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Abstract 
Job shop scheduling is an important and computationally 

difficult problem.  The problem of job scheduling is known to be 

NP-complete. Genetic algorithm (GA) is one of the widely used 

techniques for constrained optimization.  And its produce good 

results compared to other techniques. A disadvantage of GA, 

though, is that they easily become trapped in the local minima. 

In this paper, a Cuckoo Search Optimizer (CSO) is used along 

with a GA in order to avoid the local minima problem and to 

benefit from the advantages of both types of algorithms, 2-opt 

operation is adopted to improve the results. It minimizes the 

makespan and the scheduling can be used in scientific computing 

and high power computing. Our results have been compared 

with Ant Colony Optimization Algorithm (ACO) to show the 

importance of the proposed algorithm.   

Keywords: Job shop scheduling, cuckoo search optimizer, 

genetic algorithm, makespan, Ant Colony Optimization 

Algorithm. 

1. Introduction 

One of the most well-known problems in both fields of 

production management and combinatorial optimization is the 

Job Shop Scheduling Problem (JSSP). In this paper n-by-m 

JSSP has been described as follows: our objective is to minimize 

the completion time of processing all jobs by scheduling n jobs 

on m machines. Each job comprises a set of operations which 

must each be done with predetermined processing sequence for 

different specified processing times, in a given job-dependent 

order. Operations of the same job must be on each machine 

exactly once, so different tasks of the same job are not processed 

concurrently [17]. In order to increasing production efficiency, 

reducing cost and improving product quality we need efficient 

methods for solving JSSP. Moreover, JSSP can be described as a 

problem of the class of NP-complete problems. In the general 

JSSP, there are n jobs which are to be processed on a set of m 

machines and there is no any exact algorithm can be applied to 

solve JSSP even when the problem scale is small, so researches 

have drawn the attention of JSSP because of its theoretical, 

computational, and empirical significance since it was 

introduced [9][14]. 

 

Since the JSSP is a complex topic, a dynamic programming is 

only applicable to modest scale problems by exact techniques, 

such as branch and bound [5]. Most of such techniques failed to 

obtain good solutions in case of trying to solve large scale 

problems because of the huge memory and lengthy 

computational time required. On the other hand, there are 

attractive alternatives to solve large scale problems such as, 

heuristic methods, include dispatching priority rules, shifting 

bottleneck approach and Lagrangian relaxation. With the 

development of new techniques from the field of artificial 

intelligence, much attention has been devoted to meta-heuristics. 

Meta-heuristics is one of the main classes of the construction and 

improvement heuristic, such as tabu search and simulated 

annealing. Another main class of meta-heuristic is the population 

based heuristic. Population based algorithms include Genetic 

Algorithm (GA) [11], Particle Swarm Optimization (PSO) [8], 

and et al., are such Successful examples. 

In this paper, a new hybrid algorithm is proposed, combining the 

advantages of GAs and the CSOs to solve the JSSP. 

 

The main contribution of this paper is, 

 The proposal of a Hybrid algorithm which combines 

the advantage of GA and CSO. 

 The performance comparison of the Hybrid algorithm 

with Ant colony optimization, and GA. 

2. Problem Definition 

An efficient algorithm is necessary for solving 

combinatorial optimization problem. In this Paper, a 

hybrid algorithm has been proposed for job scheduling 

which will combine the advantages of CSO and GA 

[1][15]. 

Definition: we have N jobs and M machines. Each and 

every job has its own order of execution that has to be 

executed on M machines. Each job has its own starting 

time[18]. Our algorithm objective is to minimize the 

makespan and it can also be used for job scheduling in 

scientific and high power computing [8]. 

Some of the assumptions for the job scheduling problem 

are: 
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 Jobs should be finite set. 

 Each and every job contains a series of operations 

that needs to be performed. 

 Machines should be finite set. 

 All the machines are capable of handling only 

one operation at a time. 

 

Some of the constraints are: 

 No job should visit the same machines twice. 

 No condition among operation of various jobs. 

 Pre-emption type of operation is not allowed. 

 A single machine is capable of handling 

individual job at a time. 

No machine fails during its operation. 

3. Metaheuristic Algorithms 

A metaheuristic can be defined as an iterative generation 

process that guides a subordinate heuristic by combining 

intelligently different concepts to explore and exploit the 

search International Journal of Advanced Science and 

Technology space [11][13]. To find nearly optimal 

solutions, information should be structured using learning 

strategies [10]. This section describes the selected 

algorithms, CSO, GA, and ACO [19]. 

3.1 Cuckoo Search Optimizer Algorithm (CSO) 

Yang and Deb (2009, 2010) developed the CSO algorithm 

based on the Lévy flight behaviour and brood parasitic 

behaviour [8]. The CSO algorithm has been proven to 

deliver excellent performance in function optimization, 

engineering design, neural network training, and other 

continuous target optimization problems and has solved 

the knapsack and nurse-scheduling problems.  

Cuckoo birds have an aggressive reproduction in which 

females hijack and lay their fertilized eggs in other birds’ 

nests. If the host bird discovers that the egg does not 

belong to it, it either throws away or abandons its nest and 

builds a new one elsewhere [11].  

According to Yang and Deb (2010), the CSO algorithm is 

based on three assumptions:  

 Each cuckoo lays one egg at a time and places it 
in a randomly chosen nest.  

 The best nests with the highest quality of eggs 
(solutions) carry over to the next generations.  

 The number of available host nests is fixed, and a 
host has a probability )1,0(ap of discovering 

an alien egg. In this case, the host bird either 

throws out the egg or abandons the nest to build a 
new one in a different location.  

The third assumption can be approximated as a fraction: 

ap  of the n nests replaced with new nests (with new 

random solutions at different locations).  

Lévy flight behaviour, rather than simple random walk 

behaviour, can be used to increase the performance of the 

CSO. The following formula can describe Lévy flight 

behaviour when generating new solutions )1( txi for the 

i
th

 cuckoo [10]:  

)(')()1(  vyletxtx ii   (1)
 

Where 0 is the final size that has to be related to the 

problem of interest scale, and the product   refers to an 

entry-wise multiplication.  

The formula that describes the Lévy flight behaviour in 

which the step lengths fit a probability distribution is: 
 tuvyle'  (2)

 

According to this formula, cuckoo birds’ consecutive 

jumps or steps mainly form a random walking process that 

corresponds to a power-law step-length distribution with a 

heavy tail. 

3.2 Genetic Algorithm (GA) 
 

Artificial intelligence research within the computer science 

field produced GA, a heuristic search tool designed to 

mimic the natural process of evolution. This heuristic, or 

so-called metaheuristic, is commonly used to generate 

useful solutions for optimization and search problems, 

often employing the natural techniques of evolution, such 

as inheritance, mutation, selection and crossover. [10][12] 

John Holland developed the formal theory of GA in the 

1970s, and continued improvements to the price and 

performance value have made GA attractive for many 

problem-solving optimization methods [11]. GA have 

been shown to perform well in mixed (continuous and 

discrete) combinatorial problems. Although GA easily 

become trapped in local optima, they are computationally 

expensive and a probabilistic one. A GA begins with a set 

of solutions represented by a group of chromosomes called 

the population. A new population can be generated by 

International Journal of Advanced Science and 

Technology borrowing solutions from the current 

population or by applying genetic operators such as 

selection, crossover, and mutation to current population. 

The new population must be better than the old one [9].  

The function of genetic operators warrants more detailed 

attention. The selection operator picks two parent 

chromosomes from the population based on their fitness to 
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participate in the next operations, crossover and 

mutation[16]. These steps are considered the most 

important in a GA because they have a positive impact on 

the overall performance. First, parents form new offspring 

(children) through crossover probability. Shortly after, the 

mutation operator randomly exchanges alleles, as occurs in 

nature. To work well, GA require the definition of three 

important aspects [11]: the objective function, the genetic 

representation and its implementation, the genetic 

operators and their implementation.  

Algorithm 1 Describes the genetic algorithm 

Began:  

  choose initial population.  

  Initialize max_genration  

  evaluate each individual's fitness.  

  determine population's average fitness.  

  While ( i< max_genration)  

     select best-ranking individuals to reproduce.  

     mate pairs at random.  

     apply crossover operator.  

     apply mutation operator.  

     evaluate each individual's fitness.  

    determine population's average fitness.  

    i=i+1.  

  End  

End 

 

3.3 Ant Colony optimization Algorithm (ACO) 
 

The concept of ACO first emerged in the early 1990s [4] 

with the goal to simulate the behaviour of ants in nature: 

Ants wander randomly until they find food and then return 

to their colony, all the while laying down pheromone 

trails, or chemical substances that attract other ants 

searching for food. Once ants identify trails leading to 

food, they stop wandering randomly and follow the trail 

with the most pheromones. The ants continue to lay down 

pheromones [6], reinforcing this path. A path’s 

attractiveness determines the quantity of pheromones. The 

more attractive a trail, the more ants travel it while laying 

down more pheromones, thus attracting even more other 

ants [7]. Since pheromones operate through evaporation, 

this process depends on the time. Whenever a path ceases 

to lead to food and is no longer used, the pheromones 

evaporate, and ants move onto other trails.  

Algorithm 2 Introduces the ant Colony Optimization 

algorithm  

Began:  

   Initialize the base attractiveness, τ, and visibility, η, for 

each edge;  

       for (i < IterationMax)  

         for each ant do  

           choose probabilistically (based on previous 

equation) the next state to move into.  

          add that move to the tabu list for each ant.  

         repeat until each ant completed a solution.  

      End  

       for each ant that completed a solution do  

         update attractiveness τ for each edge that the ant 

traversed.  

      End  

          if (local best solution better than global solution)  

           save local best solution as global solution;  

         End  

      End  

 End 

4. A hybrid algorithm for jssp 

 

The suggested algorithm combines the advantages of GA 

and CSO and overcomes the main disadvantage of GA 

easily becoming trapped in the local minima through the 

CSO, which performs the local search faster than the GA. 

Additionally; the CSO has only a single parameter, along 

with population size [3]. A 2-opt operation is adopted to 

improve and promote the results. The main steps are 

introduced in algorithm 3. 

Algorithm 3: Solving JSSP using the suggested hybrid 

algorithm.   

Begin  

   Initialization - Job creation time, starting time 

   Find out the number of task T that need to be scheduled. 

   Initialization of nests and random initial solution 

   Optimize initial solutions and saved in the bulletin 

board.  

   Evaluate the makespan (fitness) of solutions Fi;  

       While (t <MaxGeneration)  

         Get a cuckoo randomly by Levy flights;  

               Evaluate its quality/fitness Fi;  

         Choose a nest among n (say, j) randomly;  

       If Fi<Fj 

          Replace j by the new solution;  

       End  

         GA operations {  

           Selection: create matting pool  

           Production: Mutation (flip, swap, slide)  

           Evaluate population };  
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         Host birds abandon pa in(0,1)nests, and search pa 

new nests;  

         Refresh the bulletin board and keeping the best 

solutions (and nests).  

         Rank the solutions, and find the best (solution).  

        t =t +1;  

     End While  

End 

 

5. Experimental Results 

 

In order to show the importance of the proposed 

algorithm, it has applied to different dataset then used 

CSO and GA for comparison in terms of makespan and 

time needed to run the algorithms, the table 1 show the 

data set that contain 2 job and 3 machines. 

 
Table 1: Data set of 2 jobs and 3 machines 

Job 1 2 

Operation 1 2 3 1 2 3 

 

Machine 

1 5   6   

2  7    8 

3   10  12  

 

Figures 1, 2, and 3 show the result of apply the algorithms 

into the dataset shown in the table 1. 

 

 
 

Fig. 1  Final results of hybrid algorithm. 

 

 
 

Fig. 2  Final results of genetic algorithm (GA). 

 

 
 

Fig. 3  Final results of Ant Colony Optimization Algorithm (ACO). 

Table 2 shows the time, and makespan of GA, ACO, and 

hybrid algorithm. 

 
Table 2: Time and makespan of the algorithms 

 
Hybrid 

Algorithm 
GA ACO 

Time 0.056522 0.133070 0.138325 

Makespan 26 28 28 

 

 

The algorithms are applied on some well-studied 

benchmarks. In this paper, some problems that were 

contributed to the OR-Library are selected. The instances 

FT06, FT10, and FT20 are designed by Fisher and 

Thompson (1963), and instances LA01 to LA16 are 

designed by Lawrence (1984). The designers used them to 

compare performances of some heuristics and found these 

problems to be particularly difficult [1][2]. So these 

problems have been used as benchmarks for study with 

different methods by many researches[9].the table below 

show the comparisons of makespan between  the proposed 

algorithm and others algorithm. 

 

Table 3: Comparisons of makespan between the proposed algorithm and 

other algorithms 

Ins Size Hybrid 

Algorithm 

GA ACO 
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4. Conclusions 

For the JSSP, makespan is one of the most important 

factors that the algorithm try to minimize it. A hybrid 

algorithm to minimize the makespan for JSSP has been 

presented, GA, and ACO utilized for the same purpose. 

The algorithms were tested using well known datasets in 

order to verify the validity of the proposed algorithm. The 

results show that the hybrid algorithm yields the best 

solutions as measured by makespan. The experimental 

results show that the proposed algorithm is effective and 

performs better than the compared algorithms.  
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