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Abstract 
The field of graph drawing is concerned with finding 

algorithms to draw graph in an aesthetically pleasant way, based 
upon a certain number of aesthetic criteria that define what a 
good drawing, (synonyms: diagrams, pictures, layouts), of a 
graph should be. This problem can be found in many such as in 
the computer networks, data networks, class interrelationship 
diagrams in object oriented databases and object oriented 
programs, visual programming interfaces, database design 
systems, software engineering…etc. 
Given a plane graph G, we wish to find a drawing of G in the 
plane such that the vertices of G are represented as grid points, 
and the edges are represented as straight-line segments between 
their endpoints without any edge-intersection. Such drawings are 
called planar straight-line drawings of G. An additional objective 
is to minimize the area of the rectangular grid in which G is 
drawn. In this paper we introduce a new algorithms that finds an 
embedding of 3-planar graph in linear time O(n). 
Keywords: 3- Planar Graph; Graph Drawing; drawing on grid. 

1. Introduction 

Since Euler’s Königsberg bridge problem dating back 
to 1736, planar graphs have provided interesting problems 
in theory and in practice. The drawing of graphs is widely 
recognized as a very important task in diverse fields of 
research and development. Examples include VLSI 
design, plant layout, software engineering and 
bioinformatics.  Using the elaborate techniques of a 
canonical ordering and Schnyder realizers, every planar 
graph can be drawn on a grid of quadratic size, and such 
drawings can be computed in linear time [1, 2]. Large and 
complex graphs are natural ways of describing real world 
systems that involve interactions between objects: persons 
and/or organizations in social networks, articles incitation 
networks, web sites on the World Wide Web, proteins in 
regulatory networks, etc [3, 4]. 
Graphs that can be drawn without edge crossings (i.e. 
planar graphs) have a natural advantage for visualization. 
When we want to draw a graph to make the information 
contained in its structure easily accessible, it is highly 
desirable to have a drawing with as few edge crossings as 
possible[1, 5]. 

A straight-line embedding of a plane graph G is a plane 
embedding of G in which edges are represented by 
straight-line segments joining their vertices, these straight 
line segments intersect only at a common vertex. 
A straight-line drawing is called a convex drawing if every 
facial cycle is drawn as a convex polygon. Note that not 
all planar graphs admit a convex drawing.  A straight-line 
drawing is called an inner-convex drawing if every inner 
facial cycle is drawn as a convex polygon [6]. 
A strictly convex drawing of a planar graph is a drawing 
with straight edges in which all faces, including the outer 
face, are strictly convex polygons, i. e., polygons whose 
interior angles are less than 180 [7,8]. However, a problem 
with graph layout methods which are capable of producing 
satisfactory results for a wide range of graphs is that they 
often put an extremely high demand on computational 
resources [9]. Visualizing graphs using virtual physical 
models is probably the most heavily used technique for 
drawing graphs in practice. There are many techniques to 
produce length-sensitive drawings for large graphs by 
reformulating the energy function [10,11,12]. 
One of the most popular drawing conventions is the 
straight-line drawing, where all the edges of a graph are 
drawn as straight-line segments. Every planar graph is 
known to have a planar straight-line drawing [13]. A 
straight-line drawing is called a convex drawing if every 
facial cycle is drawn as a convex polygon. Note that not 
all planar graphs admit a convex drawing. Tutte [14] gave 
a necessary and sufficient condition for a triconnected 
plane graph to admit a convex drawing. Thomassen [15] 
also gave a necessary and sufficient condition for a 
biconnected plane graph to admit a convex drawing. 
Based on Thomassen’s result, Chiba et al. [16] presented a 
linear time algorithm for finding a convex drawing (if any) 
for a biconnected plane graph with a specified convex 
boundary. Tutte [14] also showed that every triconnected 
plane graph with a given boundary drawn as a convex 
polygon admits a convex drawing using the polygonal 
boundary. That is, when the vertices on the boundary are 
placed on a convex polygon, inner vertices can be placed 
on suitable positions so that each inner facial cycle forms a 
convex polygon. The canonical decomposition is a 
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generalization of the canonical ordering of De Fraysseix et 
al. [17]. 
We also presented a linear time algorithm for computing 
an inner-convex drawing of a triconnected plane graph 
with a star-shaped boundary [13]. 
Rosenstiehl and Tarjan [18] posed the question of whether 
it is always possible to find such an embedding into a 
polynomial-size grid. Later, de Fraysseix, Pach and 
Pollack [19] indeed gave a method that embeds an n-
vertex planar graph into the (2n-4)×(n-2) grid in an O(n 
log n) time. Kant [20] developed a method for 
constructing convex grid drawing of 3-connected plane 
graphs in linear-time. His algorithm, related to those of 
Refs. [21] and [4a], uses a (2n-4)×(n-2) grid, and the grid 
size was improved to (n-2)×(n-2) by Schnyder and Totter 
[22] and Chrobak and Kant [20], independently. All these 
algorithms can be implemented in linear time. 
In this paper, we will describe a new technique for graph 
layout that attempts to satisfy edge length constraints. This 
technique uses a modified Kant approach of convex 
drawing. In this paper we will show how to construct 
convex drawings of 3-connected plane graphs into a 
smaller, (n-3)×(n-3), grid in linear time. In addition, The 
paper present a different techniques for orthogonal 
drawing of 3- planar graph aiming to improve them to get 
the optimal upper and lower area bounds.  
The remainder of the paper is organized as follows. In 
section 2, we give some definitions in graph drawing, 
specially, the canonical decomposition of plane graph . In 
sections 3, we introduce an algorithm that finds an 
embedding of G into a grid, (n-2)×(n-2). In sections 4, We 
will show how to modify the previous algorithm in order 
to reduce the grid size to (n-3)×(n-3). Section 5 present a 
new algorithm of 3-planar graph in orthogonal drawing. In 
section 6,we improve the grid size of orthogonal drawing 
into a smaller grid in linear time. 	

2. The Canonical Decomposition  

In this section we present the concept of canonical 
decomposition for triconnected planar graphs. The 
canonical decomposition is a generalization of the 
canonical ordering of De Fraysseix et al. [23]. Define a 
plane graph G to be internally 3-connected if  (a) G is 2-
connected, and (b) if removing two vertices u,v 
disconnects G then u, v belong to the outer face and each 
connected component of G-{u, v} has a vertex of the outer 
face. In other words, G is internally 3-connected iff it can 
be extended to a 3-connected graph by adding a vertex and 
connecting it to all vertices on the outer face. Let G be an 
n-vertex 3-connected plane graph with an edge e(v1,v2) on 

the outer face.  

Let π=(V1,...,Vm) be an ordered partition of V, that is , 

V1...Vm = V and for Vi Vj for ij. Define Gk to be 

the subgraph of G induced by V1...Vk, and denote by 

Ck the external face of Gk. We say that π is a canonical 

decomposition of G with bottom edge e(v1,v2) if: 

(CD1) Vm is a singleton, {z0}, where z0 lies on the outer 

face and z0{v1,v2}. 

(CD2) C1 is a face of G, and each Ck is a cycle containing 

e(v1,v2). 

(CD3) Each Gk is 2-connected and internally 3-connected. 

(CD4) For each 2 k  m-1, one of the two following 
conditions holds: 
(i) Vk is a singleton, {z}, where z belongs to Ck and has at 

least one neighbor in G-Gk . 

(ii) Vk is a chain, (z1, z2,..., zt), where each zi has at least 

one neighbor in G-Gk , and where z1 and zt each have one 

neighbor on Gk-1 and these are the only two neighbors of 

Vk in Gk-1 . 

By an ordered plane graph (G,π) we will understand a 
plane graph G with a given canonical decomposition 
π=V1,...,Vm. By the contour of Gk we will mean its outer 

face written as Ck.We will commonly view Ck as a path 

(w1,w2,...,wj) starting with w1=v1 and ending with wj=v2 , 

ignoring the edge e(v1,v2). We will also view Ck as being 

ordered from “left” to “right”, where w1 is the leftmost 

and wj is the rightmost vertex on Ck. Let wp be the leftmost 

and wq be the rightmost neighbors of v in Ck, we will say 

that the vertex v covers the vertices wp+1,..., wq-1. 

Throughout the rest of the paper we will call a plane graph 
internally convex if all its internal faces are convex. 
 

 

k Vk Ck 

1 
9-
14 

9-14 

2 8 9,10,11,8,12,13,14 

3 7 9,10,11,7,8,12,13,14 

4 5,6 9,5,6,10,11,7,8,12,13,14 

5 4 9,5,6,10,11,7,4,8,12,13,14 

6 3 9,5,6,3,13,14 

7 2 9,5,2,3,13,14 

8 1 9,5,2,1,14 

Figure 1: The canonical decomposition with bottom edge e(9,14) 

We will use the following lemma proved by Kant in [21], 
and our explanation is similar to the one given by Chrobak 
and Kant [20]: 
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Lemma 1: Each 3-connected plane graph has a canonical 
decomposition. 
As it was shown by Kant [21] (Theorem 2.3) a canonical 
decomposition can be constructed in linear time. In Figure 
1 an example (which is given in [20]) of a canonical 
decomposition of a triconnected planar graph given, with 
bottom edge e(9,14). 
By P(v) we will denote the current position of vertex v in 
the grid, i.e., P(v):=(x(v),y(v)). By P(u,v) we denote the 
embedding of edge e(u,v), that is, the line segment that 
connects P(u) with P(v). To each vertex w we assign a set 
of vertices, )(wU , that will contain certain vertices that are 

located below w and have to be shifted right whenever w 
is shifted right. 
We will describe first an algorithm that uses the (n-2)×(n-
2) grid, n3, and then show how to improve it to (n-3)×(n-
3), n>3. The algorithm is enhanced to  (f-1) × (f-1) grid. 

3. ConvexDraw Algorithm  

The algorithm will be to add sets Vk, one by one, in 

forward order V1, ,..., Vm, adjusting the embedding at 

every step. For zi, i=1,2,…,t, P(zi) :=( x(zi), y(zi)), since 

x(zi) and  y(zi) are integers so P(zi) is always a grid point. 

Let (G,) be a given ordered plane graph with n vertices, 
where = V1,..., Vm and n3. Suppose that 2km and that 

we are about to add Vk to Gk-1. 

Algorithm ConvexDraw 
Input: A convex graph G with  vertices and m 
contours. 
Output: Outline graph embedded in (-2)×(-2) grid. 
Begin  
We initialize the embedding by drawing C1 =(v1=z1, z2,..., 

zt= v2), as follows :  

 P(z1):=(0,0); 

 P(zt):=(t-2,0); 

 P(zi):=(i-2,1), for all i=2,…,t-1; 

 .32,1}{)( ,...,t,, izzU ii   

Then, for each k= 2,…,m, we do the following: 
 Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 . 

 Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a 

chain. 
 Let wp be the leftmost and wq be the rightmost 

neighbors of Vk in Ck-1. 

We now execute the following steps: 
Step 1: (Shift operation) for each vertex v is belong 
to{ , ...,jpiwU i 1 , )(  } do 

x(v) = x(v) + t; (1) 

Step 2: (Install operation) For each i=1,…,t, let P(zi) be 

defied by : 

x(zi) =x(wp)+i-1, (2) 

y(zi) = y(wq) + x(wq) - x(wp) - t +1; (3) 

Step 3: (Update operation) : 
}11 , )({} {)( 11  , ...,qpiwUzzU i and 

.32}{)( ,...,t,, izzU ii   

End   
 
In the other words, in step 2, we draw the Vk horizontally, 

in such a way that the slope of the segment P(zt,wq) is -

45o. Vertex z1 is placed above wp, that the slope of the 

segment P(wp,z1) is 90o. Note that by moving some of the 

points P(wi) in step 1, we ensure that all neighbors of Vk 

will be visible from P(zi) for i=1,2,…,t. 

Lemma 2: Let 1km, and Ck=(w1=v1,w2,...,wj=v2) and  

is the number of vertices of Gk . Then P(v1)=(0,0), 

P(v2)=(-2,0), and all contour segments e(wi,wi+1), 

i=1,2,...,j-1, have slopes in {-45o ,0o,90o}. 

Proof: the proof is by induction on k. For G1 the lemma is 

obvious, the segment e(w1,w2) has slope of 90o, the 

segments e(wi,wi+1), i=2,3,…,j-2 have slope of 0o, and the 

segment e(wj-1,wj) has slope of -45o, and  P(v2)=(j-2,0). 

So suppose that it holds for Gk-1. As in the algorithm, 

before installing Vk, the contour Ck-1= 

(w1=v1,w2,...,wj=v2), P(v1)=(0,0).and P(v2)=(-2,0) where 

 is the number of vertices in Gk-1 . Let wp,wp+1,..., wq  be 

the neighbors of Vk in Ck-1. 

When we are going to install Vk, we always have wj=v2, 

x(wj)= -2 and from (1), by moving all the vertices 
wp+1,...,wj by t  to the right, x(wj)= -2+t, but +t equal to 
the number of vertices in Gk , hence P(v2)=( -2,0). Let 

wp,wp+1,..., wq  be the neighbors of Vk in Ck-1.After 

installing Vk we can divide the segments of the contour Ck 

into three intervals, the first interval is {e(wi,wi+1), 

i:=1,2,..,p-1} , the second interval is {e(wp,z1),e(z1,z2), 

….,e(zt-1,zt ), e(zt,wq)} and the third interval is {e(wi,wi+1), 

i:=q,..,j-1}.  
In the first interval, if it contains any line-segment, the 
slope will be the same as its slope at the contour Ck-1. But 

for the second interval, the line-segment e(wp,z1), has 
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slope [y(z1)-y(wp)]/[ x(z1)-x(wp)], from (2) the denominator 
x(z1)-x(wp)=0, from (3) the numerator y(z1)-y(wp) greater 
than zero and less than infinity , so the line-segment 
e(wp,z1) has the slope equal to 90o. The line-segments 

e(zi,zi+1), i=1,2,…,t-1, have the slope equal to 0o, because 

y(zi+1)-y(zi) equal to zero from (3). But for the line-

segments e(zt,wq), y(wq)-y(zt)= -{x(wq)-x(zt)}, i.e., the line-

segments e(zt,wq) has the slope equal to -45o. For the third 

interval, the line-segments has the same slopes as Ck-1 

because the only change that we have shifted vertices 
wq,...,wj to the right by t and this will not effect the slopes 

of the line-segments from Ck-1 to Ck. Hence, the contour 

segments e(wi,wi+1) , i=1,2,...,j-1 of Gk have slopes in {-

45o ,0o,90o}.� 
The lemma above implies immediately that adding Vk does 

not destroy the embedding, as stated in the corollary 
below. 

Corollary 1: For each 1km, when we add Vk, then after 

applying the shift operation, all neighbors of Vk   are 

visible, that the edges between Vk and Ck-1 do not intersect 

themselves or edges in Ck-1. 

What remains to show is that do destroy the planarity 
property and convexity when we apply the shift operation. 
This is proven in the next lemma. 

Lemma 3: Let Gk be straight-line embedded and 

internally convex. Additionally, it has the following 
property: Suppose Ck=(v1=w1, w2,...,wj=v2), and any 

integer t. if we shift all nodes in { , ...,jpiwU i 1 , )(  } 

by t to the right, then Gk remains straight-line embedded 

and internally convex. 

Proof: the proof is by induction on k. For G1 the lemma is 

obvious, by inspection. Assume the lemma holds for Gk-1, 

we will show that the lemma properties are preserved 
when we add Vk. As in the algorithm, before installing Vk, 

the contour Ck-1= (w1=v1,w2,...,wj=v2) and wp be the 

leftmost and wq be the rightmost neighbors of Vk in Ck-1. 

When we are going to install Vk, from (1) by moving all 
the vertices )( ..,. , )( 1 jp wUwU   by t  to the right, we 

have three classes of faces in Gk-1. First class, all vertices 

of the face are belong to )( ..,. , )( 1 pwUwU , there is no 

any shift. Therefore, all faces of this type are not change, 
and its properties in Gk will be the same as in Gk-1. Second 

class, all vertices of the face are belong to 
)( ..,. , )( 1 jp wUwU  , so, all vertices shifted by t to the 

right. Therefore, all faces of this type are moved by t to the 
right and its properties in Gk will be the same as in Gk-1. 

Third class, the vertices of a face classified two to sets, the 
first set are belong to )( ..,. , )( 1 pwUwU , they not moved 

to the right, the second set are belong 
to )( ..,. , )( 1 jp wUwU  , they moved to the right by t, in 

this case, any edge of the considerable face which has one 
vertex element in the first set and the second element lies 
in the second set will be stretched, and this will not affect 
its properties. 
Let us assume now that Vk. is a singleton, Vk ={z1} . Let z1 

have  neighbors among wp,wp+1,..., wq and let F1,F2,..., 

F-1 be the faces created when adding Vk. From the 

algorithm all these faces preserved the lemma properties. 
The proof when Vk is a chain is very similar. � 

4. Improving the Grid Size 

Now we sketch how to modify the algorithm ConvexDraw 
in order to reduce the grid size to (n-3)×(n-3). First we 
pick Vm ={z0} to be the neighbor of v2 different from v1 on 

the outer face of G. We construct a canonical 
decomposition and run the algorithm ConvexDraw for m-1 
steps. In the last step, having already embedded Gm-1, we 

set P(z0):=(1,n-3) and we do not shift any vertices to the 

right. 
Algorithm MConvexDraw 
Input: A convex graph G with  vertices and m 
contours. 
Output: Outline graph embedded in (-2)×(-2) grid. 
Begin  
We initialize the embedding by drawing C1 =(v1=z1, z2,..., 

zt= v2), as follows :  

 P(z1):=(0,0); 

 P(zt):=(t-2,0); 

 P(zi):=(i-2,1), for all i=2,…,t-1; 

 .32,1}{)( ,...,t,, izzU ii   

For each k= 2,…,m-1, we do the following: 
 Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 . 

 Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a 

chain. 
 Let wp be the leftmost and wq be the rightmost 

neighbors of Vk in Ck-1.  

 Calculate the shift operation. 
 Install operation. 
 Execute the update operation. 
 Finally , for k= m, we put P(Vm={z0}) =(1,n-3) 
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End   
 

Let us call this algorithm MConvexDraw. In order to show 
correctness, we only need to show that adding z0will 

result in a correct, convex embedding.  By lemma 2 and 
the algorithm, before adding z0we have 

x(w1)=x(w2)=….=x(wp)=0, and  x(wq)=n-3, where wq=v2. 

The edge with slope -45o from v2 contains the point (1,n-

4). This implies that all vertices wp,...,wq are visible from 

(1,n-3). The convexity of the outer face follows from the 
choice of z0. Consequently, we obtain the following 

theorems:  

  

 
(a) Gm-2 

(b) Gm 

Figure 2: The drawing of the graph G 

 
 

Table 1: The values of the different variables in ConvexDraw. 

k Vk wp wq 
x-coordinates of vertices 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 9-14 - -         0 0 1 2 3 4 
2 8 11 12        1 0 0 1 3 4 5 
3 7 11 8       1 2 0 0 1 4 5 6 
4 5,6 9 10     0 1 3 4 0 2 3 6 7 8 
5 4 7 8    3 0 1 3 5 0 2 3 7 8 9 
6 3 6 13   1 4 0 1 4 6 0 3 4 8 9 10

7 2 5 3  0 2 5 0 2 5 7 0 4 5 9 10 11
8 1 2 14 1 0 2 5 0 2 5 7 0 4 5 9 10 11
y-coordinates 11 11 9 5 2 2 4 3 0 1 1 1 1 0 

 

Theorem 1: Given a 3-connected plane graph G, 
algorithm MConvexDraw constructs a straight-line 
convex embedding of G into a (n-3) × (n-3) grid. 

Theorem 2: Given a plane graph G, the above algorithm 
MConvexDraw computes a convex embedding of G into 
the (n-3) × (n-3) grid in O(n) time. 

       In Figure 2 an example of a drawing is given. After 
adding vertex 3, we have U(w)={w} for w{5,6,9,13,14}, 
U(3)={3,4,7,8,10,11,12}. Therefore, when adding vertex 
2, the vertices in U(3)U(6)U(13) U(14) 
={3,4,6,7,8,10,11,12, 13,14} will be shifted right. After 
adding vertex 2, we have U(w)={w} for w{5,9,13,14}, 
U(3)={3,4, 7,8,10,11,12} and U(2)={2,6}. Table 1 show 
the values of the different variables in ConvexDraw. 
Notice that the drawing is not strictly convex, i.e. there are 
angles of size 180 o. 

The 3-regular plane graphs are plane graphs where every 
vertex has exactly 3 neighbours. Especially in the 
mathematical literature 3-regular graphs are also called 
"cubic" graphs. 

Lemma 4 Let (G,π) given a 3-plane graph . Algorithm 
MConvexDraw constructs a straight-line convex 
embedding of G at most in (2f-7) × (2f-7) grid.  

Proof: Assume first that G is 3-plane graph. By Euler's 
formula, N is even, number of edges M=3N/2 and 
f=N/2+2. Let a canonical decomposition of G be given. 
Science N=2f-4, and from Theorem 1, the grid size is at 
most in (2f-7) × (2f-7). � 
 
Theorem 3: Let (G,π) given a 3-connected plane graph 
with M (the number of Vi). Algorithm MConvexDraw can 
be  constructs a straight-line convex embedding of G at 
most in  (f-1) × (f-1) grid.  
Proof: That  is easy ,where MConvexDraw modified in 
some steps as the following: 
 Let Ck-1= (w1,w2,...,wj) be the contour of Gk-1 . 

 Let Vk =(z1, z2,..., zt). Vk may be a singleton or a chain . 

 Let wp be the leftmost and wq be the rightmost 

neighbors of Vk in Ck-1 . 

     Δx =x(wq)- x(wP);      Δy =y(wp)- y(wq)           
     Step 1 : Shift operation : 
                  If Δy ≤ 0  then  
                        If t> Δx  then shift(wp+1) by  t-Δx    
                             Else  no shift                             
                  Else 
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                        If t> Δx -Δy  then shift(wq) by  t-
Δx+Δy  
                             Else  no shift                  

Step 2: Install operation: 
   For each i=1,…,t, let P(zi) be defied by : 

                    x(zi):=x(wp)+i-1, 

                     y(zi):= y(wq)+x(wq)-x(wp)- t +1; 

  
Step 3: Update operation; 

 
1

111

q-

pi i )Under(w}{ z):Under(z


 .  

 .32 ,...,t,}  , i{ z):Under(z ii   

5. Linear-Time Algorithm 

The linear-time implementation is achieved by 
representing the sets Under(v) using a binary tree T. When 
we embed Vk, it is not really necessary to know exact 

positions of wp and wq. If we know only their y-coordinates 
and their relative x-coordinates (that is, x(wq)-x(wp)), then 
we can compute y(v), v{z1, z2,…, zt}, and the x-

coordinate of v relative to wp, that is  x(v)-x(wp). For each 
vertex v, the x-offset of v is defined as Δx(v)=x(v)-x(w), 
where w is the T-father of v. More generally, if w is an 
ancestor of v, the x-offset between w and v is 
Δx(w,v)=x(v)-x(w). 
        By T(v) we denote the subtree of T rooted at v. With 
each vertex v we store the following information : 

Left(v)= the left T-child of v, 
Right(v)= the right T-child of v, 
Δx(v)=  the x-offset of v from its T-father, 
Δy =y(wp)- y(wq)           

x(v)= the x-coordinate of v, and 
y(v)= the y-coordinate of v. 

    The root of T is v1. Right(v) is the next node in the 

contour. Thus the path Ck=(w1,w2,...,wj) consists of: v1, 

Right(v1), Right(Right(v1)),....., etc. If v is in the contour 

then Left(v) is the node u such that T(u)=Under(v)-{v}.  
Under(wi) consists of wi and its T-subtree rooted at 

Left(wi). Thus we have the relationship: 


j

ia ai  ).Under(w:)T(w


  
 

         The algorithm consists of two phases. In the first 
phase we add new vertices one by one, and each time we 
add a vertex we compute its x-offset and y-coordinate, and 
update the x-offsets of one or two other vertices. In terms 
of our T, when we add Vk, we need to shift T(wp+1) to the 

right. The crucial observation that leads to the linear-time 
algorithm is that it is not really necessary to know the 
exact positions of wp and wq at the time when we install 

Vk=(z1, z2,…, zt). If we only know their y-coordinates and 

offset Δx (wp,wq) then for each i>1 we can compute y(zi) 

and the x-offset of  zi relative to zi-1, the x-offset of  z1  

relative to wp, and the x-offset of wq relative to zt. In the 

second phase, we traverse the tree and compute final x-
coordinates by accumulating offsets. 

 

       The first phase is implemented as follows: 
 First, we use the initial values of the vertices z1, z2,…, zt 

of V1 

Initialize: 
  Δx (z1), y(z1), Right(z1), Left(z1):= 0, 0, z2, Nil; 

  FOR i:=2 TO t-1  DO   BEGIN Δx (zi), y(zi), Right(zi), 

Left(zi):=1, 1, zi+1, Nil;  END; 

  Δx (zt), y(zt), Right(zt), Left(zt):= 1, 0, Nil, Nil; 

   Then, we embed other vertices, one by one: 
FOR k:= 2 TO M-1  DO 
BEGIN 
   Notation: 
       Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 

. 
       Let Vk =(z1, z2,..., zt).  

       Let wp be the leftmost, and wq be the rightmost 

       neighbors of Vk in Gk-1. 

   Stretch gaps: 
        Δx (wp,wq):= Δx (wp+1)+ . . .+ Δx (wq); 

        Δy = y(wp) - y(wq);  

        IF  Δy <= 0 THEN 
              IF (t - Δx (wp,wq) > 0)   THEN 

              x (wp+1)= Δx (wp+1)+ t – Δx (wp,wq); 

        ELSE 
              IF (t - Δx (wp,wq) + Δy > 0)  THEN 

             x (wq)= Δx (wq)+ t – Δx (wp,wq) + Δy; 

   Adjust offsets: 
      Δx(z1):=0; 

      Δx(wp,wq):= Δx (wp+1)+ . . .+ Δx (wq);  

       y(z1):= y(wq)+ Δx (wp,wq)- t +1; 

       FOR i:=2 TO t  DO   BEGIN   
               Δx (zi):=1, y(zi):= y(z1);   

        END; 
       Δx(wq):= Δx (wp,wq)- (t-1); 

   Install vk: 

       Right(wp):= z1; 
       FOR i:=2 TO t  DO Right(zi-1):= zi;   

       Right(zt):= wq; 

        IF p+1q THEN 
 IF Δy <= 0 THEN 
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 BEGIN 
                    Left(wq):=wp+1 ; 

                    Right(wq-1):=Nil;  

                    Δx(Wp+1):= Δx(Wp+1)-Δx (wp,wq); 

                END 
            ELSE 
                 BEGIN 
                      Left(wp):=wp+1 ;  Right(wq-1):=Nil; 

                 END 
        ELSE Left(z1):= Nil; 

END {FOR} 
Finally, we put the vertex z0 of VM at the position x(z0):= 

1, y(z0):= x(wj). 
 

 
 
 

Table 2: The values of the different variables in ConvexDraw. 
k Vk Δx(v)  

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 9-14         0 1 1 1 1 1 
2 8        0 0 1 1 1 1 1 
3 7       0 1 0 1 1 1 1 1 
4 5,6     0 1 0 1 0 1 1 1 1 1 
5 4    0 0 1 0 2 0 1 1 1 1 1 
6 3   0 0 0 1 0 2 0 1 1 1 6 1 
7 2  0 1 0 0 0 0 2 0 1 1 1 6 1 

 
Figure 3: The tree T and Δx(v). 

 
At this point all y-coordinates and x-offsets have already 
been computed. In the second phase, we compute x-
coordinates, invoking AccumalateOffests, beginning by 
the root v1 of T and the zero value of its x-offset, i.e. we 

invoke AccumalateOffests(v1,0) , where 

AccumalateOffests is as follows: 
PROCEDURE AccumalateOffests(v: vertex,  :integer) 
BEGIN 
   IF vNil THEN  
      BEGIN 
         x(v):= Δx(v)+ ; 
         AccumalateOffests(Left(v), x(v)); 
         AccumalateOffests(Right(v), x(v)) 
      END; 
END. 

 
In figure 3 the construction of the tree and the values of 
Δx(v) are given for the example from Figure 1.  
       Correctness. In order to prove correctness, since the 
x-coordinate of a vertex v equal to the sum of the offsets 
on the path from the root v1 to v, it is sufficient to show 

that all offsets Δx(v) are computed correctly. To see that 
the Stretch step works correctly, recall that the T-sub tree 

rooted at wi consists of 
j

ia a ).Under(w


 So, incrementing 

the offset of wi increments the cumulative offset from v1 

of each member of that T-subtree, i.e., shifts them all to 
the right. During the adjustment step of Vk, only the 

offsets of wq  get changed. But wp remains an ancestor of 

each, and their offsets from wp remain unchanged, by 

simple algebra. It follows that the cumulative offsets of all 
vertices already in the graph remain unchanged by the 
adjustment step. 
Complexity. The linear time complexity is achieved by 
appropriately distributing information in the vertices of the 
graph, we have already mentioned that the canonical 
decomposition can be found in time O(n). In the first 
phase, when we add Vk =(z1, z2,…, zt), the cost is 

proportional to q-p+t, where wp and wq denote, as usual, 

the leftmost and rightmost neighbors of Vk in Ck-1 . So the 

time complexity of the first phase is O(n). Obviously, the 
second phase runs in linear time. 
 
Theorem 4: Given a 3-Connected planar graph G, the 
above Linear-time Algorithm computes a convex 
embedding of G into the  (f-1) × (f-1) grid in O(n) time. 
  
 

(a) 3-planar graph G with 20 
vertices 

(b) The drawing of G with area 
10×10 

 

Figure 4: Given 3-planar graph and its convex embedding 

 
Lemma 5 Let (G,π) given a 3-plane graph. There is an 
algorithm constructs a straight-line convex embedding of 
G at most in n/2+1 × n/2+1 grid.  
Proof: Assume first that G is tri-connected. By Euler's 

formula, n is even, number of edges m=3n/2 and f=n/2+2. 

Let a canonical decomposition of G be given. Science 
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M<f, and from lemma 4, the grid size is at most f-1= 

n/2+1.  � 
 

Theorem 5: There is a O(n) time algorithm to draw a 3-
planar graph with  convex embedding of G into the   
n/2+1 × n/2+1 grid. 

6. Conclusion  

We showed that 3-planar graphs can be embedded on O(n) 

× O(n) integer grid, so that edges are drawn as straight-

line segments in linear time algorithm.  The results 

produced are good and the algorithm is scalable to large 

graphs. In addition, The paper present a different 

techniques for convex drawing of 3- planar graph aiming 

to improve them to get the optimal upper and lower area 

bounds. The algorithm improves the lower and upper 

bounds of  n/2+1 × n/2+1 grid area. 
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