

Hybrid Algorithm using Genetic Algorithm and Cuckoo Search

Algorithm for Job Shop Scheduling Problem

Ala’a Abu-Srhahn1 and Muhannad Al-Hasan2

 1,2Computer Science Department, Zarqa University

Zarqa 13132, Jordan

Abstract
Job shop scheduling is an important and computationally

difficult problem. The problem of job scheduling is known to be

NP-complete. Genetic algorithm (GA) is one of the widely used

techniques for constrained optimization. And its produce good

results compared to other techniques. A disadvantage of GA,

though, is that they easily become trapped in the local minima.

In this paper, a Cuckoo Search Optimizer (CSO) is used along

with a GA in order to avoid the local minima problem and to

benefit from the advantages of both types of algorithms, 2-opt

operation is adopted to improve the results. It minimizes the

makespan and the scheduling can be used in scientific computing

and high power computing. Our results have been compared

with Ant Colony Optimization Algorithm (ACO) to show the

importance of the proposed algorithm.

Keywords: Job shop scheduling, cuckoo search optimizer,

genetic algorithm, makespan, Ant Colony Optimization

Algorithm.

1. Introduction

One of the most well-known problems in both fields of

production management and combinatorial optimization is the

Job Shop Scheduling Problem (JSSP). In this paper n-by-m

JSSP has been described as follows: our objective is to minimize

the completion time of processing all jobs by scheduling n jobs

on m machines. Each job comprises a set of operations which

must each be done with predetermined processing sequence for

different specified processing times, in a given job-dependent

order. Operations of the same job must be on each machine

exactly once, so different tasks of the same job are not processed

concurrently [17]. In order to increasing production efficiency,

reducing cost and improving product quality we need efficient

methods for solving JSSP. Moreover, JSSP can be described as a

problem of the class of NP-complete problems. In the general

JSSP, there are n jobs which are to be processed on a set of m

machines and there is no any exact algorithm can be applied to

solve JSSP even when the problem scale is small, so researches

have drawn the attention of JSSP because of its theoretical,

computational, and empirical significance since it was

introduced [9][14].

Since the JSSP is a complex topic, a dynamic programming is

only applicable to modest scale problems by exact techniques,

such as branch and bound [5]. Most of such techniques failed to

obtain good solutions in case of trying to solve large scale

problems because of the huge memory and lengthy

computational time required. On the other hand, there are

attractive alternatives to solve large scale problems such as,

heuristic methods, include dispatching priority rules, shifting

bottleneck approach and Lagrangian relaxation. With the

development of new techniques from the field of artificial

intelligence, much attention has been devoted to meta-heuristics.

Meta-heuristics is one of the main classes of the construction and

improvement heuristic, such as tabu search and simulated

annealing. Another main class of meta-heuristic is the population

based heuristic. Population based algorithms include Genetic

Algorithm (GA) [11], Particle Swarm Optimization (PSO) [8],

and et al., are such Successful examples.

In this paper, a new hybrid algorithm is proposed, combining the

advantages of GAs and the CSOs to solve the JSSP.

The main contribution of this paper is,

 The proposal of a Hybrid algorithm which combines

the advantage of GA and CSO.

 The performance comparison of the Hybrid algorithm

with Ant colony optimization, and GA.

2. Problem Definition

An efficient algorithm is necessary for solving

combinatorial optimization problem. In this Paper, a

hybrid algorithm has been proposed for job scheduling

which will combine the advantages of CSO and GA

[1][15].

Definition: we have N jobs and M machines. Each and

every job has its own order of execution that has to be

executed on M machines. Each job has its own starting

time[18]. Our algorithm objective is to minimize the

makespan and it can also be used for job scheduling in

scientific and high power computing [8].

Some of the assumptions for the job scheduling problem

are:

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 288

2015 International Journal of Computer Science Issues

 Jobs should be finite set.

 Each and every job contains a series of operations

that needs to be performed.

 Machines should be finite set.

 All the machines are capable of handling only

one operation at a time.

Some of the constraints are:

 No job should visit the same machines twice.

 No condition among operation of various jobs.

 Pre-emption type of operation is not allowed.

 A single machine is capable of handling

individual job at a time.

No machine fails during its operation.

3. Metaheuristic Algorithms

A metaheuristic can be defined as an iterative generation

process that guides a subordinate heuristic by combining

intelligently different concepts to explore and exploit the

search International Journal of Advanced Science and

Technology space [11][13]. To find nearly optimal

solutions, information should be structured using learning

strategies [10]. This section describes the selected

algorithms, CSO, GA, and ACO [19].

3.1 Cuckoo Search Optimizer Algorithm (CSO)

Yang and Deb (2009, 2010) developed the CSO algorithm

based on the Lévy flight behaviour and brood parasitic

behaviour [8]. The CSO algorithm has been proven to

deliver excellent performance in function optimization,

engineering design, neural network training, and other

continuous target optimization problems and has solved

the knapsack and nurse-scheduling problems.

Cuckoo birds have an aggressive reproduction in which

females hijack and lay their fertilized eggs in other birds’

nests. If the host bird discovers that the egg does not

belong to it, it either throws away or abandons its nest and

builds a new one elsewhere [11].

According to Yang and Deb (2010), the CSO algorithm is

based on three assumptions:

 Each cuckoo lays one egg at a time and places it
in a randomly chosen nest.

 The best nests with the highest quality of eggs
(solutions) carry over to the next generations.

 The number of available host nests is fixed, and a
host has a probability)1,0(ap of discovering

an alien egg. In this case, the host bird either

throws out the egg or abandons the nest to build a
new one in a different location.

The third assumption can be approximated as a fraction:

ap of the n nests replaced with new nests (with new

random solutions at different locations).

Lévy flight behaviour, rather than simple random walk

behaviour, can be used to increase the performance of the

CSO. The following formula can describe Lévy flight

behaviour when generating new solutions)1(txi for the

i
th

 cuckoo [10]:

)(')()1(vyletxtx ii (1)

Where 0 is the final size that has to be related to the

problem of interest scale, and the product refers to an

entry-wise multiplication.

The formula that describes the Lévy flight behaviour in

which the step lengths fit a probability distribution is:
 tuvyle' (2)

According to this formula, cuckoo birds’ consecutive

jumps or steps mainly form a random walking process that

corresponds to a power-law step-length distribution with a

heavy tail.

3.2 Genetic Algorithm (GA)

Artificial intelligence research within the computer science

field produced GA, a heuristic search tool designed to

mimic the natural process of evolution. This heuristic, or

so-called metaheuristic, is commonly used to generate

useful solutions for optimization and search problems,

often employing the natural techniques of evolution, such

as inheritance, mutation, selection and crossover. [10][12]

John Holland developed the formal theory of GA in the

1970s, and continued improvements to the price and

performance value have made GA attractive for many

problem-solving optimization methods [11]. GA have

been shown to perform well in mixed (continuous and

discrete) combinatorial problems. Although GA easily

become trapped in local optima, they are computationally

expensive and a probabilistic one. A GA begins with a set

of solutions represented by a group of chromosomes called

the population. A new population can be generated by

International Journal of Advanced Science and

Technology borrowing solutions from the current

population or by applying genetic operators such as

selection, crossover, and mutation to current population.

The new population must be better than the old one [9].

The function of genetic operators warrants more detailed

attention. The selection operator picks two parent

chromosomes from the population based on their fitness to

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 289

2015 International Journal of Computer Science Issues

participate in the next operations, crossover and

mutation[16]. These steps are considered the most

important in a GA because they have a positive impact on

the overall performance. First, parents form new offspring

(children) through crossover probability. Shortly after, the

mutation operator randomly exchanges alleles, as occurs in

nature. To work well, GA require the definition of three

important aspects [11]: the objective function, the genetic

representation and its implementation, the genetic

operators and their implementation.

Algorithm 1 Describes the genetic algorithm

Began:

 choose initial population.

 Initialize max_genration

 evaluate each individual's fitness.

 determine population's average fitness.

 While (i< max_genration)

 select best-ranking individuals to reproduce.

 mate pairs at random.

 apply crossover operator.

 apply mutation operator.

 evaluate each individual's fitness.

 determine population's average fitness.

 i=i+1.

 End

End

3.3 Ant Colony optimization Algorithm (ACO)

The concept of ACO first emerged in the early 1990s [4]

with the goal to simulate the behaviour of ants in nature:

Ants wander randomly until they find food and then return

to their colony, all the while laying down pheromone

trails, or chemical substances that attract other ants

searching for food. Once ants identify trails leading to

food, they stop wandering randomly and follow the trail

with the most pheromones. The ants continue to lay down

pheromones [6], reinforcing this path. A path’s

attractiveness determines the quantity of pheromones. The

more attractive a trail, the more ants travel it while laying

down more pheromones, thus attracting even more other

ants [7]. Since pheromones operate through evaporation,

this process depends on the time. Whenever a path ceases

to lead to food and is no longer used, the pheromones

evaporate, and ants move onto other trails.

Algorithm 2 Introduces the ant Colony Optimization

algorithm

Began:

 Initialize the base attractiveness, τ, and visibility, η, for

each edge;

 for (i < IterationMax)

 for each ant do

 choose probabilistically (based on previous

equation) the next state to move into.

 add that move to the tabu list for each ant.

 repeat until each ant completed a solution.

 End

 for each ant that completed a solution do

 update attractiveness τ for each edge that the ant

traversed.

 End

 if (local best solution better than global solution)

 save local best solution as global solution;

 End

 End

 End

4. A hybrid algorithm for jssp

The suggested algorithm combines the advantages of GA

and CSO and overcomes the main disadvantage of GA

easily becoming trapped in the local minima through the

CSO, which performs the local search faster than the GA.

Additionally; the CSO has only a single parameter, along

with population size [3]. A 2-opt operation is adopted to

improve and promote the results. The main steps are

introduced in algorithm 3.

Algorithm 3: Solving JSSP using the suggested hybrid

algorithm.

Begin

 Initialization - Job creation time, starting time

 Find out the number of task T that need to be scheduled.

 Initialization of nests and random initial solution

 Optimize initial solutions and saved in the bulletin

board.

 Evaluate the makespan (fitness) of solutions Fi;

 While (t <MaxGeneration)

 Get a cuckoo randomly by Levy flights;

 Evaluate its quality/fitness Fi;

 Choose a nest among n (say, j) randomly;

 If Fi<Fj

 Replace j by the new solution;

 End

 GA operations {

 Selection: create matting pool

 Production: Mutation (flip, swap, slide)

 Evaluate population };

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 290

2015 International Journal of Computer Science Issues

 Host birds abandon pa in(0,1)nests, and search pa

new nests;

 Refresh the bulletin board and keeping the best

solutions (and nests).

 Rank the solutions, and find the best (solution).

 t =t +1;

 End While

End

5. Experimental Results

In order to show the importance of the proposed

algorithm, it has applied to different dataset then used

CSO and GA for comparison in terms of makespan and

time needed to run the algorithms, the table 1 show the

data set that contain 2 job and 3 machines.

Table 1: Data set of 2 jobs and 3 machines

Job 1 2

Operation 1 2 3 1 2 3

Machine

1 5 6

2 7 8

3 10 12

Figures 1, 2, and 3 show the result of apply the algorithms

into the dataset shown in the table 1.

Fig. 1 Final results of hybrid algorithm.

Fig. 2 Final results of genetic algorithm (GA).

Fig. 3 Final results of Ant Colony Optimization Algorithm (ACO).

Table 2 shows the time, and makespan of GA, ACO, and

hybrid algorithm.

Table 2: Time and makespan of the algorithms

Hybrid

Algorithm
GA ACO

Time 0.056522 0.133070 0.138325

Makespan 26 28 28

The algorithms are applied on some well-studied

benchmarks. In this paper, some problems that were

contributed to the OR-Library are selected. The instances

FT06, FT10, and FT20 are designed by Fisher and

Thompson (1963), and instances LA01 to LA16 are

designed by Lawrence (1984). The designers used them to

compare performances of some heuristics and found these

problems to be particularly difficult [1][2]. So these

problems have been used as benchmarks for study with

different methods by many researches[9].the table below

show the comparisons of makespan between the proposed

algorithm and others algorithm.

Table 3: Comparisons of makespan between the proposed algorithm and

other algorithms

Ins Size Hybrid

Algorithm

GA ACO

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 291

2015 International Journal of Computer Science Issues

4. Conclusions

For the JSSP, makespan is one of the most important

factors that the algorithm try to minimize it. A hybrid

algorithm to minimize the makespan for JSSP has been

presented, GA, and ACO utilized for the same purpose.

The algorithms were tested using well known datasets in

order to verify the validity of the proposed algorithm. The

results show that the hybrid algorithm yields the best

solutions as measured by makespan. The experimental

results show that the proposed algorithm is effective and

performs better than the compared algorithms.

References
[1] A. Abraham, R. Buyya, and B. ,Nath, B., “Nature’s

heuristics for scheduling jobs in computational Grids”,

Proceedings of the 8th IEEE International Conference on

Advanced Computing and Communication, 2000, pp. 45–

52.

[2] A. Abu-Srhan, and Al Daoud E., “A Hybrid Algorithm

Using a Genetic Algorithm and Cukoo Search Algorithm to

Solve the Traveling Salesman Problem and its Application

to Multiple Sequence Aligment,” International Journal of

Advanced Science and Technology, vol. 61, no.4, 2013, pp.

29-38.

[3] B. Al-Dulaimi, and H. Ali, “Enhanced Traveling Sale sman

Problem Solving by Genetic Algorithm Technique

(TSPGA),” World Academy of Science, Engineering and

Technology, vol. 14, 2008, pp. 296-302.

[4] R. Babukartikl, and P. Dhavachelvan, “Hybrid Algorithm

using the advantage of ACO and Cuckoo Search for Job

Scheduling,” International Journal of Information

Technology Convergence and Services (IJITCS), 2012,

Vol.2, no.4.

[5] I. Brezina, and ková Z., “Solving the Travelling Salesman

Problem Using the Ant Colony,” Management Information

Systems, 2011, vol. 6, no. 4, pp. 10-14.

[6] J. Chen , et.al., “Flexible job shop scheduling with parallel

machines using Genetic Algorithm and Grouping Genetic

Algorithm,”, Expert Systems with applications, 2012, Vol.

39.

[7] S. Balin, “Non-identical parallel machine scheduling using

genetic algorithm”, Expert Systems with applications, 2011,

Vol 38, no.6, pp. 6814-6821.

[8] J. Magalhães-Mendes, ”A Comparative Study of Crossover

Operators for Genetic Algorithms to Solve the Job Shop

scheduling Problem”, WSEAS transactions on computers,

Vol. 12, No. 4, 2013, pp. 164-173.

[9] H. Manar, and F. Shameem, “A Survey of Genetic

Algorithms for the University Timetabling Problem”,

International Conference on Future Information Technology

IPCSIT, 2011, Vol.13,.

[10] M. Melanie, “An Introduction to Genetic Algorithms”, MIT

Press, 1996.

[11] M. Omar, A. Baharum, and Y. Abu Hasan, “A job-shop

scheduling problem (jssp) using genetic algorithm (ga),”

The 2nd IMT-GT Regional Conference on Mathematics,

Statistics and Applications, 2006, pp 13-15.

[12] I. Osman, and G. Laporte, “Metaheuristics:A bibliography,”

Annals Operations Research, vol. 63, 1996, pp. 513-623.

[13] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic

algorithm for the flexible Job-shop Schduling”, Computer

& Operations Research, Vol 35, no. 10, 2008, pp. 3202-

3212.

[14] Z. Pooranian, M. Shojafar, J. Abawajy, and M. Singhal,

"GLOA: A New Job Scheduling Algorithm for Grid

Computing," International Jorunal of Interactive

Multimedia and Artificial Intelligence, vol. 2, no. 1, 2013,

pp. 59-64.

[15] R. Qing-dao-er-ji, and Y. Wang, “A new hybrid genetic

algorithm for job shop scheduling problem”, Computer &

Operations Research, Vol 39, no. 10, 2012, pp. 2291-2299.

[16] S. Sumathi, and P. Surekha,“PSO and ACO based approach

for solving combinatorial Fuzzy Job Shop Scheduling

Problem,” International Journal of Computer Technology

and Applications, Vol 2 ,no. 1, 2011, pp.112-120.

[17] L. Sun, X. Cheng, and Y. Liang, “ Solving Job Shop

Scheduling Problem Using Genetic Algorithm with Penalty

Function,” International Journal of Intelligent Information

Processing, vol. 1, no. 2, 2010, pp. 65-77.

[18] E. Valian, S. Mohanna, and S. Tavakoli, “Improved Cuckoo

Search Algorithm for Global Optimization”, International

Journal of Communications and Information Technology,

IJCIT, vol. 1, no. 1, 2011, pp. 1-62,.

[19] X. Yang, and S. Deb, “Cuckoo Search via Levy Flights,”

Proceedings of World Congress on Nature & Biologically

Inspired Computing, 2009, pp. 210-225,.

Alaa Abu Srhan Received her BSc From Al Balqa University,
Faculty of Engineering, MSc from Zarqa University, Faculty of
Science and Information Technology, Jordan, 2014. Her research
interest includes optimization, machine learning and image
processing.

Muhannad Al-Hasan received his BSc from King Saud
University, 1990, MSc in Medical Physics from Surrey University,
UK, 1991, and his PhD in Computer Science from University of
East Anglia, UK, 2006. He is assistant professor. His research
interests include image processing and Bioinformatics.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 292

2015 International Journal of Computer Science Issues

