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Abstract 

In this paper, an improved algorithm that solves the Approximate 
String Matching (ASM) problem based on the Longest Common 
Subsequence (LCS) is presented. The LCS is defined as the 
longest common subsequence of characters that appears left-to-
right between two given strings or substrings, a text called T, and 
a pattern called p. The improved algorithm solves the problem in 
less time and uses less space than the conventional LCS 
algorithm. It does this via a new technique based on the use of a 
one-dimensional array to order the matching characters between 
T and p, whereas the original LCS algorithm uses a two-
dimensional matrix to order the matching characters, which 
requires more time and space.  

  
Keywords: Algorithm, Approximate String Matching, Longest 
Common Subsequence.  

1. Introduction 

String matching is a conventional problem in computer 
algorithms, and is fundamental in many applications that 
require the processing of string or sequence data. It often 
involves finding the occurrences of a pattern string in a 
given text, and is utilized for spell checking in text editors, 
DNA strings comparison, identity and password validation 
and data checking at system login, and content 
interpretation in document and programming language 
parsers. Further, it is the base of many applications used in 
fields such as bioinformatics, linguistics, visual retrieval 
and classification, and pattern matching in digitalized 
images. 

 
Over the years, researchers have introduced a variety of 
string matching algorithms that have been applied to 
various areas of study and research [1]. The literature also 
contains a large number of research papers that provide 

theoretical and empirical outcomes to the problem, with 
advanced space and time efficiencies. 

1.1 Problem Definition 

The String Matching Problem (SMP), which has given rise 
to string search algorithms, can be defined as the process 
of finding the approximate location of one or several 
strings within a larger string or text. Let T be an alphabet 
(finite set); then, formally, both the pattern and large texts 
searched are vectors of elements of T. It is important to 
take into consideration that T may be a human alphabet 
like {A-Z}; other applications may use binary alphabets, 
as in {1, 0}, or DNA alphabets, as in {A, C, G, T}, in 
bioinformatics applications. 

 
The text T that the algorithms deal with is considered an 
array T [1 ... m] of length m, and the pattern p is an array 
[1 ... n] of length n, with n <= m. The character arrays T 
and p are often called strings of characters. It might be 
concluded that pattern P occurs with shift s in text T, if 0 
<= s <= m-n and T [t+1 …. t + m] = p [1 ... M]. If p occurs 
with shift s in T, then t is called a valid shift; otherwise, it 
is called an invalid shift. The string matching algorithm 
tries to solve the problem of finding all valid shifts p 
occurring in a given text T [2]. 
 
 
 
 
 
 
 
 

 
Fig.1 Approximate string matching. 
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2. LCS 

The LCS problem is as follows. The code of the target text 
is given two strings—string or pattern p of length n, and 
string T of length m. The goal here is to produce their 
LCS, the longest subsequence of characters that appears 
left-to-right (but not necessarily in a contiguous block in 
both strings [3].  
 
ENQUIRING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 Example 1 

 

T = BACBADCC 

p = ABAZDC 

 
In Example 1, the LCS has length four, and is the string 
ABAD. Another way to look at the problem is to consider 
finding a 1:1 matching between some of the letters in p 
and some of the letters in T such that none of the edges in 
the matching cross each other. This type of problem 
frequently arises in genomics, where, given two DNA 
fragments, the LCS gives information about what they 
have in common and the best way to line them up. Let us 
now solve the LCS problem using dynamic programming.  
 
As sub-problems, the code looks at the LCS of a prefix of 
p and a prefix of T, running over all pairs of prefixes. For 
simplicity, in the beginning, the code focuses on finding 
the length of the LCS and then the algorithm is modified 
to produce the actual sequence itself. Consequently, the 
question arises, say LCS[i, j] is the length of the LCS of 
p[1 … i], with T[1 ... j]. 
We consider how LCS[i, j] can be solved in terms of the 
LCS’s of the smaller problems. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 1: If p[i] ≠ T[j], then, the preferred subsequence has 
to neglect one of p[i] or T[j]. This means that  
 

 
 

Fig.3 LCS algorithm, Case 1. 

 
Case 2: If p[i] = T[j], then, the LCS of p[1 … i] and T[1 ... 
j] may match them as well. For example, if a common 
subsequence is observed to match p[i] to an earlier 
location in T, for example, it can always be matched with 
T[j] instead. Consequently, in this case, 
 

 
 

Fig.4 LCS algorithm, Case 2 

Thus, two loops can iterate (over values of i and j), filling 
in the LCS using these rules. Following is a pictorial 
depiction of the above example, with p along the leftmost 
column and T along the top row. 
 

LCS[i, j] = 1 + LCS[i − 1, j − 1]. 

LCS[i, j] = max(LCS[i − 1, j], LCS[i, j − 1]). 

A B C D E 
B A C E M 

C T C T T G A G 
T T A T C 

C H I M P A N Z E E     

H U M A N          

S E S Q U I P E D A L I A N 
E N Q U I R I N G      

Fig.2 LCS examples.
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procedure LCS(p, t) {m = |p|, n = |t|} 
 begin 
  for i ← 0 to m do L[i, 0] ← 0 
  for j ← 0 to n do L[0, j] ← 0 
  for i ← 1 to m do 
   for j ← 1 to n do 
    if pi = tj then  

L[i, j] ← L[i − 1, j − 1]+1 
    else 
     if L[i, j − 1] > L[i − 1, j] then  

L[i, j] ← L[i, j − 1] 
     else  

L[i, j] ← L[i − 1, j] 
     end if 
   end if 
  end loop 

 end loop   
  return L[m][n] 
 end 

Table	1.	LCS	tracing	j	=	1.	
 

 € X A C B Z D C O   € X A C B Z D C O 
€ 0 0 0 0 0 0 0 0 0 € 0 0 0 0 0 0 0 0 0 
A 0 0 1 0 0 0 0 0 0 A 0 0 1 1 1 1 1 1 1 
B 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0 
Z 0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 0 0 
D 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 

 

 

3. Analysis of LCS 

Starting with the LCS algorithm, the code needs to be 
traced in order to understand the LCS technique. This step 
initializes the search for repetitions and void steps in the 
code, and can either be edited or completely skipped in 
order to reduce the number of operations. During this 
phase, other techniques that eliminate the redundant 
operations while providing the existing results can be 
utilized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 LCS pseudo code. 

 
Reviewing the matrix form of Example 1, it is clear that 
each character in p must be compared to each character in 
T, resulting in a cost size of m × n. In order to analyze 
whether p(i) = T(i), an operation that facilitates the filling 
of all the cells in the matrix needs to be performed. Even 
when a match case is found, the comparison continues at 
the same row. For example, In Table 1, p(2) is compared 
to T(1) to find that both characters are (A), and the value 
of L[2][1] is changed to L[1][0] +1. This process keeps 
running on the rest of the cells in the same row. Each time 
this rule is applied, the match case is found. Consequently, 
the improved algorithm is built from that point. At the 
same time the code will stop comparing cells at the match 
case cell, and it will move to the next row; therefore, this 
process saves time and eliminates the redundant operations 
in each row. 
 
3.1. Example 2 

T = XACBZDCO 

p = ABZSDC 

(See Table 1) 

 

 

 

In Table 1, if a match is found at cell L[2][1], the previous 
diagonal cell, L[1][0], is selected, one added to the value 
in it, and the new value stored in L[2][1]. Conversely, if no 
match is found, the largest value among L[i-1][j-1] and L 
[i][j-1] is selected and stored in the compared cell, and so 
on until i = m. Thus, the ELSE case (p ≠ t) is used to carry 
the value to the next cells and keep the weight running in 
the matrix, whereas the IF case (p = t) is used to increase 
the weight in the matrix as long as a match is found (See 
Table 2). 
 
 

 

 

 

 

 

 

4. Improved LCS (ImpLCS) Methodology 

By analyzing the LCS code and tracing the outputs inside 
the matrix, two rules on which the matrix structure is 
based can be extracted. The first rule states that when there 
is a match, the algorithm should extract the value in cell 
L[i-1][j-1], add one to it, and store it in the current cell, 
L[i][j] in this case. In other words, the code extracts the 
largest value among cells L[1][1] to L[i-1][j-1] and stores 
it in L[i][j]. The second rule states that the value of the 
first match in the row should be carried to the other cells in 
the same row but to the right of the current cell, or any 
larger value if a new match is found. 
 
The proposed improved algorithm is based on the above 
rules and changes in the structure of the original algorithm 
that enables it to output the same results, but using fewer 
operations. The LCS uses the ELSE case (p ≠ t) to carry 
the weight in the matrix. Further, inside the ELSE case 
there is another IF statement that decides which value to 
store in the current cell. It is worth mentioning here that 
the ELSE case is applied 3/4 of the times in the case of a 
DNA application (four characters) and 27/28 of the times 
for a regular text application containing all the letters of 
the alphabet (28 characters). 
 
 
 
 

Table	2.	LCS	tracing	j	=	6.	
 

 € X A C B Z D C O   € X A C B Z D C O
€ 0 0 0 0 0 0 0 0 0 € 0 0 0 0 0 0 0 0 0

A 0 0 1 1 1 1 1 1 1 A 0 0 1 1 1 1 1 1 1

B 0 0 1 1 2 2 2 2 2 B 0 0 1 1 2 2 2 2 2

Z 0 0 1 2 2 3 3 3 3 Z 0 0 1 2 2 3 3 3 3

S 0 0 1 2 2 3 3 3 3 S 0 0 1 2 2 3 3 3 3

D 0 0 1 2 3 3 4 4 4 D 0 0 1 2 3 3 4 4 4

C 0 0 1 2 3 3 4 5 0 C 0 0 1 2 3 3 4 5 5
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procedure LCS(p, t) {m = |p|, n = |t|} 

 begin 

 for j← 1 to n do 

   for i ← 1 to m do 

    if pj = ti then  

               L[i][j] ← Last_row[i]+1                  

       for  k← i+1  to  m   do   

                                 if  Last_row[i]+1 > Last_row[k] 

                               Last_row[k] ← Last_row[k]+1; 

                                  If  k=m   i← m;  

                                      else        

 i← k-1;   k← m; 

     end loop 

   end if 

  end loop 

 end loop   

 end 
 

 
 
 This means that an additional cost, ¾ (m × n), is added to 
the total cost of the algorithm. At the end of the LCS 
algorithm, extra code to extract the output from the m × n 
matrix is present. The cost of the extra code is also m × n. 
The proposed improved algorithm avoids these extra costs 
by using a one-dimensional array to store the output, 
which results in a cost of only n when extracting the 
output. 
 
 
4.1. Analysis of ImpLCS  
 
As a first design of the code, the match case needs to be 
considered and, instead of carrying the value to the next 
cell in the matrix through the ELSE case (p ≠ t), an array 
should be used to carry the values in each time a match is 
found. That step is to be included in the IF case (p = t), and 
this array called “Last_row[ ].” The first thing that needs 
to be done is to place the value of (Last_row[j]+1) in the 
matrix at position L[j][i] where the match was found. 
 
 

 
 

Fig. 6 ImpLCS pseudo code, Phase 1. 

 

The new value is then carried to the rest of the cells in the 
array and further carries the weight of the matrix in a one-
dimensional array rather than a two-dimensional array. 
Instead of looking for the largest value between the 
previous row and the previous column, as in the LCS, in 
ImpLCS, the value required is found immediately in the 
previous cell in the Last_row array. The code fills those   
cells that contain a value that is less than the newly carried 
one; otherwise, the code will skip and break the loop in 
order to reduce the number of steps. This may appear to be 
a different technique than the one in LCS, but the running 
time in ImpLCS is less. 
 
 Improved results are displayed later in tables and charts 
that show that the running time of ImpLCS is much less 
because the aim here is to not have to visit all cells and 
also not have to visit the same cell more than once. These 
steps are shown outlined in the following code (Fig. 7):  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 ImpLCS, Phase 2. 

 

The above code performs fewer operations on the same p 
and T. In example 3, it shows in the tables that the black 
cells are the visited cells, which means also zero operation. 
The cells in blue are also visited cells but they present the 
number of operations in the matrix or in the array 
Last_row. The white cells are the non-visited cells.  
 

4.1.1 Example 3 

LCS = surey  
LLCS =5 
 
(See Table 3)															

           Table 3 Example 3—LCS j = 1; ImpLCS j = 1. 

 

 LCS   
 
 

 ImpLCS 

 0
€

1
S

2 
U

3 
R

4 
G

5
E

6 
R

7 
Y

No. of 
Op 

 0 
€ 

1 
S 

2 
U

3 
R

4 
V

5
E

6 
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  
1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 
2-U 0 0 0 0 0 0 0 0  2-U 0 0 0 0 0 0 0  
3-R 0 0 0 0 0 0 0 0  3-R 0 0 0 0 0 0 0  
4-V 0 0 0 0 0 0 0 0  4-G 0 0 0 0 0 0 0  
5-E 0 0 0 0 0 0 0 0  5-E 0 0 0 0 0 0 0  
6-Y 0 0 0 0 0 0 0 0  6-R 0 0 0 0 0 0 0  
          7-Y 0 0 0 0 0 0 0  
   

  0 1 1 1 1 1  

 
  if pi = tj then  

                       L[j][i] ← Last_row[j]+1 

 end if 
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Table 4 Example 3—LCS j = 2; ImpLCS j = 2. 

Table 5 Example 3—LCS j = 3; ImpLCS j = 3.

Table 7 Example 3—LCS j = 6; ImpLCS j = 6. 

 

Table 8 Example 3—LCS; ImpLCS j = 7. 

Table 6 Example 3—LCS j = 4–5; ImpLCS j = 4–5. 

 

 LCS   
 
 

 ImpLCS 

 0 
€ 

1 
S 

2 
U 

3 
R 

4 
G 

5 
E 

6 
R 

7 
Y 

No. of 
Op  0 

€ 
1 
S 

2 
U 

3 
R 

4 
V 

5
E

6
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5 

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4 

4-V 0 0 0 0 0 0 0 0  4-G 0 0 0 0 0 0 0  

5-E 0 0 0 0 0 0 0 0  5-E 0 0 0 0 0 0 0  

6-Y 0 0 0 0 0 0 0 0  6-R 0 0 0 0 0 0 0  

          7-Y 0 0 0 0 0 0 0  

   

  0 1 2 3 3 3  
 

 

 

 

 
 
 
 
The code works very well for simple texts and patterns; 
however, to verify its accuracy for ImpLCS more complex 
examples are applied below. It is possible to find more 
than one match in each row or cell. The following example 
shows how ImpLCS successfully improves the correct 
output in the same case. 
Outputs 

LCS = surey 

LLCS =5 

 

5. ImpLCS Results 
 
The results show that the outputs are compatible in both 
ImpLCS and LCS, taking into consideration that no cell 
has been ignored or visited more than once in ImpLCS. 
After the improved outputs, the improvement in running 
time needs to be checked for some examples over the 
original LCS and ImpLCS. The length of T will first be 
varied in many of the examples, whereas the length of p 

 LCS   
 
 

 ImpLCS 

 0 
€ 

1 
S 

2 
U 

3 
R 

4 
G 

5 
E 

6 
R 

7 
Y 

No. of 
Op 

 0 
€ 

1 
S 

2 
U 

3 
R 

4 
V 

5
E

6
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5 

3-R 0 0 0 0 0 0 0 0  3-R 0 0 0 0 0 0 0  

4-V 0 0 0 0 0 0 0 0  4-G 0 0 0 0 0 0 0  

5-E 0 0 0 0 0 0 0 0  5-E 0 0 0 0 0 0 0  

6-Y 0 0 0 0 0 0 0 0  6-R 0 0 0 0 0 0 0  

          7-Y 0 0 0 0 0 0 0  

   

  0 1 2 2 2 2  

 LCS   
 
 

 ImpLCS 

 

0 
€ 

1 
S 

2 
U 

3 
R 

4 
G 

5 
E 

6 
R 

7 
Y 

No. of 
Op  

0 
€ 

1 
S 

2 
U 

3 
R 

4
V

5
E

6
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5 

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4 

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0 

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2 

6-Y 0 1 2 3 3 4 4 4 7 6-R 0 0 2 0 0 0 0 1 

          7-Y 0 0 0 0 0 0 0  

   

  0 1 2 3 3 4  

 LCS   
 
 

 ImpLCS 

0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of 
Op 

 0 
€ 

1 
S 

2 
U 

3
R

4
V

5
E

6
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5 

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4 

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0 

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2 

6-Y 0 1 2 3 3 4 4 4 7 6-R 0 0 2 0 0 0 0 1 

        7-Y 0 0 0 0 0 0 0  

   

  0 1 2 3 3 4  

 LCS   
 
 

 ImpLCS 

0
€

1
S

2
U

3
R

4
G

5
E

6
R

7
Y

No. of 
Op 

 0 
€ 

1 
S 

2 
U 

3
R

4
V

5
E

6
Y

No. of
Op 

0-€ 0 0 0 0 0 0 0 0  0-€ 0 0 0 0 0 0 0  

1-S 0 1 1 1 1 1 1 1 7 1-S 0 1 0 0 0 0 0 7 

2-U 0 1 2 2 2 2 2 2 7 2-U 0 0 2 0 0 0 0 5 

3-R 0 1 2 3 3 3 3 3 7 3-R 0 0 0 3 0 0 0 4 

4-V 0 1 2 3 3 3 3 3 7 4-G 0 0 0 0 0 0 0 0 

5-E 0 1 2 3 3 4 4 4 7 5-E 0 0 0 0 0 4 0 2 

6-Y 0 1 2 3 3 4 4 5 7 6-R 0 0 2 0 0 0 0 1 

        7-Y 0 0 0 0 0 0 5 1 

   

  0 1 2 3 3 4 20 
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Fig.8 Graphical comparison of LCS and ImpLCS with p constant. 

 
 

Fig. 9 Comparison of LCS and ImpLCS with T constant.

0
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8
0
0

1
0
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1
5
0
0

2
0
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3
0
0
0

LCS 0

N_LCS

Table 10 Comparison of LCS and ImpLCS with T constant. 

 

1/4   ×   0   × m × n Probability Nested 
loops

Number of 
comparison

Fig.10 Cost of the IF case in the LCS alg. = 0. 

will be changed later in order to have the algorithms 
running under different conditions. Note that the tested 
examples use the 28 letters of the alphabet to generate 
random texts and patterns. 
 

 

 

 

 
The results displayed in Table 9 and Fig. 8 show that 
ImpLCS has a lower processing time than LCS when the 
pattern length is six and lengths of T up to 3,000,000. The 
results for constant T and varying p are shown in Fig. 9. 
 

 

 

 

 

 

 

 

 

 

It is clear from Tables 9 and 10 that the results for 
ImpLCS are correct and effective. Further, the processing 
time is reasonable and less than that of LCS. 
 

5.1 ImpLCS improvements 
 
The running time in the average case for LCS can be 
estimated by considering only the total number of 
comparisons. At the start, there are two nested loops that 
run m × n times. These loops are followed by a 
comparison operation (p = t) that runs m × n times. In the 
case of match, which has a probability of 1/4 (in a DNA 
string where only four characters are used) only one 
operation takes place, but no comparison. 
 

 

 

 

 

 

 

The cost of the match case in the LCS algorithm is zero, 
which therefore does not add to the total cost. However, in 
the ELSE case (p ≠ t) with the probability 3/4, a 
comparison statement is present.  
 
 
 
 
 
 
 
 
 
 
The total cost of LCS is the cost of (m × n) + cost of the IF 
case + cost of the ELSE case. This equates to a cost for 

0

0.2

0.4

1
0
0
0
0
0

3
0
0
0
0
0

6
0
0
0
0
0

9
0
0
0
0
0

1
2
0
0
0
…

1
6
0
0
0
…

2
0
0
0
0
…

2
4
0
0
0
…

2
7
0
0
0
…

3
0
0
0
0
…

LCS

N_LCS

Pattern 
len 

Text 
len 

LCS 
(ms) 

ImpLCS 
(ms) 

6 10000 0 0 

50 10000 0.016 0 

100 10000 0.019 0 

200 10000 0.031 0.016 

300 10000 0.046 0.017 

500 10000 0.078 0.032 

800 10000 0.125 0.047 

1000 10000 0.156 0.051 

1500 10000 0.219 0.094 

2000 10000 0.359 0.141 

Table 9 Comparison of LCS and ImpLCS with p constant 

 

Pattern 
len 

Text 
len 

LCS 
(ms) 

ImpLCS 
(ms) 

6 100000 0.015 0 

6 300000 0.031 0.016 

6 600000 0.063 0.015 

6 900000 0.092 0.032 

6 1200000 0.109 0.036 

6 1600000 0.156 0.047 

6 2000000 0.250 0.049 

6 2400000 0.300 0.052 

6 2700000 0.330 0.055 

6 3000000 0.360 0.058 
 

Fig.11 Cost of the ELSE case in LCS alg. = 3/4 m × n. 

       3/4   ×   1   ×   m × n Probability Nested 
loops 

Number of 
comparison 
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LCS of A(m × n) = (m × n) + (¼ × 0 × m × n) + (¾ × 1 × 
m × n) = 1.75 m × n.  
 
To calculate the cost in the average case for ImpLCS, we 
start by considering the two loops of size m and n, as in 
the LCS m × n. However, because the second m loop is 
controlled by the third loop, on average, half of m will be 
performed. Thus, the running time for the first two loops is 
(m/2) × n. In the match case (p = t) with probability 1/4, 
there is another comparison statement inside the third loop. 
This statement controls and continues the running of the 
second loop. Moreover, it makes the probability of the 
inner comparison taking place m/2; on reaching the inner 
comparison, two probabilities are considered. 
 

 

 

 

 

 

 
 
Thus, the average cost, A(m × n) = m/2 × n + 1/8 × m × n 
= 0.62 m × n. This is less than the average case for LCS  
(i.e., less than 1.75 m × n). 
In addition, after the LCS algorithm, another algorithm 
used to print out the results. This code has cost m × n, 
whereas in ImpLCS, the extra code only runs with a cost 
of n. 
 

LCS cost without printing outputs ImpLCS cost without printing outputs

1.75 m × n 0.62 m × n 

 
LCS cost with printing outputs ImpLCS cost with printing outputs 

2.75 m × n 0.62 m × n + n 

 

 

The big-O notation for both algorithms is O(m × n). 
However, a comparison of the algorithms at the second 
level (the average case) shows that ImpLCS performs 
better when A (m × n) is considered. Further, the results of 
tabulation of the running time for both algorithms confirm 
that ImpLCS is better. 
 

6. Conclusion 

The paper has presented a new, improved approximate 
string-matching algorithm, which is reasonably accepted 
on average for low and intermediate deference ratios (up to 

1/2). Improving the results from original algorithms, the 
ImpLCS algorithm gave improved results that save time 
and space. Also proved theoretically and experimentally. It 
also gave the needed results plus alternative results. The 
algorithm may give better results based on the structure of 
the used text and patterns implemented.  
 
The complexity of the improved algorithm was the same 
as compared to the original algorithm which is O(m.n). 
However, the cost in the average case has reduced in a 
noticeable way. Based on that, it is not a big change if only 
the complexity is considered. On the other hand, as far as 
enhancing the algorithm is concerned, it is a positive step 
to achieve more improvements. The concept of solving 
this problem was by using a matrix of size (m.n). The 
possibility might exist in the future to solve this problem 
considering any other alternative by trying a liner method 
that would cost less time and space comparing to the 
previous cost. 
 
  
In a future research, this algorithm could be combining to 
another improved algorithm in order to achieve a special 
function in one of the computation theories fields or other 
fields such as bioinformatics and DNA formulas or even 
image processing and text searching methods. The scope 
to use such enhanced algorithm is wide since many life 
applications use the string matching and comparing. 
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Fig.12. Cost of the IF case in the ImpLCS alg. = 1/8 × m × n. 

 

Fig.13 Cost of LCS and ImpLCS.  
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