

T A B C D E F G

P C C E F A

Improving an Approximate String Matching Algorithm

Ahmad Osama Maani1, and Dr. Essam Al-Daoud2

1 Department of Graduate Studies, Zarqa University
, Zarqa 13132, Jordan

2 Department of Computer Science Zarqa University

, Zarqa 13132, Jordan

Abstract

In this paper, an improved algorithm that solves the Approximate
String Matching (ASM) problem based on the Longest Common
Subsequence (LCS) is presented. The LCS is defined as the
longest common subsequence of characters that appears left-to-
right between two given strings or substrings, a text called T, and
a pattern called p. The improved algorithm solves the problem in
less time and uses less space than the conventional LCS
algorithm. It does this via a new technique based on the use of a
one-dimensional array to order the matching characters between
T and p, whereas the original LCS algorithm uses a two-
dimensional matrix to order the matching characters, which
requires more time and space.

Keywords: Algorithm, Approximate String Matching, Longest
Common Subsequence.

1. Introduction

String matching is a conventional problem in computer
algorithms, and is fundamental in many applications that
require the processing of string or sequence data. It often
involves finding the occurrences of a pattern string in a
given text, and is utilized for spell checking in text editors,
DNA strings comparison, identity and password validation
and data checking at system login, and content
interpretation in document and programming language
parsers. Further, it is the base of many applications used in
fields such as bioinformatics, linguistics, visual retrieval
and classification, and pattern matching in digitalized
images.

Over the years, researchers have introduced a variety of
string matching algorithms that have been applied to
various areas of study and research [1]. The literature also
contains a large number of research papers that provide

theoretical and empirical outcomes to the problem, with
advanced space and time efficiencies.

1.1 Problem Definition

The String Matching Problem (SMP), which has given rise
to string search algorithms, can be defined as the process
of finding the approximate location of one or several
strings within a larger string or text. Let T be an alphabet
(finite set); then, formally, both the pattern and large texts
searched are vectors of elements of T. It is important to
take into consideration that T may be a human alphabet
like {A-Z}; other applications may use binary alphabets,
as in {1, 0}, or DNA alphabets, as in {A, C, G, T}, in
bioinformatics applications.

The text T that the algorithms deal with is considered an
array T [1 ... m] of length m, and the pattern p is an array
[1 ... n] of length n, with n <= m. The character arrays T
and p are often called strings of characters. It might be
concluded that pattern P occurs with shift s in text T, if 0
<= s <= m-n and T [t+1 …. t + m] = p [1 ... M]. If p occurs
with shift s in T, then t is called a valid shift; otherwise, it
is called an invalid shift. The string matching algorithm
tries to solve the problem of finding all valid shifts p
occurring in a given text T [2].

Fig.1 Approximate string matching.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 180

2015 International Journal of Computer Science Issues

2. LCS

The LCS problem is as follows. The code of the target text
is given two strings—string or pattern p of length n, and
string T of length m. The goal here is to produce their
LCS, the longest subsequence of characters that appears
left-to-right (but not necessarily in a contiguous block in
both strings [3].

ENQUIRING

2.1 Example 1

T = BACBADCC

p = ABAZDC

In Example 1, the LCS has length four, and is the string
ABAD. Another way to look at the problem is to consider
finding a 1:1 matching between some of the letters in p
and some of the letters in T such that none of the edges in
the matching cross each other. This type of problem
frequently arises in genomics, where, given two DNA
fragments, the LCS gives information about what they
have in common and the best way to line them up. Let us
now solve the LCS problem using dynamic programming.

As sub-problems, the code looks at the LCS of a prefix of
p and a prefix of T, running over all pairs of prefixes. For
simplicity, in the beginning, the code focuses on finding
the length of the LCS and then the algorithm is modified
to produce the actual sequence itself. Consequently, the
question arises, say LCS[i, j] is the length of the LCS of
p[1 … i], with T[1 ... j].
We consider how LCS[i, j] can be solved in terms of the
LCS’s of the smaller problems.

Case 1: If p[i] ≠ T[j], then, the preferred subsequence has
to neglect one of p[i] or T[j]. This means that

Fig.3 LCS algorithm, Case 1.

Case 2: If p[i] = T[j], then, the LCS of p[1 … i] and T[1 ...
j] may match them as well. For example, if a common
subsequence is observed to match p[i] to an earlier
location in T, for example, it can always be matched with
T[j] instead. Consequently, in this case,

Fig.4 LCS algorithm, Case 2

Thus, two loops can iterate (over values of i and j), filling
in the LCS using these rules. Following is a pictorial
depiction of the above example, with p along the leftmost
column and T along the top row.

LCS[i, j] = 1 + LCS[i − 1, j − 1].

LCS[i, j] = max(LCS[i − 1, j], LCS[i, j − 1]).

A B C D E
B A C E M

C T C T T G A G
T T A T C

C H I M P A N Z E E

H U M A N

S E S Q U I P E D A L I A N
E N Q U I R I N G

Fig.2 LCS examples.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 181

2015 International Journal of Computer Science Issues

procedure LCS(p, t) {m = |p|, n = |t|}
 begin
 for i ← 0 to m do L[i, 0] ← 0
 for j ← 0 to n do L[0, j] ← 0
 for i ← 1 to m do
 for j ← 1 to n do
 if pi = tj then

L[i, j] ← L[i − 1, j − 1]+1
 else
 if L[i, j − 1] > L[i − 1, j] then

L[i, j] ← L[i, j − 1]
 else

L[i, j] ← L[i − 1, j]
 end if
 end if
 end loop

 end loop
 return L[m][n]
 end

Table	1.	LCS	tracing	j	=	1.	

 € X A C B Z D C O € X A C B Z D C O
€ 0 0 0 0 0 0 0 0 0 € 0 0 0 0 0 0 0 0 0
A 0 0 1 0 0 0 0 0 0 A 0 0 1 1 1 1 1 1 1
B 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0
Z 0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0

3. Analysis of LCS

Starting with the LCS algorithm, the code needs to be
traced in order to understand the LCS technique. This step
initializes the search for repetitions and void steps in the
code, and can either be edited or completely skipped in
order to reduce the number of operations. During this
phase, other techniques that eliminate the redundant
operations while providing the existing results can be
utilized.

Fig. 5 LCS pseudo code.

Reviewing the matrix form of Example 1, it is clear that
each character in p must be compared to each character in
T, resulting in a cost size of m × n. In order to analyze
whether p(i) = T(i), an operation that facilitates the filling
of all the cells in the matrix needs to be performed. Even
when a match case is found, the comparison continues at
the same row. For example, In Table 1, p(2) is compared
to T(1) to find that both characters are (A), and the value
of L[2][1] is changed to L[1][0] +1. This process keeps
running on the rest of the cells in the same row. Each time
this rule is applied, the match case is found. Consequently,
the improved algorithm is built from that point. At the
same time the code will stop comparing cells at the match
case cell, and it will move to the next row; therefore, this
process saves time and eliminates the redundant operations
in each row.

3.1. Example 2

T = XACBZDCO

p = ABZSDC

(See Table 1)

In Table 1, if a match is found at cell L[2][1], the previous
diagonal cell, L[1][0], is selected, one added to the value
in it, and the new value stored in L[2][1]. Conversely, if no
match is found, the largest value among L[i-1][j-1] and L
[i][j-1] is selected and stored in the compared cell, and so
on until i = m. Thus, the ELSE case (p ≠ t) is used to carry
the value to the next cells and keep the weight running in
the matrix, whereas the IF case (p = t) is used to increase
the weight in the matrix as long as a match is found (See
Table 2).

4. Improved LCS (ImpLCS) Methodology

By analyzing the LCS code and tracing the outputs inside
the matrix, two rules on which the matrix structure is
based can be extracted. The first rule states that when there
is a match, the algorithm should extract the value in cell
L[i-1][j-1], add one to it, and store it in the current cell,
L[i][j] in this case. In other words, the code extracts the
largest value among cells L[1][1] to L[i-1][j-1] and stores
it in L[i][j]. The second rule states that the value of the
first match in the row should be carried to the other cells in
the same row but to the right of the current cell, or any
larger value if a new match is found.

The proposed improved algorithm is based on the above
rules and changes in the structure of the original algorithm
that enables it to output the same results, but using fewer
operations. The LCS uses the ELSE case (p ≠ t) to carry
the weight in the matrix. Further, inside the ELSE case
there is another IF statement that decides which value to
store in the current cell. It is worth mentioning here that
the ELSE case is applied 3/4 of the times in the case of a
DNA application (four characters) and 27/28 of the times
for a regular text application containing all the letters of
the alphabet (28 characters).

Table	2.	LCS	tracing	j	=	6.	

 € X A C B Z D C O € X A C B Z D C O
€ 0 0 0 0 0 0 0 0 0 € 0 0 0 0 0 0 0 0 0

A 0 0 1 1 1 1 1 1 1 A 0 0 1 1 1 1 1 1 1

B 0 0 1 1 2 2 2 2 2 B 0 0 1 1 2 2 2 2 2

Z 0 0 1 2 2 3 3 3 3 Z 0 0 1 2 2 3 3 3 3

S 0 0 1 2 2 3 3 3 3 S 0 0 1 2 2 3 3 3 3

D 0 0 1 2 3 3 4 4 4 D 0 0 1 2 3 3 4 4 4

C 0 0 1 2 3 3 4 5 0 C 0 0 1 2 3 3 4 5 5

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 182

2015 International Journal of Computer Science Issues

procedure LCS(p, t) {m = |p|, n = |t|}

 begin

 for j← 1 to n do

 for i ← 1 to m do

 if pj = ti then

 L[i][j] ← Last_row[i]+1

 for k← i+1 to m do

 if Last_row[i]+1 > Last_row[k]

 Last_row[k] ← Last_row[k]+1;

 If k=m i← m;

 else

 i← k-1; k← m;

 end loop

 end if

 end loop

 end loop

 end

 This means that an additional cost, ¾ (m × n), is added to
the total cost of the algorithm. At the end of the LCS
algorithm, extra code to extract the output from the m × n
matrix is present. The cost of the extra code is also m × n.
The proposed improved algorithm avoids these extra costs
by using a one-dimensional array to store the output,
which results in a cost of only n when extracting the
output.

4.1. Analysis of ImpLCS

As a first design of the code, the match case needs to be
considered and, instead of carrying the value to the next
cell in the matrix through the ELSE case (p ≠ t), an array
should be used to carry the values in each time a match is
found. That step is to be included in the IF case (p = t), and
this array called “Last_row[].” The first thing that needs
to be done is to place the value of (Last_row[j]+1) in the
matrix at position L[j][i] where the match was found.

Fig. 6 ImpLCS pseudo code, Phase 1.

The new value is then carried to the rest of the cells in the
array and further carries the weight of the matrix in a one-
dimensional array rather than a two-dimensional array.
Instead of looking for the largest value between the
previous row and the previous column, as in the LCS, in
ImpLCS, the value required is found immediately in the
previous cell in the Last_row array. The code fills those
cells that contain a value that is less than the newly carried
one; otherwise, the code will skip and break the loop in
order to reduce the number of steps. This may appear to be
a different technique than the one in LCS, but the running
time in ImpLCS is less.

 Improved results are displayed later in tables and charts
that show that the running time of ImpLCS is much less
because the aim here is to not have to visit all cells and
also not have to visit the same cell more than once. These
steps are shown outlined in the following code (Fig. 7):

Fig.7 ImpLCS, Phase 2.

The above code performs fewer operations on the same p
and T. In example 3, it shows in the tables that the black
cells are the visited cells, which means also zero operation.
The cells in blue are also visited cells but they present the
number of operations in the matrix or in the array
Last_row. The white cells are the non-visited cells.

4.1.1 Example 3

LCS = surey
LLCS =5

(See Table 3)															

 Table 3 Example 3—LCS j = 1; ImpLCS j = 1.

 LCS

 ImpLCS

 0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op

 0
€

1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0
1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7
2-U 0 0 0 0 0 0 0 0 2-U 0 0 0 0 0 0 0
3-R 0 0 0 0 0 0 0 0 3-R 0 0 0 0 0 0 0
4-V 0 0 0 0 0 0 0 0 4-G 0 0 0 0 0 0 0
5-E 0 0 0 0 0 0 0 0 5-E 0 0 0 0 0 0 0
6-Y 0 0 0 0 0 0 0 0 6-R 0 0 0 0 0 0 0
 7-Y 0 0 0 0 0 0 0

 0 1 1 1 1 1

 if pi = tj then

 L[j][i] ← Last_row[j]+1

 end if

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 183

2015 International Journal of Computer Science Issues

Table 4 Example 3—LCS j = 2; ImpLCS j = 2.

Table 5 Example 3—LCS j = 3; ImpLCS j = 3.

Table 7 Example 3—LCS j = 6; ImpLCS j = 6.

Table 8 Example 3—LCS; ImpLCS j = 7.

Table 6 Example 3—LCS j = 4–5; ImpLCS j = 4–5.

 LCS

 ImpLCS

 0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op 0

€
1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4

4-V 0 0 0 0 0 0 0 0 4-G 0 0 0 0 0 0 0

5-E 0 0 0 0 0 0 0 0 5-E 0 0 0 0 0 0 0

6-Y 0 0 0 0 0 0 0 0 6-R 0 0 0 0 0 0 0

 7-Y 0 0 0 0 0 0 0

 0 1 2 3 3 3

The code works very well for simple texts and patterns;
however, to verify its accuracy for ImpLCS more complex
examples are applied below. It is possible to find more
than one match in each row or cell. The following example
shows how ImpLCS successfully improves the correct
output in the same case.
Outputs

LCS = surey

LLCS =5

5. ImpLCS Results

The results show that the outputs are compatible in both
ImpLCS and LCS, taking into consideration that no cell
has been ignored or visited more than once in ImpLCS.
After the improved outputs, the improvement in running
time needs to be checked for some examples over the
original LCS and ImpLCS. The length of T will first be
varied in many of the examples, whereas the length of p

 LCS

 ImpLCS

 0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op

 0
€

1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5

3-R 0 0 0 0 0 0 0 0 3-R 0 0 0 0 0 0 0

4-V 0 0 0 0 0 0 0 0 4-G 0 0 0 0 0 0 0

5-E 0 0 0 0 0 0 0 0 5-E 0 0 0 0 0 0 0

6-Y 0 0 0 0 0 0 0 0 6-R 0 0 0 0 0 0 0

 7-Y 0 0 0 0 0 0 0

 0 1 2 2 2 2

 LCS

 ImpLCS

0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op

0
€

1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2

6-Y 0 1 2 3 3 4 4 4 7 6-R 0 0 2 0 0 0 0 1

 7-Y 0 0 0 0 0 0 0

 0 1 2 3 3 4

 LCS

 ImpLCS

0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op

 0
€

1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2

6-Y 0 1 2 3 3 4 4 4 7 6-R 0 0 2 0 0 0 0 1

 7-Y 0 0 0 0 0 0 0

 0 1 2 3 3 4

 LCS

 ImpLCS

0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of
Op

 0
€

1
S

2
U

3
R

4
V

5
E

6
Y

No. of
Op

0-€ 0 0 0 0 0 0 0 0 0-€ 0 0 0 0 0 0 0

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2

6-Y 0 1 2 3 3 4 4 5 7 6-R 0 0 2 0 0 0 0 1

 7-Y 0 0 0 0 0 0 5 1

 0 1 2 3 3 4 20

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 184

2015 International Journal of Computer Science Issues

Fig.8 Graphical comparison of LCS and ImpLCS with p constant.

Fig. 9 Comparison of LCS and ImpLCS with T constant.

0

0.2

0.4

0.6

0.8

6
5
0

1
0
0

2
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

LCS 0

N_LCS

Table 10 Comparison of LCS and ImpLCS with T constant.

1/4 × 0 × m × n Probability Nested
loops

Number of
comparison

Fig.10 Cost of the IF case in the LCS alg. = 0.

will be changed later in order to have the algorithms
running under different conditions. Note that the tested
examples use the 28 letters of the alphabet to generate
random texts and patterns.

The results displayed in Table 9 and Fig. 8 show that
ImpLCS has a lower processing time than LCS when the
pattern length is six and lengths of T up to 3,000,000. The
results for constant T and varying p are shown in Fig. 9.

It is clear from Tables 9 and 10 that the results for
ImpLCS are correct and effective. Further, the processing
time is reasonable and less than that of LCS.

5.1 ImpLCS improvements

The running time in the average case for LCS can be
estimated by considering only the total number of
comparisons. At the start, there are two nested loops that
run m × n times. These loops are followed by a
comparison operation (p = t) that runs m × n times. In the
case of match, which has a probability of 1/4 (in a DNA
string where only four characters are used) only one
operation takes place, but no comparison.

The cost of the match case in the LCS algorithm is zero,
which therefore does not add to the total cost. However, in
the ELSE case (p ≠ t) with the probability 3/4, a
comparison statement is present.

The total cost of LCS is the cost of (m × n) + cost of the IF
case + cost of the ELSE case. This equates to a cost for

0

0.2

0.4

1
0
0
0
0
0

3
0
0
0
0
0

6
0
0
0
0
0

9
0
0
0
0
0

1
2
0
0
0
…

1
6
0
0
0
…

2
0
0
0
0
…

2
4
0
0
0
…

2
7
0
0
0
…

3
0
0
0
0
…

LCS

N_LCS

Pattern
len

Text
len

LCS
(ms)

ImpLCS
(ms)

6 10000 0 0

50 10000 0.016 0

100 10000 0.019 0

200 10000 0.031 0.016

300 10000 0.046 0.017

500 10000 0.078 0.032

800 10000 0.125 0.047

1000 10000 0.156 0.051

1500 10000 0.219 0.094

2000 10000 0.359 0.141

Table 9 Comparison of LCS and ImpLCS with p constant

Pattern
len

Text
len

LCS
(ms)

ImpLCS
(ms)

6 100000 0.015 0

6 300000 0.031 0.016

6 600000 0.063 0.015

6 900000 0.092 0.032

6 1200000 0.109 0.036

6 1600000 0.156 0.047

6 2000000 0.250 0.049

6 2400000 0.300 0.052

6 2700000 0.330 0.055

6 3000000 0.360 0.058

Fig.11 Cost of the ELSE case in LCS alg. = 3/4 m × n.

 3/4 × 1 × m × n Probability Nested
loops

Number of
comparison

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 185

2015 International Journal of Computer Science Issues

LCS of A(m × n) = (m × n) + (¼ × 0 × m × n) + (¾ × 1 ×
m × n) = 1.75 m × n.

To calculate the cost in the average case for ImpLCS, we
start by considering the two loops of size m and n, as in
the LCS m × n. However, because the second m loop is
controlled by the third loop, on average, half of m will be
performed. Thus, the running time for the first two loops is
(m/2) × n. In the match case (p = t) with probability 1/4,
there is another comparison statement inside the third loop.
This statement controls and continues the running of the
second loop. Moreover, it makes the probability of the
inner comparison taking place m/2; on reaching the inner
comparison, two probabilities are considered.

Thus, the average cost, A(m × n) = m/2 × n + 1/8 × m × n
= 0.62 m × n. This is less than the average case for LCS
(i.e., less than 1.75 m × n).
In addition, after the LCS algorithm, another algorithm
used to print out the results. This code has cost m × n,
whereas in ImpLCS, the extra code only runs with a cost
of n.

LCS cost without printing outputs ImpLCS cost without printing outputs

1.75 m × n 0.62 m × n

LCS cost with printing outputs ImpLCS cost with printing outputs

2.75 m × n 0.62 m × n + n

The big-O notation for both algorithms is O(m × n).
However, a comparison of the algorithms at the second
level (the average case) shows that ImpLCS performs
better when A (m × n) is considered. Further, the results of
tabulation of the running time for both algorithms confirm
that ImpLCS is better.

6. Conclusion

The paper has presented a new, improved approximate
string-matching algorithm, which is reasonably accepted
on average for low and intermediate deference ratios (up to

1/2). Improving the results from original algorithms, the
ImpLCS algorithm gave improved results that save time
and space. Also proved theoretically and experimentally. It
also gave the needed results plus alternative results. The
algorithm may give better results based on the structure of
the used text and patterns implemented.

The complexity of the improved algorithm was the same
as compared to the original algorithm which is O(m.n).
However, the cost in the average case has reduced in a
noticeable way. Based on that, it is not a big change if only
the complexity is considered. On the other hand, as far as
enhancing the algorithm is concerned, it is a positive step
to achieve more improvements. The concept of solving
this problem was by using a matrix of size (m.n). The
possibility might exist in the future to solve this problem
considering any other alternative by trying a liner method
that would cost less time and space comparing to the
previous cost.

In a future research, this algorithm could be combining to
another improved algorithm in order to achieve a special
function in one of the computation theories fields or other
fields such as bioinformatics and DNA formulas or even
image processing and text searching methods. The scope
to use such enhanced algorithm is wide since many life
applications use the string matching and comparing.

References

[1] Jokinen, P., Tarhio, J., & Ukkonen, E. A comparison of
approximate string matching algorithms. Software: Practice and
Experience, Vol. 26, No. 12, 1996, pp. 1439-1458.
[2] Navarro, G. A guided tour to approximate string
matching. ACM computing surveys (CSUR),Vol. 33, No.1,
2001, 31-88.
[3] Manolis Christodoulakis, Costas S. Iliopoulos, Yoan José
Pinzón Ardila .Simple Algorithm for Sorting the Fibonacci String
Rotations,Theory and Practice of Computer Science, 2006, pp.
218-225. Springer Berlin Heidelberg.

Ahmad Maani graduated from Zarqa University with a MSc. in
Computer Science. He also worked for Zarqa University as a
programmer for two years while doing his research. His research
interests include Computer Science, Mathmatics, and Algorhims.

Essam Al-Daoud is an Associate Professor in the Department of
Computer Science at Zarqa University. He earned his PhD in
Computer Science from Putra University, Malaysia in 2002. His
research areas are Computer Science, Advance Machine
Learning, and Cryptography. Al Daoud is also the author of over 26
peer- reviewed publications.

 1/4 × 1 × (m/2) × n Probability Nested
loops

Number of
comparison

Fig.12. Cost of the IF case in the ImpLCS alg. = 1/8 × m × n.

Fig.13 Cost of LCS and ImpLCS.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 186

2015 International Journal of Computer Science Issues

