
Interoperable Distributed Data Warehouse Components

Mohammed Awad1 and Issam Jebreen2

 1 Software Engineering Department, University of Palestine, Gaza-Alzahra

City, Gaza Strip, Palestine

2 Software Engineering Department, Applied Science University, Amman

City, Jordan

Abstract
Extraction, Transformation and Loading (ETL) are the major

functionalities in data warehouse (DW) solutions. Lack of

component distribution and interoperability is a gap that leads to

many problems in the ETL domain, because these ETL

components are tightly-coupled in the current ETL framework.

Furthermore, complexity of components extensibility is another

gap in the ETL area, because of the same tight-coupling reason.

The missing extensibility feature causes impediments to add new

components to the current ETL framework; to meet special

business needs.

This paper discusses how to distribute the Extraction,

Transformation and Loading components so as to achieve

distribution and interoperability of these ETL components. In

addition, it shows how the ETL framework can be extended

easier. To achieve that, Service Oriented Architecture (SOA) is

adopted to address the mentioned missing features of distribution

and interoperability by restructuring the current ETL framework.

Moreover, a Classified-Fragmentation component to enhance the

report generation speed is added to the new framework as a proof

of the extensibility concept. Therefore, this paper came out with

a conceptual framework for interoperable distributed ETL

components. This framework is defined to be a common ETL

framework, which is valid for any ETL implementation that

chooses this framework as a base. Moreover, the theoretical

framework is validated by experts from industrial companies.

Keywords: Data Warehouse, Distributed Components, ETL,

SOA.

1. Introduction

Data warehouses are complex systems employed to

integrate the organization’s data from several distributed

and heterogeneous sources. The heterogeneous sources are

located in different locations far from each other’s [2].

Each location has its own specific infrastructure for the

systems running in that location, for example, it has its

own operating system and deployment infrastructure such

as .NET, J2EE, or IBM mainframe. Each of those

infrastructures needs a special ETL tool to be compatible

with. Furthermore, each data source needs a complete ETL

tool to be installed in the same location of the source,

while sometimes only the Extract function is needed to

extract data from this source. This results in a problem of

an increase in the ETL licenses needed for a DW project

and an increase in the complexity for the ETL user due to

the redundant.

Sometimes, due to the complexity, long learning curve of

the available ETL tools, and difficulty to achieve some

extensibility in terms of additional functionalities; some

organizations prefer to turn to in-house development to

perform ETL tasks[2], which increases the cost and effort

of the data warehouse project. Furthermore, tightly

coupled components of software require teams of

architects and designers to untangle the complex

implications of change in the support of new business

requirements or system enhancements[3]. As a result of

that, tightly coupled components cause problems in terms

of cost, maintenance, enhancement, and reusability of the

ETL components. This leads to the necessity that the

architecture of the software framework has to consider the

component coupling factor and how much loosely should

the components be coupled.

The current ETL framework lacks of components

flexibility and loose coupling[4-9]. That results in

complications to add new components to the ETL tools to

support special business needs. For instance, although data

warehouses provide an appropriate infrastructure for

efficient querying, reporting, mining, and other advanced

analysis techniques, the complexity of data warehouse

environments specially the ETL framework is rising every

day, and data volumes are growing at a significant pace,

which makes report generation relatively slow due to the

massive amount of data[2]. Data warehouse repositories

based on one central server often suffer from either storage

or computing bottlenecks, especially when complex

aggregates need to be stored permanently or computed on

demand. [10]refers to a high cost solution to the massive

data problem, which is cluster-type systems with large

numbers of worker nodes connected through high-speed

LAN. In addition to the high expenses, integrating existing

resources from several distant sites using this solution

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 275

2015 International Journal of Computer Science Issues

needs a system that efficiently organizes these resources in

a transparent manner, which sometimes is a challenge to

implement. Some implementations of the ETL frameworks

like “Pentaho Open Source Business Intelligence” include

a fragmentation feature like Pentaho “Partitioning”;

however, this feature does not classify data based on

certain conditions to fulfill specific business needs.

Furthermore, this fragmentation aims mainly to enable the

fact and the dimension tables in the data warehouse to be

separated among a cluster of servers[11]. That belongs to a

physical (hardware) solution of the performance problem,

and that solution is outside the scope of this research.

Therefore, an extensible ETL framework with loosely

coupled components can resolve this complication,

because, a specific component can easily be added as an

extension to the framework to resolve the performance

problem.

Administration of ETL tools in many data source locations

for the same project to extract data from many different

sources needs extra administration, communication and

maintenance effort[12], which is a problem resulted from

the reality that the administrators are often different

persons from one location to another and they could use

different ETL tools and do different configurations to

those tools. Furthermore, in the current ETL framework,

there are impediments to include ETL as a part of a

complete portal that manages the whole DW project[12],

because of lack of standards in the current ETL framework

to communicate with other components of the portal.

Based on that, there are gaps and missing features in the

current ETL framework summarized by lack of:

distribution, interoperability, loose coupling, extensibility,

and reusability of the ETL components. These gaps lead to

problems of the current ETL framework, which are:

complexity of extending the ETL tools to suit special

business needs, ETL administration complexity, an

increase of effort needed to implement a DW project,

impediments regarding ETL compatibility with different

administrator environments, an increase of the cost to

implement a DW project because of the increase of the

number of ETL licenses needed and the extra effort needed

to develop and use the ETL, and finally, the redundancy

problem of including all the ETL features in every ETL

administrator location due to the tightly coupled

architecture of the available ETL framework.Therefore, a

conceptual framework for ETL that includes the features of

component distribution and interoperability addresses the

problems highlighted in this section.

Based on the explored problems of ETL framework, an

enhancement to the current ETL framework by including

the features of component distribution and interoperability

will address the extensibility problem.SOA is adopted in

this research to address the mentioned missing distribution

and interoperability features by restructuring the current

ETL framework.

 In this paper, as a proof of the framework extensibility, a

Classified-Fragmentation component is added as an

extension to the enhanced ETL framework to solve the

relatively low speed report-generation of data warehouse

projects. This component is important to some companies

because data volumes are growing at a significant pace,

which makes report generation relatively slow due to the

massive amount of data. Some implementations of the ETL

framework like Pentaho Open Source Business

Intelligence include similar fragmentation components.

However, the fragmentation feature of those

implementations is tightly-coupled in the ETL tool and it is

not based on distribution and interoperability standards.

Furthermore, those types of fragmentations target mainly

to enable the fact and the dimension tables in the data

warehouse to be separated among a cluster of servers. That

belongs to the physical (hardware) solution of the

performance problem, but this paper concentrates on

adding a software-based and loosely-coupled Classified-

Fragmentation component to the ETL framework, as an

extension to it; to prove the availability of the extensibility

of the framework and to meet some special fragmentation

needs of an organization.

2. Current ETL Framework

The traditional ETL framework has common tightly-

coupled functionalities. Those functionalities, concepts

behind them, and relationships between them can be

concluded in one framework diagram as shown in Figure 1.

In the data layer, the data stores that are involved in the

overall process are depicted. On the left side, the original

data providers (typically, relational databases and files) are

shown. The data from these sources is extracted (as shown

in the upper left part of Figure 1) by Extraction routines.

Then, this data is propagated to the Data Staging Area

(DSA) where it is transformed and cleaned before being

loaded to the data warehouse. The data warehouse

repositories are depicted in the right part of Figure 1 and

comprise the target data stores. Eventually, the data

loading to the central warehouse is performed through the

loading routines depicted on the upper right part of Figure

1[4-7, 9, 13].

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 276

2015 International Journal of Computer Science Issues

Fig. 1 Traditional ETL Framework

3. ETL Framework with Interoperable

Distributed Components

 This section briefs the enhanced ETL framework.

Figure 2 illustrates this framework, which is based on

SOA.In the data layer of Figure 2, the data stores are

exactly similar to those available in Fig 1 of the traditional

framework.

 The business layer of Figure 2 that is built based on

SOA framework; includes four main parts which are:

Service Orchestration Point (also called Directory Service

or Service Registry): It describes the services available in

its domain which are Extraction, Transformation, and

Loading. Those three services are called Service Providers

and register themselves in the Orchestration Point.

Service Providers: each of them is a component that

performs a service in response to a customer request. The

framework has three Service Providers which are

Extraction, Transformation, and Loading services.

Service Consumers: each of them is a component that

consumes the result of a service supplied by a provider.

The main Service Consumer in the framework is the client

which represents ETL administrators. In addition, the three

Service Providers can be Service Consumers to other

services. For example, the Transformation service can

request some functions to be done by the Extraction

service in case that the Extraction and the Transformation

are executed in one patch.

Service Interface: it defines the programmatic access of the

three services, and establishes the identity of the service

and the rules of the service invocation.

 The relationship between a Service Provider and

Consumer is dynamic and established at runtime by a

binding mechanism done by the Orchestration Point. This

dynamic binding minimizes the dependencies between the

Service Consumer and Service Provider. Indeed, that

supports the loose-coupling feature of the framework.

Fig. 2 A Framework for Interoperable Distributed

ETL Components

 In other words, Extraction, Transformation, and Loading

functionalities are loosely-coupled by distributing them

into interoperable web services. The Orchestration Point

contains information about each service such as its

interface. A client can discover services by examining the

Orchestration Point. After looking up the required ETL

service, the client continues remote communication

directly with any distributed ETL service. Indeed, the

client is the Service Consumer and the ETL service is the

Service Provider. Further, an ETL service can also be a

consumer to another ETL service. It discovers the

availability of that service using the Orchestration Point.

 A simple flow diagram is shown in Figure 3 and

described below; to clearly show the flow of actions when

a client demands an execution of an ETL functionality.

 When a client demands to consume (execute) a certain

ETL service, the Orchestration Point starts with a

“receive” activity in which it receives the client request.

Then, proceeds with invoking the suitable ETL service(s)

and finishes by replying back to the client.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 277

2015 International Journal of Computer Science Issues

Fig. 3 Flow diagram for steps to consume an ETL service by a client [1]

 An Orchestration Point Process typically interacts with

one or more ETL web services (the Orchestration Point

Process is also a web service). These ETL web services are

called partner services or external service.

4. Adding a Classified-Fragmentation

Component as an Extension to the

restructured Framework

 A Classification-Fragmentation component is added as

an additional component to the enhanced ETL framework

to speed up of the report generation, and to show the

simplicity and flexibility in adding any new component as

an extension to the restructured ETL framework, without

affecting other components. That comes as a result to the

distribution and interoperability features of the framework,

which leads to loosely-coupled ETL components. In

addition, it is proved that, it is easy to reuse, expand,

extend, or add any new component to any loosely-coupled

software framework [14, 15]. As shown in Figure 4, after

adding the Classified-Fragmentation component, the

framework is the same as Figure 2 except the new loosely-

coupled Classified-Fragmentation component and its

relations with other components and with the Orchestration

Point.

Fig. 4 A framework for interoperable distributed ETL

components with classified - fragmentation

 After doing the prototype of the Classified-

Fragmentation component based on the framework of

Figure 4, it is shown that by following the SOA concept,

any other component can be added to the framework

without any complications.

5. Prototype based on the new framework

This chapter has explored the analysis, design,

development, deployment and testing of the SOA-based

ETL prototype, considering the specifications of the

theoretical framework for interoperable distributed ETL

components. In addition to the basic programming

functionalities that are developed to build the basic

functionalities of the prototype, the development of the

prototype included:

5.1 Business Process Execution Language (BPEL)

Creation

As an implementation to the orchestration point, BPEL

(Business Process Execution Language) is chosen to

implement the orchestration point of the prototype.

Few years ago, BPEL has rapidly been emerged as a

standard for combining a set of services into a number of

discrete and long running enterprise processes[16, 17].

Most of industrial organizations are either using BPEL or

planning to use it over their other middleware framework.

NetBeans IDE is used to design and implement the

required BPEL functionalities. In conclusion, a PBEL is

designed and developed using NetBeans IDE and deployed

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 278

2015 International Journal of Computer Science Issues

to a separate runtime environment for execution. This

runtime is the OpenESB runtime that is integrated with the

GlassFish application server.

Figure 6.5 shows the design of the BPEL orchestration

point based on the new theoretical framework. On the left

side, a client web service is depicted that is eligible for

consumption by any ETL administrator application, while

on the right side, four partner links for the four ETL web

services are depicted. In the middle, the core business logic

of the BPEL web service is depicted.

Fig. 5 Design of the BPEL orchestration point

In Figure 5, a client (ETL administrators) Web service can

discover services by examining the BPEL. After looking

up the required ETL service, the client continues

communication remotely and directly with any distributed

ETL service (Partner Service), in that case the client is the

service consumer and the ETL service is the service

provider. An ETL service can also be a consumer to

another ETL service; in that case it discovers the

availability of that service using BPEL service as well.

In more exploration, when a client demand to consume

(execute) a certain ETL service, the BPEL starts with a

receive activity in which it receives the client request.

Then, proceeds with invoking the suitable ETL service(s)

and finishes by replying back to the client. A BPEL

process typically interacts with one or more ETL web

Services. These ETL web services are called also partner

services or external service.

5.2 Assembling Prototype Components in One

Composite Application

Following the theoretical framework, all the components of

the prototype are combined in one deployable composite

application. In addition to the theoretical framework, SOA

architecture recommends building loosely coupled

applications and treating each one of them as independent

“service units”. Well-designed composite applications

implement this architectural approach by providing an easy

way to build business applications[16, 18]. They also

provide integration of existing applications with other

existing, as well as new applications. This SOA concept of

linking together business processes is the hub of composite

applications.

There are many tools available today that are used as

editors or IDEs for the creation of composite applications.

Out of these, NetBeans [19]and OpenESB runtime

[20]compose proper IDEs for creating and editing the

required composite application for this prototype. Figure 6

shows the design of the composite application for the

prototype parts. In brief, it combines the BPEL and other

components through the SOAP protocol, and opens a port

for each partner link as shown in the same figure. The final

composite application resulted from the design of Figure 6

is deployable in GlassFish application server.

Fig. 6 Design of the Composite Application

5.3 Testing

The testing parts are done for the purpose of validating and

verifying that the prototype meets the specifications of the

framework to prove that the prototype works as expected,

and can be implemented with the same required

characteristics. The needed types of testing are: unit

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 279

2015 International Journal of Computer Science Issues

testing, Web service tests, compatibility testing, classified-

fragmentation speed and scalability testing, and end to end

testing.

5.4 Unit Testing

Unit testing is a method by which individual units

of source code are tested to determine if they are fit for use

[21]. A “unit” in the prototype is the distributed ETL

component that is wrapped in a Web service. GlassFish

Tester [20] is used to test each Web service individually.

The four main Web services passed the test. As a sample

for testing results, a screenshot of the SOAP request and

response of the Extraction component are shown in Figure

7.

Table 1: Time deference between Fragmented and

Un-Fragmented data for report generation.

Fig. 7 GlassFish Tester result for the Extract Web service

 Classified-Fragmentation Speed and Scalability

Testing

To test the speed of report generation before and after

using the Classified-Fragmentation component, and to test

that the prototype is scalable for more than one concurrent

ETL administrators, clinical data is used to generate a

statistical report. The data warehouse repository of that

clinic consists of a number of tables which are:

(PATIENTS, PHYSICIANS, DEPARTMENTS,

TESTOPERATIONS, DISEASES, MEDICINES,

GENDER and CITY). These tables store data about

patients, physicians, test operations, and other related data.

The data is classified according to its type (video, text, or

image), and then, the original tables are fragmented in

which each table consists one type of data e.g. video, text,

or image. This fragmentation process decreases the number

of records in each table, which leads to a faster report

generation.

A report generation speed test is done using Apache

JMeter tool[22], which is a java desktop application

designed to test software functions and performance,

especially for web applications. Testing is done to

calculate the time consumed to generate the report of

Figure 8. This testing is done 9 times using fragmented

data and 9 times using un-fragmented data, while different

numbers of concurrent users are considered.

Fig. 8 A statistical report generated from a clinical DW repository

Figure 8 report is generated using an amount of records

from 100,000 to 300,000, and from one to three concurrent

users. The time consumed for each of fragmented and un-

fragmented data is shown in table 1 in milliseconds (ms).

As shown in table 1, it is clear that the time required to

generate the report shown in Figure 8 in case of

fragmented data is less than the time needed for un-

fragmented data.

 Compatibility Testing

The compatibility testing is done to test the compatibility

of the prototype with different application and Web

servers, as well as with different browsers. Once the

 No. of

Records

No. of

Users

Fragmente

d data (ms)

Un-fragmented

data (ms)

1 100,000 1 188 297

2 100,000 2 192 207

3 100,000 3 255 364

4 200,000 1 359 515

5 200,000 2 369 520

6 200,000 3 369 643

7 300,000 1 516 688

8 300,000 2 531 719

9 300,000 3 625 815

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 280

2015 International Journal of Computer Science Issues

http://en.wikipedia.org/wiki/Source_code

prototype is developed using Java, a set of J2EE (Java 2

Enterprise Edition) application and web servers are used to

test whether the prototype is compatible with them or not.

Those servers are: GlassFish application server, Apache

Tomcat Web server and JBoss application server. The

prototype is deployed and run successfully on all of them.

Furthermore, Microsoft Internet Explorer, Mozilla Firefox

and Google Chrome browsers are used to test the browser

compatibility, and the results show that it works exactly

same with the three browsers.

 End To End Testing

End To End testing is used to validate the prototype

starting from sending the request by the ETL administrator,

passing through BPEL orchestration point and invoking

the proper Web Service, and finally, finishing by executing

the proper ETL functionality.

To do the End To End testing, GlassFish Tester is used to

create a test case with an XML file as an input, then

another XML file is auto generated as an output. The input

file acts as an ETL administrator who needs to execute one

of the four ETL functionalities, then the BPEL forwards

the client request to the appropriate Web service according

to the parameter included in

“<etl:operationParameter></etl:operationParameter>” tag

of the input XML file. For the current test case, “1” means

“Extract”, “2” means “Transform”, “3” means “Classify”,

“4” means “Load”. Figures 9 and 10 respectively are

screenshots of the input and output XML files used in a

test case done with parameter “1”, i.e. the input XML file

tag is:

“<etl:operationParameter>1</etl:operationParameter>”.

Fig. 9 Input.xml file (End To End test case input file)

Fig. 10 Output.xml file (auto generated End To End test case output file)

In addition to the “GlassFish Tester” testing, the effect of

executing each of the ETL prototype components on the

data available in the DW repository tables is verified. For

example, the transformation component transforms the

date of birth data available in P_BIRTHDAY field of

Figure 11 to age data available in P_AGE field of Figure

12, and instead of having the date of birth of the patient; it

calculates his age. Figure 11 shows the source data before

executing the transformation component, while Figure 12

shows the transformed data after executing the

transformation component.

Fig. 11 Sample Data before Executing the Transformation Component

Fig. 12 Sample Data after Executing the Transformation Component

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 281

2015 International Journal of Computer Science Issues

6. Evaluation

In this section, the evaluation process of the SOA-based

ETL prototype is briefed and discussed. The evaluation

was done to measure experts’ satisfaction of the prototype

to substantiate that the features and specifications of the

theoretical framework are implemented in this prototype.

In addition, the evaluation measures experts’ opinions

regarding the prototype: usefulness, ease of use and ease of

learning. Furthermore, the evaluation aims to find out if the

problems identified in this research were successfully

solved in this prototype, and the solution meets the

theoretical framework specifications.

The evaluation is done using USE questionnaire [23]. USE

stands for Usefulness, Satisfaction, and Ease of

Use. Together with Ease of Learning, the four dimensions

are used to design the questionnaire. The USE method is

used to design a short questionnaire that is used to measure

the most important dimensions of the prototype usability

by industry experts, and to measure those dimensions

across domains.

Forty Eight (48) experts were chosen to answer the

questionnaire prepared for this evaluation process. Since

the evaluation is used to measure much specified

dimensions of the prototype, these evaluators were selected

from the industrial companies that are specialized in data

warehousing and/or adopt web services and/or SOA in

their business solutions.

Fig. 13 Mean of Means

Figure 13 shows the mean of the four sections of the

questionnaire (mean of the means of the four sections "

Usefulness, Satisfaction, Ease of Use, Ease of Learning").

Overall 66.21% of the experts are satisfied with it. They

rated 20.69% as “strongly agree” and 45.52% as “agree”,

while overall 28.8% of the experts have “neutral” opinions.

Nevertheless, 5.09% of the experts are unsatisfied with the

prototype.

7. Conclusions and Future Works

A goal of this research was to define and validate a

conceptual framework for distributable and interoperable

ETL components. The research succeeded in filling

existing gaps of the current ETL framework regarding

distribution and interoperability of ETL components. This

research has identified the gaps and the problems of the

current ETL framework. It solved the problems and filled

the gaps by providing the new ETL framework solution.

After that, a prototype validated the theoretical framework.

Eventually, the work is evaluated and the evaluation results

have supported the solution.

For the prototype, although many technologies can be used

to implement an ETL tool based on the theoretical

framework, all of the technologies used in implementing

the prototype of this research are open source technologies.

Open source technologies are chosen to make the

prototype available freely for industry experts if they need

to use it as a base for their future ETL tools that are based

on the new ETL framework. Open source technologies

used to implement the prototype are: Java, J2EE, MySQl,

Apache Tomcat web server and GlassFish application

server. In addition to that, they are freely available. Open

source technologies are more flexible because the source

code is available in case that there is a need to extend or

enhance any part of the code of those technologies.

This research has distributed the components of the ETL

framework. Sometimes, an ETL tool based on this

framework and has distributed components; needs to share

the same session variables to suit some implementation

needs, specially, if an ETL tool is needed to act as a portal.

To share the session variables among all the distributed

components is quite a complicated issue and defers from

one implementation to another of the new ETL framework.

A potential future work is to standardize the session

management of the distributed ETL components in a

model that can act as a standard model for all

implementations of the new ETL framework.

References
[1] D. Salter and F. Jennings, Building SOA-Based Composite

Applications Using NetBeans IDE 6: PACKT Publishing,

2008.

[2] Massachusetts, Introduction to the Data Warehouse:

Massachusetts, 2008.

[3] M. Barai, Binildas, and V. Caselli, Service Oriented

Architecture with Java: Packt Publishing, 2008.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 282

2015 International Journal of Computer Science Issues

[4] Z. Zhang and S. Wang, "A Framework Model Study for

Ontology-driven ETL Processes," Wireless Communications,

Networking and Mobile Computing, 2008. WiCOM '08. 4th

International Conference 2008.

[5] V. Tziovara, P. Vassiliadis, and A. Simitsis, "Deciding the

Physical Implementation of ETL Workflows," in

Proceedings of the ACM tenth international workshop on

Data warehousing and OLAP, 2007.

[6] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit,

second edition ed.: Wiley Publishing, Inc., 2004.

[7] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, "Conceptual

modeling for ETL processes," in Proceedings of the 5th ACM

international workshop on Data Warehousing and

OLAP2002, pp. 14-21.

[8] A. Simitsis, P. Vassiliadis, M. Terrovitis, and S.

Skiadopoulos, "Graph-based modeling of ETL activities with

multi-level transformations and updates," Lecture notes in

computer science, vol. 3589, p. 43, 2005.

[9] D. Skoutas, A. Simitsis, and T. Sellis, "Ontology-driven

conceptual design of ETL processes using graph

transformations," Journal on Data Semantics XIII, p. 120,

2009.

[10] P. Wehrle, M. Miquel, and A. Tchounikine, "A Grid

Services-Oriented Architecture for Efficient Operation of

Distributed Data Warehouses on Globus," 21st International

Conference on Advanced Networking and Applications,

2007.

[11] Pentaho, "Pentaho Business Intellegence," 2009.

[12] L. Wu, G. Barash, and C. Bartolini, "A Service-oriented

Architecture for Business Intelligence," in IEEE

International Conference on Service-Oriented Computing

and Applications(SOCA'07), 2007.

[13] P. Vassiliadis, A. Simitsis, M. Terrovitis, and S.

Skiadopoulos, "Blueprints and measures for ETL

workflows," Lecture notes in computer science, vol. 3716, p.

385, 2005.

[14] A. Brown, S. Johnston, and K. Kelly, "Using service-

oriented architecture and component-based development to

build web service applications," interactions, vol. 1, p. 2,

2003.

[15] S. Mulik, S. Ajgaonkar, and K. Sharma, "Where Do You

Want to Go in Your SOA Adoption Journey?," I E E E Comp

u t e r S o c i e t y, 2008.

[16] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.

F. Ferguson, Web Services Platform Architecture: SOAP,

WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable

Messaging and More: Prentice Hall, 2005.

[17] B. Simon, B. Goldschmidt, and K. Kondorosi, "A Human

Readable Platform Independent Domain Specific Language

for BPEL," Networked Digital Technologies, pp. 537-544.

[18] E. Newcomer and G. Lomow, Understanding SOA with

Web Services (Independent Technology Guides): Addison-

Wesley Professional, 2004.

[19] NetBeans, "NetBeans IDE," 2010.

[20] glassfish, "glassfish," 2010.

[21] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang,

"Extending WSDL to Facilitate Web Services Testing,"

Proceedings of the 7th IEEE International Symposium on

High Assurance Systems Engineering (HASE’02), 2002.

[22] Apache, "Apache JMeter," 2010.

[23] A. M. Lund, "Measuring Usability with the USE

Questionnaire," in STC Usability SIG Newsletter, 2001.

First Author He has B.Sc. in Computer Engineering, M.Sc. in
Information Technology, and Ph.D. in Software Engineering and
Data Warehousing. He won many medals worldwide. In addition to
his research experience, he has 9 years industrial experience.
Currently, he is the IT unit director and the dean of admission and
registration at university of Palestine.

Second Author He has B.Sc. in CIS, M.Sc. in Information
Technology, and Ph.D. in Software Engineering. In addition to his
research experience, he has 4 years industrial experience.
Currently, he is a lecturer at applied science university at
department of software engineering.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 283

2015 International Journal of Computer Science Issues

