original source code remains unchanged and a subsystem 
takes responsibility to generate an optimal incarnation. An 
important advantage of the approach is that conceptually 
different software transformations depending on the 
objectives can be applied. Additionally, this reduces the 
optimization-specific code in the actual program logic. 

The existence of a specialized software subsystem allows 
the division of the specimen, a blueprint produced by a 
developer, and a model (for execution), produced by the 
translator. Hence, in order to get better performance it is 
not necessary to change the blueprint. In our point of view, 
this is a key strength, because changing the source code 
only for performance tuning makes it hard to read, 
understand and maintain. In order this program 
specialization to happen, many factors come into play, 
such as user-system interaction and system’s surroundings. 

5.1 Operational Environment 

Software systems do not live in full independence. Usually, 
they depend on many external factors such as the operating 
system, for instance. Operating systems isolate the 
application into processes. Software systems should be 
considered as a combination of a process and its 
operational environment. The operational environment can 
constrain the process or change its behavior and may be 
influential to its performance. The processes exist in this 
environment and depend on its nature. The environment 
consists of three main elements: 

• Inter-process communication – communication 
between two separate processes is done through data 
exchange. The communication is two types – direct 
and indirect. Direct communication happens by 
sending messages (requests) and receives results. 
Indirect approach is in communication with the 
process through a third process (mediator). The type 
of data and communications determine a great part of 
the process behavior; 

• Hardware – the characteristics of the hardware 
components define many functional features of the 
process. In the end, the hardware determines the 
overall productivity; 

• User interaction – the data exchange with the 
application is usually mediated by a user interface. 
The user defines user-specific control flow and data 
flow of the application. The user-specific control 
flow is a sequence of operations, requested by the 
user. The user-specific data flow is the sequence of 
exchanged data with the process. Both, user-specific 
control and data flow define a user’s behavior with 
an application. 

 
The information about application’s operational 
environment, including user’s behavior, determines 
important factors about the optimal execution. This 
information varies in the different stages of application’s 
life cycle. It can be qualitatively and quantitatively 
different in development time, deployment time and 
production time. This is one of the reasons that we 
consider optimization as a continuous process spanning 
throughout entire optimization lifetime. Optimization in 
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some parts of the life cycle can be even of a negative 
effect overall. All optimization strategies should take into 
account the collected usage information. Some strategies 
include “adaptation” to the operational environment, some 
to the user behavior and some to both. The following 
example illustrates the idea: 
 
 if (x == 1) {...} 
 else if (x == 2) {...} 
 ... 
 else if (x == 30) {...} 
 
From the collected runtime data the value that most often 
gets x is 30 and we can order the rest by their statistical 
expectations. Then one can apply the transformation of the 
model reshuffling the order of the statements into: 
 
 if (x == 30) {...} 
 else if (x == 2) {...} 
 ... 
 else if (x == 1) {...} 
 
Thus, the program is going to do (most often) 29 
comparisons less, which increases its productivity while 
keeping its semantics. The transformation changes the 
program control flow based on the user's data flow. 
 
The behavioral and environmental data broadens the 
optimization horizon. However, the proper interpretation 
of the information rather than information itself is more 
important. Incorrectly interpreted reliable information 
about the system can lead to much greater trouble than the 
opposite (if we interpreted the information correctly we 
could determine whether the information is incorrect). 
There are several prominent data analysis techniques, 
which can help with the data interpretation: 

• Simple mathematical models and heuristic methods – 
one can use data fitting in order to find admissible 
heuristics and construct a feasible mathematical 
model on top of them. This gives a relatively simple 
but powerful mechanism for data interpretation and 
management. Often finding such a “good” function 
is not an easy task. When specificity of the data is 
changed, it is necessary to restart the modeling 
process. Mathematical models and heuristics 
strongly depend on the problem area. For example, it 
is easy to find a heuristic for the application size, 
while it is hard to find such heuristic for a system 
performance or for a system power saving plan [18]. 
The human factor is very important in the process; 

• Statistical methods – there are many tools and 
libraries, which perform data analysis [19]. They 
build sophisticated statistical models, which allow 
drawing statistics-based predictions. They can be 
used to form better heuristic functions; 

• Expert systems – using them gives flexibility in the 
predictions. Expert systems can be applied in many 
cases. They can control the optimization modules, 
based on the knowledge of experts. They are able to 
handle large amounts of data automatically. They 
can be used in combination with statistical methods 
to perform precise control over the optimization of 
computer programs; 

• Intelligent Systems – the next level is to use fully 
automated systems that control the entire process of 
optimization. This has advantages and disadvantages, 
which are beyond the scope of this paper. 

 
Another example for model adaptation according to the 
operational environment is the architectural changes of the 
hardware. For instance, the creation of a productive 
application run on a VES with no cache memory (a micro 
controller) suggests a specific transformation of the model. 
Adding cache memory to the architecture of the VES (for 
instance an Intel CPU) is an architectural change. On the 
new architecture, the application may not achieve the 
expected optimal execution. Considering the operational 
environment makes optimizations much more effective. 

5.2 Continuous Self-Optimization 

SolidOpt can be used to create self-optimizing software 
systems. In addition, they may collect behavioral 
information and information about their operational 
environment. We consider such a scenario as a software 
evolution. The framework provides the building blocks, 
which can be used to evolve the model’s optimality. The 
evolution of model optimality is usually in a specific 
direction, e.g. improving of a metric (such as the size of 
the program, occupied memory, performance, and power 
saving). We summarize the self-optimization by 
introducing an architectural pattern shown on Figure 3. 
 

 

Fig. 3  General Application Specialization. 

Based on the collected information from the interaction 
with the operational environment and program’s internal 
behavior, an optimization strategy for the model can be 
selected. The optimization of the application model creates 
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essentially a new executable with improved performance 
with respect to the collected data. Since the data includes 
user-application interaction, the multi-user applications 
will have multiple datasets. Thus, either the optimizer will 
have to produce a user-specific optimized copy or it should 
find a good trade-off. 
 
For each iteration, the collected data will be about an 
application different from the initial. There are two major 
scenarios for optimizations, which rely on the collected 
data. They could be applied either to the initial application 
or to the last produced optimal version. The latter case 
should be better since it is supposed to converge much 
quicker. Figure 4, illustrates the evolution in optimization. 
The evolutionary pattern describes an endless optimization 
loop, based on the relationship between the abstract 
program model (APM), the concrete program model 
(CPM) and their transformations. 
 

 

Fig. 4  Application Transformation Evolution. 

The initial model serves as a template to construct an 
optimal concrete program model. The new program model 
and its execution enable to collect new data for the next 
cycle of evolution. The new program model can depend 
on: 

• The old model (CPMi-1) – helps reducing the time to 
adapt (achieving system optimal operation); 

• The abstract (initial) model – provides a way in case 
the evolution of a specific model is impossible or the 
data does not fit well the abstract model can be used 
to restart the procedure; 

• The data, collected from the operational environment 
– ensures precise tuning of the optimizations. 

 
The length of an evolution period strictly depends on the 
specifics of the application. In addition, it depends on the 
time needed to collect sufficient information about 

interaction with the operational environment. The periods 
can be of various intervals of time. 
 
Model adaptability is the ability of the software system to 
be a subject of an evolutionary process. Adaptation is a 
time-dependent process. In situations where the time for 
adaptation is years, it would be irrational to think that it is 
useful. Therefore, an important property of the adaptability 
is its feasibility. A decisive characteristic of systems in 
terms of those facts is the adaptability of the model. 
Highly specialized applications are more difficult for 
adaptation, because of the specific knowledge, 
incorporated during development. 

5.3 Experimental Results 

System configuration is essentially moving constants 
outside the source code such that if they are changed no 
recompilation will be needed [21]. However, it introduces 
a significant overhead because of extra method calls and 
reading configuration files. 
 
Our approach to address this issue to collect statistics and 
perform application specialization. Moreover, in the 
particular case statistics may not be necessary, because big 
parts of the configuration files change only in exceptional 
circumstances. For instance, configuration parameters such 
as system’s base folder location are changed only at 
installation time. 
 
Generation of a copy with inlined configuration 
parameters speeds up the system dramatically. According 
to our tests cases (see Table 1 in Appendix) we achieve 
568–35725 orders of magnitude between SolidOpt 
configuration assembly and INI file and 6–520 orders of 
magnitude between SolidOpt configuration assembly and 
XML file performance improvement depending on the 
type of configuration parameters. As a bonus, we 
guarantee type safety because the algorithm is able to 
deduct the type based on its usage throughout the program. 
The comparison is reading between 1 and 100 parameters 
from: 

• INI file format configuration – we used a C# wrapper 
over Windows’s kernel function GetPrivateProfile-
String, responsible for “retrieving a string from the 
specified section in an initialization file”; 

• XML file format configuration – stored in the 
app.config file and accessible through application’s 
Properties.Settings.Default namespace; 

• Inlined in the program configuration – a C# 
assembly with constants which is JIT compiled on 
application’s startup. 

 
The domain-specific optimization parses the configuration 
file and produces an assembly. The assembly is embedded 
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in the application, replacing all configuration file reads. 
Thus, a new, specialized application is generated, i.e. the 
original application remains unchanged and a new more 
efficient one is generated. Following the terminology, the 
original application is the APM and the specialized one – a 
CPM. If the configuration file changes, the process is 
repeated. 
 
The improvement in productivity is evident. Making this 
module of production quality and integrating it in 
SolidOpt’s mainline is planned. Most applications depend 
on configuration files and the optimization will have a 
significant impact on the performance. 

6. Conclusion 

We presented SolidOpt – a multi-model software 
optimization framework. We described its theoretical 
scheme and showed some of its essential implementation 
aspects. We showed some of its key properties such as 
generality, openness, extensibility, flexibility and 
modularity. We examined advanced software optimization 
techniques and proved their usability. Some of the 
preliminary tests and research give us enough certainty to 
claim that the domain is very promising and further 
research and development should be carried on. Especially 
interesting is the research and development automated 
methods for optimization, based on statistical evaluation of 
the system operability (profiling). 
 
Important next steps to increase the robustness of the 
framework are the improvement of the AST and its 
compilation and decompilation to other models. This 
would enable more complex, close to source code 
transformations such as code refactoring. In addition, we 
are working on complex optimizations such as method 
devirtualization [20] and better support for domain-
specific optimizations. 
 
We plan to implement a TAC parser, which can build TAC 
triplets from a text file. It would help SolidReflector to 
provide a multi-model integrated development 
environment. In other words, users could choose to modify 
parts of the code or optimize it in a closer to the executable 
way, using the TAC form. This is also true for the rest of 
the models, however, they are scheduled with lower 
development priority. 
 
The analysis part of the optimization methods should be 
enhanced, in order to achieve better automation of the 
optimization methods for non-experts. More user-friendly 
tools such as SolidReflector should be developed for more 
domain-specific optimizations. 

Appendix 

The computations, present in Table 1 (see also Figure 5), 
read the configuration parameters between 105 to 107 times 
and measure the elapsed time. Then the results are 
tabulated to 105, adjusting the elapsed time. The parameter 
type is only relevant for the SolidOpt case whereas the 
reads from XML or INI are strings by design. 

Table 1: Domain-specific System Configuration Optimization. 

Test Type Parameters 
Elapsed Time 

(ms) 

SolidOpt Conf. 1 Integer 0.15 

INI File 1 Integer 5359 

XML File 1 Integer 78 

SolidOpt 1 String 3.1 

INI File 1 String 5344 

XML File 1 String 78 

SolidOpt Conf. 1 Integer, 1 String 17.2 

INI File 1 Integer, 1 String 11984 

XML File 1 Integer, 1 String 156 

SolidOpt Conf. 20 String 90.7 

INI File 20 String 121656 

XML File 20 String 1329 

SolidOpt Conf. 50 Integer, 50 String 1062 

INI File 50 Integer, 50 String 603406 

XML File 50 Integer, 50 String 7218 
 

 

Fig. 5  Comparison of Domain-specific System Configuration 
Optimization. 

0.001

0.01

0.1

1

10

100

1000

1 Int 1 Str 1 Int,
1 Str

20 Str 50 Int,
50 Str

SolidOpt INI File XML File

Se
co

nd
(s

) 

Legend: 

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 40

2015 International Journal of Computer Science Issues



References 
[1] FxCop, http://msdn.microsoft.com/en-us/library/bb429476. 

aspx, (visited on 5 December 2014). 
[2] StyleCop, http://stylecop.codeplex.com/, (visited on March 

2015). 
[3] Gendarme, http://www.mono-project.com/docs/tools+librar 

ies/tools/gendarme/, (visited on February 2015). 
[4] D. Hovemeyer, and W. Pugh, "Finding bugs is easy", 

SIGPLAN Notices, Vol. 39, No. 12, 2004, pp. 92-106. 
[5] PMD/Java, http://pmd.sourceforge.net, (visited on February 

2015). 
[6] J. Corbett, et al., "Bandera: Extracting Finite-state Models 

from Java Source Code", in Proceedings of the 22nd 
International Conference on Software Engineering, 2000, pp. 
439-448. 

[7] C. Artho, "Finding faults in multi-threaded programs", M.S. 
thesis, Institute of Computer Systems, Federal Institute of 
Technology, Zurich/Austin, 2001. 

[8] Jlint, http://artho.com/jlint, (visited on February 2015). 
[9] C. Flanagan, et al., "Extended Static Checking for Java", in 

Proceedings of the ACM SIGPLAN'02 Conference on PLDI, 
2002, pp. 234-245. 

[10] N. Rutar, C. Almazan, and J. Foster, "A Comparison of Bug 
Finding Tools for Java", in Proceedings of the 15th IEEE 
International Symposium on Software Reliability 
Engineering, 2004, pp. 245-256. 

[11] A. Srivastava, and A. Eustace, "ATOM: A System for 
Building Customized Program Analysis Tools", in 
Proceedings of the SIGPLAN'94 Conference on PLDI, 1994, 
pp. 196-205. 

[12] A. Srivastava, A. Edwards, and H. Vo, "Vulcan: Binary 
Transformation in a Distributed Environment", Microsoft 
Research Technical Report, 2001, MSR-TR-2001-50. 

[13] E. Tilevich, and Y. Smaragdakis, "Binary refactoring: 
Improving code behind the scenes", in Proceedings of 
ICSE'05, 2005, pp. 264-273. 

[14] R. Vallée-Rai, et al., "SOOT – a Java Optimization 
Framework", in CASCON'99, 1999, pp. 125-135. 

[15] C. Lattner, and V. Adve, "LLVM: A Compilation 
Framework for Lifelong Program Analysis & 
Transformation", in Proceedings of the International 
Symposium on Code Generation and Optimization, 2004, pp. 
75-86. 

[16] M. Fowler, et al, Refactoring: Improving the Design of 
Existing Programs, Addison Wesley Longman Inc., 1999. 

[17] D. Low, "Protecting Java Code via Code Obfuscation", 
ACM Crossroads, Vol. 4, No. 3, 1998, pp. 21-23. 

[18] A. Varde, et al., "Comparing mathematical and heuristic 
approaches for scientific data analysis", ACM Artificial 
Intelligence for Engineering Design, Analysis and 
Manufacturing, Vol. 22, No. 1, 2008, pp. 53-69. 

[19] V. Vassilev, M. Vassilev, and P. Petrova, "SolidReflector: A 
multistage, Interactive, Decompilation Framework", in 
International Conference From DeLC to VelSpace, 2014, pp. 
49-58. 

[20] K. Ishizaki, et al., "A Study of Devirtualization Techniques 
for a Java Just-In-Time Compiler", in Proceedings of the 
15th ACM SIGPLAN Conference on OOPSLA, 2000, pp. 
294-310 

[21] A. Penev, D. Dimov, and D. Kralchev, "Acceleration of 
structured and heterogeneous configuration of the 

applications", in Proceedings 36th conference of Union of 
Bulgarian Mathematicians, 2007, pp. 327-331. 

[22] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: 
Principles, Techniques, and Tools (2nd Edition), Addison 
Wesley Longman Publishing Co. Inc., Boston, 2006. 

[23] ECMA Team, Standard ECMA-335 (6th Edition), ECMA 
International, Geneva, Switzerland, 2012. 

 
Vassil Vassilev is pursuing his PhD degree in Computing at the 
University of Plovdiv “Paisii Hilendarski”, Bulgaria. In 2010 he 
completed his MSc degree in “Software Technologies” and in 2009 
a BSc degree in “Informatics” at the same institution. Vassil has 
around 5 years work experience at CERN. Currently, his research 
interests are in the area of programming languages design and 
implementation and software optimization. He is a member of the 
ACM. 
 
Alexander Penev received his PhD degree in Computing at the 
University of Plovdiv “Paisii Hilendarski”, Bulgaria. In 1996, he 
completed his MSc degree in “Mathematics – specialization 
Informatics” at the same institution. Alexander has over 20 years 
work experience at University of Plovdiv as an assistant professor. 
Currently, his research interests are in the area of computer 
graphics, programming languages design and implementation, and 
software optimization. 
 
Martin Vassilev received an MSc in “Software technologies” in the 
University of Plovdiv in 2013. He completed his BSc in 
"Informatics" a year earlier. Martin has a broad set of interests in 
the field of software technologies. He is a Student member of the 
ACM. 

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 41

2015 International Journal of Computer Science Issues




