
Design patterns – From Architecture to embedded software

development

Farah Lakhani1 and Nabiha Faisal2

 1,2 Department of Computer & Software Engineering, Bahria
University 13, National Stadium Road Karachi, Pakistan

Abstract
Developing application software for embedded systems presents

many challenges as a number of constraints need to be optimized

such as strict timings, limited power usage and memory

utilization. Also, successful embedded application design are the

result of the combined inputs from various related disciplines

such as control engineering and scheduling theory. In this regard,

recycling design experience can play a substantial role by

providing previously tested and proven techniques incorporated

into new designs. This paper reports on the evolution of the

concept of ‘Design patterns’ originated by analogy from building

architectures, and now followed by a wide variety of diverse

disciplines. In the field of embedded software development

patterns have been found to be a useful adjunct to traditional

development processes. Nowadays practitioners in the field of

successfully implemented patterns are encouraged to build

reliable architectures for the safety-critical applications either

from scratch or to transform existing architectures into more

predictable forms.

Keywords
Embedded systems, Software architecture, design patterns

1. Introduction
The concept of patterns applied in this research has its roots

in architecture and the generic principles and techniques

applied in that discipline have received global recognition

in their successful transition to applications in software

engineering. Patterns have applications in many diverse

disciplines e.g. pedagogy, telecommunication and

enterprise development. One of the reasons for their wide

appeal is the benefits of “reusability”. In general, patterns

are structured documents written by specialised experts to

provide tested and proven solutions to commonly occurring

problems in a particular context. The power of such

documentation is that knowledge and experience is not

confined exclusively in the heads of experts but is captured

in a way that can be easily accessible and shared. This

paper will present a detailed account on the evolution of

patterns and their successful transfer into a wide and

diverse variety of fields with a special focus on embedded

software development. The organisation of the paper is as

follows: Section 2 will present an account on the historical

background of patterns. The adoption of patterns into

diverse disciplines is discussed in Section 3 and a more

detailed discussion on different aspects of patterns

presented in Section 4. Section 5 describes the use of

patterns for embedded software development and the

contribution made by this research. Finally conclusions of

the research presented in this paper are given in Section 6.

2. Patterns in Architecture
The concept of abstracting general patterns from a field or

discipline in which there is a wide variety of final,

apparently differentiated, designs or artefacts, emerged

from the work of the Austrian born architect Christopher

Alexander. He introduced the concept of patterns during

the 1960s and 1970s, when he was a professor of

architecture at the University of California, Berkley. After

obtaining a Bachelor’s degree in architecture and a

Master’s degree in mathematics from Cambridge

University, he moved to the United States where he

obtained a PhD in architecture from Harvard University.

His doctorate thesis, ‘Notes on the Synthesis of Form’ was

published as a book in 1964 [1]. Alexander and his

colleagues published three pioneering texts [2-4] that laid

the foundation of the use of patterns in the field of

architecture. They produced a “pattern language” [3] to

encapsulate practical solutions for designing and building at

any scale. The pattern language identified common

problems of civil and architectural design, from how cities

should be laid out to the location of windows and doors in a

room. The aim was to improve the methodology of

architecture and urban planning. Additionally he aimed to

conserve the knowledge and experience of architects into a

collection of ‘patterns’ that Alexander believed could

“provide a complete working alternative to present ideas

about architecture, building and planning” [4]. In pattern

language, Alexander and his colleagues proposed 250

innovative and coherent patterns for designing and building

homes, towns and cities etc. The various patterns in the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 146

2015 International Journal of Computer Science Issues

mailto:farah.lakhani@bimcs.edu.pk
mailto:nabiha_faisal@bimcs.edu.pk

language can be combined in different ways to build a

‘customised’ solution.

3. Patterns beyond architecture
It is interesting to observe that over the last several years,

Alexander’s idea for architecture and designs have had far

more impact in fields other than architecture. This includes

a diversity of fields from organizational management to

poetry, but in particular – and in the context of this research

– in the world of computer software design.

The adoption of patterns by the software community has

been influenced by the need in this community to reuse

software. Software developers have a strong tendency to

reuse designs that have worked well for them in the past

and, as they gain more experience, their repertoire of design

experience grows and they become more proficient.

However, this design reuse is usually restricted to personal

experience and there is usually little sharing of design

knowledge among developers [5]. The advent of design

patterns offered an opportunity to overcome the

inefficiencies and wasted resources of re-invention and to

share the collective experience of the software community.

The actual use of patterns in the field of software can be

traced back to Kent Beck and Ward Cunningham. In 1987,

they introduced a small pattern language [6] comprising of

five patterns aimed at helping new programmers to design

windows-based GUI applications using the ‘Smalltalk’

programming language. Later, in 1995 Erich Gamma and

his colleagues now well known in this field as ‘The Gang of

Four (GoF)’ published a set of general-purpose reusable

object-oriented design patterns as a book [7]. This is

considered the most influential book on software design

patterns published to date.

Even though patterns were initially applied mainly in

object-oriented software design, they have now been

applied in a number of other software engineering fields.

Organisational patterns stem from studying recurring

structures of relationships within organisations which

contribute towards their success. Examples include the

pattern language introduced in [8] documented as ‘best

practices’ for productive software development, and the

collection of patterns for introducing new ideas into an

organization [9]. Pedagogical patterns capture expert

knowledge in the field of teaching and learning and seek to

foster best practices in teaching. Some examples of

published patterns in pedagogy are [10] and [11]. Patterns

for telecommunication systems focus on improving the two

unique characteristics of software-reliability and human

factors. Examples include the works described in [12 -14]

that covers patterns and pattern languages for use in areas

such as telecommunications, distributed systems,

middleware etc. Patterns have also been successfully

applied in interaction designs [15], the software

development process [16], cognition [17] and software

configuration management [18]. Recent research work has

proposed the use of design patterns for web application

development [19] and for the location-based GPS

application [20].

4. Broader aspects of Patterns
The concept of design patterns originated in the field of

conventional (building) architecture and provided the

means to explicitly highlight the hidden key design

strategies and tactics to help new participants in the field.

The patterns also enabled knowledge to be shared among

experts more effectively. Though coming from ill-defined

problems in the architecture of buildings, patterns originally

gained acceptance for well-defined problems in software

design such as patterns for object-oriented design methods

[7], patterns for fault-tolerant software [14] and design

patterns for high availability systems [21]. In this context

the principal contribution of design patterns is that they

explicitly capture expert knowledge and design trade-offs

and thus support the sharing of architectural knowledge

among software developers. A generic concept of a design

pattern is depicted in Figure 1. The idea mainly revolves

around the existence of a problem and a solution. The

problem is expanded in terms of its context, and relevant

design forces which provide foundations for the solution.

The solution then generates a few benefits, consequences

and follow-on problems which could lead to the

applicability of other patterns.

Figure 1: Illustrating the concept of a pattern

Patterns emerge from lessons learned in the practice of a

particular discipline. Domain experts accumulate these

lessons and season them with knowledge earned through a

study of the domain’s theoretical base. These experts are

then able to shape and re-shape patterns which can be re-

used in the domain. Together these activities constitute the

development of a pattern [22].

P

R

O

B

L

E

M

S

O

L

U

T

I

O

N

Context &

applicable

design forces

Related

patterns

&

solutions

Strengths &

Weaknesses

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 147

2015 International Journal of Computer Science Issues

4.1 Pattern forms and Elements

Patterns are structured documents, so their layout and

constituent components are important in the sense that they

are the means to provide information in a way which is

easier to grasp and understand by its user. Different authors

have their own ways of documenting patterns. However,

certain pattern forms have become more established than

others. Some well-known pattern forms are presented in

Table 1.

Table 1: Some well-known pattern forms

Pattern form Description

Alexandrian form This layout is used by Alexander in [2]

GoF form Layout used to write the famous Gang of

Four patterns [7]

Coplien form This layout is followed by Coplien [8].

POSA form This layout is used to write Patterns of

Software Architecture [24].

PTTES form This layout is used for Patterns for Time-

Triggered Embedded Systems (PTTES)

collection [27].

Even though there are different pattern forms, they all share

certain common key elements which are listed below:

Name: Patterns names are intended to concisely capture the idea

behind the problem and solution being addressed by the pattern.

For example the pattern Heart Beat LED is a pattern for checking

whether a system is active.

Problem-Solution pair: This constitutes the core of the pattern.

A successful pattern is one which conveys the solution effectively

and which others can reuse in their designs.

Context: This describes the settings in which the problem is

found. This part should answer the question, “When can I apply

this pattern?”

Forces: Forces define the problem. A strong forces section in a

pattern will enable the reader to judge whether the solution is

good and whether it fits the problem statement.

Examples: One or more sample applications of the pattern,

supplemented by implementation.

Resulting context: No pattern is perfect. Every pattern has some

shortcomings. This section describes the effects of applying the

pattern.

Related patterns: This section mentions other patterns that solve

similar problems. These may be predecessor patterns whose

application leads to this pattern, successor patterns whose

application follows this pattern, alternative patterns that describe a

different solution to the same problem but under different forces

and constraints.

4.2 Pattern languages

It is important to note that patterns are not intended to

degrade the design individuality but rather support it. It is

because a pattern provides a generic solution for a recurring

problem: a solution that can be implemented in many ways

without necessarily being twice the same. The process of

adapting or applying the pattern enables customisation at

different stages during the software development so it’s not

a case of ‘One size fits all’ with patterns. Software

practitioners were quick to learn from the pedagogical

interest of patterns i.e. ‘to learn from experience’.

Codifying good design practice helps to distil and to

disseminate experience, and this helps others avoid

frequently encountered development traps and pitfalls [23].

A repository of design patterns in an organisation can play

an important role in replacing a loss of expertise or as an

expert system. In this way patterns can help an organisation

to “back up” key skills from a team of expert designers and

provide a cheaper availability of the solutions. Patterns

provide solutions documented by a domain expert and

could be followed by an unlimited number of experts

working in the same domain. In this sense, patterns help to

promote creativity and enable different experts to obtain

solutions with varying dimensions.

Though reflecting different views about patterns, all

researchers and experts share a common opinion that

patterns should not exist in isolation, they should ideally

form a part of a pattern ‘collection’. “No pattern is an

island” [24]. In the words of Alexander [2] “In short, no

pattern is an isolated entity. Each pattern can exist in the

world, only to the extent that is supported by other patterns:

the larger patterns in which it is embedded, the patterns of

the same size that surround it, and the smaller patterns

which are embedded in it.”

A pattern language is a set of inter-related patterns (see

Figure 2), where one can use the individual patterns to

solve small problems or one can use the language as a

whole to solve a much bigger problem. The collection of

patterns comprising the ‘language’ forms a kind of

‘vocabulary’ for understanding and communicating ideas.

Figure 2: Illustrating an example structure of a pattern language

Just as the relationships between words – through meaning

and grammar – form a useful ‘language’ similarly,

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 148

2015 International Journal of Computer Science Issues

organising patterns in a structure so that they have logical

relationships with each other leads to the formation of a

pattern language. Organising patterns in a pattern language

gives the designers a ‘map’ to complete the structure they

are designing or building. In a pattern language, the

patterns are organised such that they guide the reader from

large-scale patterns to smaller-scale patterns. The smaller

patterns help to complete the larger patterns. The pattern

language has the structure of a network that includes

various rules and guidelines to explain when and how to

apply the constituent patterns to solve a problem that is too

large for an individual pattern to solve.

4.3 Pattern mining and refinement

It is interesting to ask how pattern authors discover a

pattern and how they document it so that they can

effectively convey their design ideas. There is therefore, a

need to look for or discover patterns before documentation.

Pattern mining is the process of discovering new patterns

prior to documentation. This process is also called

reverse-architecting. Several metaphors that were

proposed such as hunting, fishing, harvesting, paleontology

or archaeology and mining to describe the process of

discovering and documenting patterns are discussed in [25].

Fishing, hunting and harvesting ‘almost’ describe the

process of pattern discovery and documentation, but they

nevertheless fall short. Fishing and hunting implies too

much randomness while harvesting is discarded as patterns

are not grown or created but are present in the artefacts that

already exist. Paleontology or archaeology no doubt

provides a reasonably correct description of the process if

patterns are considered as fossils or buried relics. The

archaeologists or paleontologists then have to dig through

all the mass separating the ‘good’ from the ‘bad’, and once

discovered, the relics have to be carefully cleaned. Finally,

once all the ‘pieces’ have been retrieved and cleaned; they

are re-assembled for ‘public viewing’. The primary

objections that could be raised to the use of these metaphors

are that patterns are meant for everyday use; however, the

discoveries of palaeontologists or archaeologists are

generally displayed in a museum. Consequently, the pattern

community decided to settle for the mining metaphor when

describing the pattern discovery process.

Numerous international conferences on the Pattern

Languages of Programming ‘PLoP’ are organised by the

patterns community every year as a forum to discuss the

latest patterns and pattern languages. As part of the

refinement process, pattern languages and individual

patterns are critically reviewed by experts at PLoP events.

This process is called shepherding. The shepherding

process begins when a paper is initially submitted to a PLoP

conference. The author improves the paper (generally

following the advice of the reviewer called the ‘shepherd’)

and sends the corrected version back to the shepherd. This

process of revision between the shepherd and the sheep (the

author) is repeated three or four times. The review process

is more intensive during the conference. In a Writer’s

Workshop a group of people periodically get together and

read and critique manuscripts by fellow workshop

participants. This feedback allows the participants to

improve their patterns and make them more publishable.

Thus, from the commencement of an idea that is conceived

in the mind a pattern undergoes a rigorous amelioration

process that seeks to refine it to a standard of quality that

makes it understandable and acceptable by the peer

community.

5. Patterns and Embedded Software
Embedded software development is more challenging

compared with desktop applications because they are

characterised by resource constraints such as limited

memory, limited power consumption and timing

constraints. Furthermore, unlike most desktop applications,

embedded applications run on specific hardware with

special purpose RTOS (real-time operating system),

schedulers, programming languages or network protocols

such as CAN etc. Another major difference is in the cross

development environment. Desktop applications are

usually developed on the same platform for which they are

designed, whereas embedded applications are built and

tested in simulated environments and the generated

executables are then transferred onto the target processor.

Also designing successful designs for safety-critical

embedded applications requires input from various other

disciplines (shown in Figure 3) such as control theory,

operations research, operating systems and Algorithms etc.

Figure 3: Disciplines that impact on embedded system engineering

As patterns have the ability to capture domain specific

information for the benefit of practitioners, they can play a

vital role in reducing the complexities involved in

embedded software development.

Embedded

Systems

Control

theory

Operating

Systems

Algorithms

Data

Structures

Software

engineering

Queuing

theory
Operations

research

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 149

2015 International Journal of Computer Science Issues

5.1 Patterns for system construction
A summary of some of the previously introduced pattern

collections for embedded software development found in

literature are given below:

1. A pattern language for designing simple embedded

applications is introduced [26] and is based on a framework

named ‘The Carousel’. The basis of this framework is the

well-known super loop architecture which can allow

designers to design simple applications without the use of

any complex control software or operating system to run the

system tasks.

2. A huge collection of patterns for designing time-triggered

embedded systems (called the ‘PTTES’ collection) [27].

This language is intended to support the development of

reliable embedded systems and the particular focus of the

collection is on systems with time-triggered architectures.

3. A system of patterns for reliable communication in hard

real-time systems called “Triple-T (Time-Triggered

Transmission)” is also proposed [28]. This pattern

collection is focusing on reliable communication with

guaranteed transmission times for hard real-time systems.

Triple-T is a system of five patterns, which together

establish a base for the development of distributed safety-

critical real-time systems.

4. A pattern language for distributed machine control

system [29] emerged when the working engineers found

some architectural patterns during their visits to four sites in

the Finnish machine industry to find design patterns to this

domain. This pattern language included patterns for

messaging, fault tolerance, redundancy and system

configuration.

5. Other well-known examples of pattern languages in

various domains of interest to control engineers are:

patterns for concurrent and networked objects [30],

communication patterns [13] and patterns for fault tolerant

software [14].

5.2 Patterns for System Migration

A common requirement of all the pattern collections

mentioned above is in providing techniques for designing

systems from the scratch. However, pattern collection

which could assist in alterations of existing architectures or

migrating between different architectures were somewhat

neglected. To fill this gap, a recent research was conducted

on the use of design patterns for the migration between

different architectures of embedded applications in order to

improve the system reliability [31-32]. The focus of this

work is on systems with “time-triggered” (TT) architecture

the main alternative to which is an “event-triggered” (ET)

architecture. These have already been distinguished by

various research studies [33-36]. We further differentiate

between these two alternatives as shown in Figure 4 below

by defining static and dynamic variants of TT and ET

systems. We assume that in a static TT system - we always

know (i) when the next interrupt will occur, and (ii) exactly

what the system will do in response to this interrupt. At the

other extreme, we have dynamic ET system: in such designs

we assume that (i) we never know when the next interrupt

will occur, and (ii) that we do not know exactly what the

system will do in response to this interrupt.

Figure 4: Distinguishing ET and TT designs

The research began with the hypothesis “Sets of rules,

techniques and processes can be found which will be

encapsulated in “pattern form” and which will let users

apply a time-triggered approach in a wider range of

systems”.

Beginning from this point, research described in this paper

has explored the need for migration from existing event-

triggered architectures to time-triggered architectures in

order to improve system reliability. It has explored the

challenges involved in the migration process from event-

triggered to time-triggered architectures. Finally, the

research has explored – for the first time – ways in which

design patterns can be used to support the migration

between event-triggered and time-triggered software

architectures and resulted in the development of a pattern

language to support the migration process. The pattern

language is introduced by identifying links between

previously proposed patterns by peers and the new patterns

proposed during the course of this research.

The research has also performed the rigorous assessment of

the pattern language by demonstrating the applicability of

the proposed patterns on real applications in laboratory

experiments [37], and by conducting controlled

experiments with a target audience of users [38]. It is

beyond the scope of this paper to explain the details of

these assessment studies. However results obtained from

both studies suggest that design patterns can be successfully

Static ET Static TT

Dynamic ET Dynamic TT

Y

N

Y N

Do you know

what happens

when the next

interrupt

occurs?

Do you know when the next

interrupt will occur?

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 150

2015 International Journal of Computer Science Issues

implemented not only in the construction process, but they

may also assist designers and developers in reducing the

complexities involved in migrating between different

architectures.

 The association map for the proposed PMES pattern

language is shown in Figure 5.

Figure 5: Association map for the patterns to support migration between

architectures.

6. Conclusion
In this paper we have reported the successful technology

transfer of what is called ‘design patterns’ originally

developed for building architectures into various diverse

disciplines with a special focus on software development

for embedded applications. We have also introduced our

novel contribution of the formation of a pattern language

which could facilitate developers who are involved in

altering design architecture in order to improve system

reliability.

References
[1] Alexander, C. Notes on the synthesis of form, Harvard

University Press, 1964.

[2] Alexander, C., S. Ishikawa, et al. A pattern language,

Oxford University Press, 1977.

[3] Alexander, C., M. Silverstein, et al. The oregon experiment,

Oxford University Press, 1975.

[4] Alexander, C. The timeless way of building, Oxford

University Press,1979

[5] Beck, K., J. O. Coplien, et al. Industrial experience with

design patterns. Proceedings of 8th International Conference

on Software Engineering, Berlin, Germany (1996) 103-114.

[6] Cunningham, W. The CHECKS pattern language of

information integrity, Addison Wesley, 1987.

[7] Gamma, E., R. Helm, et al. Design patterns: Elements of

reusable object-oriented software, Addison Wesley, 1995.

[8] Cain, B. G., J. O. Coplien, et al. Social patterns in

productive software development organisations. Annals of

Software Engineering (1996) 2(1): 259-286.

[9] Manns, M. L. and L. Rising Fearless change: Patterns for

introducing new ideas, Addison Wesley, 2004.

[10] Bergin, J. Fourteen pedagogical patterns. Proceedings of the

5th European Conference on Pattern Languages of

Programming, 2000.

[11] Fricke, A. and M. Vlter, A pedagogical pattern language

about teaching seminars effectively. Proceedings of the 5th

European Conference on Pattern Languages of Programs,

2000.

[12] Adams, M., J. Coplien, et al. Fault-tolerant

telecommunication system patterns. Pattern Languages of

Program Design 2. Boston , MA, USA, Addison Wesley

(1996) 549-562.

[13] Rising, L., Ed. Design patterns in communication software,

Cambridge University Press, 2001.

[14] Hanmer, R. Patterns for fault-tolerant software, John Wiley

& Sons, Ltd, 2007.

[15] Borchers, J. O. Designing interactive music systems: A

pattern approach. Proceedings of the 8th International

Conference on Human Computer Interaction: Ergonomics

and User Interfaces (1999) 1: 276-280.

[16] Ambler, S. W. Process patterns, Cambridge University

Press, 1998.

[17] Gardner, K. M., A. Rush, et al. Cognitive patterns,

Cambridge University Press, 1998.

[18] Berczuk, S. P. and B. Appleton, Software configuration

management patterns: Effective teamwork, practical

integration, Addison-Wesley Professional, 2003.

[19] Md. Umar Khan, Dr. T.V. Rao. XWADF: Architectural

pattern for improving performance of web applications,

IJCSI, Vol 11, Issue 2, No 2, March 2014.

[20] David Gillibrand, Khawar Hameed. The use of design

patterns in a location based GPS application, IJCSI, Vol 8,

Issue 3, No 1, May 2011.

[21] Kalinsky, D. Design patterns for high availability

Whitepaper/Advanced Course Reading Assignment, D.

Kalinsky Associates, 2002.

[22] Petter, S., D. Khazanchi, et al. A design science based

evaluation framework for patterns. ACM SIGMIS Database

(2010) 41(3).

TIME FOR TT?

EVENTS TO TIME TT SCHEDULER

HYBRID

SCHEDULER

CO-OPERATIVE

SCHEDULER

PRE-EMPTIVE

SCHEDULER

CHOOSING TASK

PARAMETERS

POLLED INPUT

BUFFERED OUTPUT

CRITICAL SECTION

RESOURCE LOCK DISABLE TIMER

INTERRUPT

PRIORITY INHERITANCE

PROTOCOL IMPROVED PRIORITY

CEILING PROTOCOL

BALANCED SYSTEM

SANDWICH DELAY

TAKE A NAP

SINGLE PATH

PLANNED

PRE-EMPTION

SYSTEM MONITORS

LOOP TIMEOUT WATCHDOG

TASK GUARDIAN

MIGRATION PATTERNS

OPTIMIZATION

PATTERNS

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 151

2015 International Journal of Computer Science Issues

[23] Jezequel, J. M. Train, et al. Design Patterns and Contracts,

Addison-Wesley, 2000.

[24] Buschmann, F., R. Meunier, et al. Pattern oriented software

architecture. Chichester, UK, John Wiley, 1996.

[25] DeLano, D. E. Section title: Patterns Mining. The patterns

handbook: Techniques, strategies, and applications,

Cambridge University Press, 1998.

[26] Bottomley, M. A pattern language for simple embedded

systems. Proceedings of the Pattern Languages of

Programming PLOP '99. Chicago, USA, 1999.

[27] Pont, M. J. Patterns for Time-Triggered Embedded Systems,

ACM press, 2001

[28] Herzner, W., W. Kubinger, et al. "Triple-T (Time-Triggered

Transmission)" A system of patterns for reliable

communication in hard real-time systems. Proceedings of the

5th European Conference on Pattern Languages of

Programming EuroPLoP 2005. Irsee, Germany.

[29] Eloranta, V. P., J. Koski, et al. Software architecture

patterns for distributed embedded control systems.

Proceedings of 14th European Conference on Pattern

Languages of Programming, EuroPLoP 2009. A. Kelly and

M. Weiss. Irsee, Germany, CEUR Workshop Proceedings.

566.

[30] Schmidt, D., M. Stal, et al. Pattern-oriented software

architecture Volume 2: Patterns for concurrent and

networked objects, John Wiley and Sons, 2000.

[31] Lakhani, F., A. Das, et al. Improving the reliability of

embedded systems as complexity increases: supporting the

migration between event-triggered and time-triggered

software architectures. Proceedings of the 15th European

Conference on Pattern Languages of Programming

(EuroPLoP 2010). Irsee, Germany, ACM Press: 22:21 -

22:17.

[32] Lakhani, F. and M. J. Pont. Applying design patterns to

improve the reliability of embedded systems through a

process of architecture migration. Proceedings of the 9th

IEEE International Conference on Embedded Systems and

Software (ICESS 2012). Liverpool, UK., IEEE Computer

Society: 1563 -1570.

[33] Kopetz, H. Event-triggered versus time-triggered real-time

systems, 1991. Proceedings of the Workshop on Operating

Systems of the 90s and Beyond 87-101.

[34] Albert, A. and R. Bosch GmbH. Comparison of event-

triggered and time-triggered concepts with regard to

distributed control systems. Proceedings of the Embedded

World 2004. Nurnberg: 235-252.

[35] Kopetz, H. "Should responsive systems be event-triggered

or time-triggered?" IEICE Transactions on Information and

Systems (1993) E-76-D(11): 1325-1332.

[36] Scheler, F. and W. Schroder-Preikschat Time-triggered

versus Event-triggered: A matter of Configuration?

Proceedings of the MMB GI/ITG Workshop on Non-

Functional Properties of Embedded Systems, Nuremberg,

Berlin VDE Verlag, 2006.

[37] Lakhani, F. and M. J. Pont. Applying design patterns to

improve the reliability of embedded systems through a

process of architecture migration. Proceedings of the 9th

IEEE International Conference on Embedded Systems and

Software (ICESS 2012). Liverpool, UK., IEEE Computer

Society: 1563 -1570.

[38] Lakhani, F. and M. J. Pont . "Empirical studies for the

assessment of the effectiveness of design patterns in

migration between software architectures of embedded

applications." ISRN, Journal of Software Engineering, 2012.

Dr. Farah Lakhani received her Bachelor’s and Master’s degrees
in Computer Engineering from NED University Karachi and her
PhD in Embedded Systems Engineering from the University of
Leicester UK. She is currently working as Assistant Professor in the
Computer & Software Engineering department at Bahria University
Karachi Pakistan. Dr. Farah has published around 10 publications
in various international conferences, forums and journals. Her area
of research interests are software architectures for modern
embedded applications, reliability issues for safety-critical
applications and software engineering paradigms.

Nabiha Faisal received her B.E degree in Computer & Information
Systems Engineering from NED University of Engineering &
Technology, Karachi, Pakistan, her MEngg degree in Computer
Architecture & System Design from NED University of Engineering
& Technology, Karachi, Pakistan. Her research interests include
Embedded Systems, Artificial Intelligence and Computer Graphics.
She is currently working as an Assistant Professor in the
Department of Computer & Software Engineering at Bahria
University Karachi Campus, Pakistan.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 152

2015 International Journal of Computer Science Issues

