
A Comparison Between Three SDLC Models Waterfall

Model, Spiral Model, and Incremental/Iterative Model
Adel Alshamrani1 and Abdullah Bahattab2

1 Ira A. Fulton Schools of Engineering at Arizona State University

Tempe, AZ, 85281, USA
1 King Abdul Aziz University, Faculty of Computing and Information Technology-North Branch,

 Jeddah, 22245, KSA
2 College of Telecommunications and Electronics (CTE),

Jeddah, 21533, KSA

Abstract

The computer has become indispensable in today’s life, and it is

widely used in many fields of life such as commerce, education,

industry…etc. The computer saves time in regarding to help

solving complex, long, repeated processes in a short time and

high speed. As the software programs need to handle these

features, many companies produce software programs to

facilitate the works for administrations, banks, offices, etc.

Moreover, software has been in used for analyzing information

or solving problems for more than four decades. Creating a

suitable work to develop programs of high quality is the main

goal of the software engineering. Usually, clients seek the

assistance from computer and software engineers to solve and

handle their problems. There are various models have been

widely in used to develop software products. Common models

will be described in this paper.

Keywords: SDLC Models, Software Engineering, Waterfall

model, Spiral model. Iterative model.

1. Introduction

Software development life cycle or SDLC for short is a

methodology for designing, building, and maintaining

information and industrial systems. So far, there exist

many SDLC models, such as the Waterfall model, which

comprises five phases to be completed sequentially in

order to develop a software solution; another model called

the Spiral model, which is visualized as a process passing

through some number of iterations. Finally, the

incremental model is any combination of both iterative

design or iterative method and incremental building model

for software development. It has seven phases, and they

are as follows: Planning, requirements, analysis,

implementation, deployment, testing, and evaluation [1,

3]. In effect, SDLC has been investigated by many

researchers and numerous models have been proposed

where their acknowledged strengths and weaknesses are

presented. The Waterfall, spiral, incremental, rational

unified process (RUP), rapid application development

(RAD), agile software development, and rapid prototyping

are few to mention as successful SDLC models.

Moreover, all SDLC models that have been suggested

share basic properties. They all consist of a sequence of

phases or steps that must be followed and completed by

system developers and designers in order to achieve

developed systems and deliver required products.

However, in this paper, strengths and weaknesses of The

Waterfall, Spiral, and Incremental/Iterative models will be

discussed and a brief comparison of other aspects will

conclude the rest of the paper.

2. Waterfall Model

The Waterfall Model is the oldest and the most well-

known SDLC model. This model is widely used in

government projects and in many major companies. The

special feature of this model is its sequential steps. It goes

downward through the phases of requirements analysis,

design, coding, testing, and maintenance. Moreover, it

ensures the design flaws before the development of a

product. This model works well for projects in which

quality control is a major concern because of its intensive

documentation and planning [5].Stages that construct this

model are not overlapping stages, which means that the

waterfall model begins and ends one stage before starting

the next one.

The following steps give a brief description about the

waterfall process:

1. Requirement: Is a description of a system behavior to

be developed. Usually, it is the information provided

by clients. Hence, it establishes the agreement

between the clients and the developers for the

software specifications and features. In short,

requirements are gathered, analyzed and then proper

documentation is prepared, which helps further in the

development process.”

2. High Level design: The gathered information from

the previous phase is evaluated and a proper

implementation is formulated. It is the process of

planning and problem solving for a software solution.

It deals with choosing the appropriate algorithm

design, software architecture design, database

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 106

2015 International Journal of Computer Science Issues

conceptual schema, logical diagram design, and data

structure definition [4, 5].

3. Coding: In this phase the whole requirements will be

converted to the production environment.

4. Testing: This phase deals with the real testing and

checking of the software solutions that have been

developed to meet the original requirements. Also, it

is the phase where the bugs and system glitches are

found, fixed up, and refined.

5. Maintenance: After the software is already released, it

may need some modifications, improvements, errors

correction, and refinement accordingly. Thus, this

phase is the process of taking care of such concerns.

3. Spiral Model

The spiral model is a software development process

combines elements of both design and prototyping in

stages for the sake of combining the advantages of top-

down and bottom up concepts. It is a meta-model, which

means that it can be used by other models [5, 6]. In

addition, it focuses on risk assessment and minimizing

project risk. This is can be achieved by breaking a project

into smaller segments, which then provide more ease-of-

change during the development process, as well as

providing the opportunity to evaluate risks and weigh

consideration of project continuation throughout the life

cycle. In this model, the development team starts with a

small set of requirements and then goes through each

development phase (except Installation and Maintenance)

for those set of requirements. Therefore, the development

team has a chance to learn new lessons from the initial

iteration (via a risk analysis process). Also, the team will

add functionality for additional requirements in ever-

increasing “spirals” until the application is ready for the

installation and maintenance phase. In this model, each

iteration prior to the production version is called a

prototype of the application [7, 8, 9, 10].

The following steps give a brief description about the

Spiral model phases:

1. Planning: This phase includes the understanding of the

system requirements by conducting continuous

communications between the customers and the

system analysts.

2. Risk Analysis: In this phase, a process is undertaken to

identify risk and alternate solutions. A prototype is

produced at the end of this phase.

3. Development/Engineering: In this phase the software is

produced along with the testing.

4. Evaluation Phase: This allows the customer to evaluate

the output of the project before the project continues to

the next spiral or next round.

4. Iterative and Incremental Model

This model combines elements of the waterfall model in

an iterative fashion. Moreover, each linear sequence

produces deliverable increments of the software. The basic

requirements are addressed in the first increment, and it is

the core product, however, many supplementary features

(some known, others unknown) remain undeliverable at

this increment. This model constructs a partial

implementation of a total system. Then, it slowly adds

increased functionality. Therefore, each subsequent

release will add a function to the previous one until all

designed functionalities are implemented [7, 8, 9, 10].

5. Comparison of the three SDLC Models

(Waterfall, Spiral, and incremental)

As we have already mentioned above, there are many

SDLC models each of which has different level of risk,

budget, estimated completion timeline, and benefits to

cope with the project requirements. In addition, some

models are preferred over others in regard to the size of

the project either large or small while other models being

preferred due to their flexibility to allow rapid changes

throughout the whole life cycle of the software

development [1, 2, 5, 6]. Thus, developers have to

consider various aspects before choosing the SDLC model

to implement the required system. They must know the

strengths and weaknesses of each model, and when to use

the appropriate model. Therefore, the tables (1 and 2)

provide some helpful information, which shows the

comparison between the three SDLC models in regard to

their strengths, weaknesses, other aspects, and when to use

each.

6. Conclusion

In this research, we concluded that there are many existing

models for developing systems based on clients’

requirements and the size of projects. Some models are

preferred over the others due to their properties and how

they match the clients’ needs. The waterfall model, spiral

model, and incremental model may have same shared

properties, but they still have different advantages and

disadvantages for the development of systems, so each

model tries to eliminate the disadvantages of the previous

model. In the future work, we are planning to extend this

research to add other models and some models might be

simulated using some tools.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 107

2015 International Journal of Computer Science Issues

Model/feature Strengths Weaknesses When to Use

Waterfall Easy to understand and implement.

 Widely used and known.

 Define before design, and design before

coding.

 Being a linear model, it is very simple to

implement.

 Works well on mature products and provides

structure to inexperienced teams.

 Minimizes planning overhead.

 Phases are processed and completed one at a

time.

 All requirements must be known upfront

 Inflexible.

 Backing up to solve mistakes is difficult,

once an application is in

the testing stage, it is very difficult to go

back and change something that was not

well-thought out in the concept stage.

 A non-documentation deliverable only

produced at the final phase.

 Client may not be clear about what they

want and what is needed.

 Customers may have little opportunity to

preview the system until it may be too

late.

 It is not a preferred model for complex

and object-oriented projects.

 High amounts of risk and uncertainty,

thus, small changes or errors that arise in

the completed software may cause a lot

of problems.

 When quality is more

important than cost or

schedule.

 When requirements

are very well known,

clear, and fixed.

 New version of existing

product is needed.

 Porting an existing

product to a new

platform

Spiral High amount of risk analysis.

 Software is produced early in the software life

cycle.

 Strong approval and documentation control.

 Additional functionality can be added at a later

date.

 Project monitoring is very easy and effective.

 Concerned people of a project can early review

each phase and each loop as well because of

 Cost involved in this model is usually

high.

 Risk assessment expertise is required.

 Amount documentation required in

intermediate stages makes management

of a project very complex.

 Time spent for evaluating risks for small

or low-risk projects may be too large.

 Time spent for planning, resetting

 For medium to high-

risk projects.

 When risk evaluation

and costs

are important.

 When significant

changes are expected.

Table 1: Strengths and Weaknesses Comparison of Waterfall, Spiral, Incremental SDLC Models.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 108

2015 International Journal of Computer Science Issues

rapid prototyping tools.

 Early and frequent feedback from users

 Suitable to develop a highly customized

product.

 Provides early indication of insurmountable

risks.

objectives, doing risk analysis, and

prototyping may be excessive.

 Project’s success is highly dependent on

the risk analysis phase.

 When users are not

exactly sure what

their needs.

Incremental/

Iterative.

 Develop high-risk or major functions first.

 Risk is spread across smaller increments instead

of concentrating in one large development.

 Lessons learned at the end of each incremental

delivery can result in positive revisions for the

next increment.

 Customers get important functionality early, and

have an opportunity to respond to each build.

 Each release delivers an operational product.

 Initial product delivery is faster.

 Reduces the risk of failure and changing the

requirements.

 Requires good planning and design.

 Requires early definition of a complete

and fully functional system to allow for

the definition of increments.

 The model does not allow for iterations

within each increment.

 On low to medium-risk

projects.

 A need to get basic

functionality to the

market early

 On projects which have

lengthy development

schedules.

 On a project with new

technology, allowing

the user to adjust to the

system in smaller

incremental steps rather

than leaping to a major

new product.

 When it is high risky to

develop the whole

system at once.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 109

2015 International Journal of Computer Science Issues

Model/Feature Waterfall Spiral Incremental/Iterative

Specification of All

the Requirements in the beginning

Yes Not all and Frequently Changed Not all and Frequently

Changed

Long term project Inappropriate Appropriate Appropriate

Complex Project Inappropriate Appropriate Appropriate

Frequently Changed Requirements Inappropriate Appropriate Appropriate

Cost Not costly Costly Costly

Cost estimation Easy to estimate Difficult Difficult

flexibility Not Less flexible Flexible

Simplicity Simple Intermediate Intermediate

Supporting high risk projects Inappropriate Appropriate Appropriate

Guarantee of Success Less High High

Customer Involvement Low Low, After Each Iteration High, After Each Iteration

Testing Late At the end of each phase After every Iteration

Maintenance Least maintainable Yes Maintainable

Ease of Implementation Easy Complex Easy

Table 2: Comparison of SDLC models (Waterfall, Spiral, and Iterative model)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 110

2015 International Journal of Computer Science Issues

References
[1] www.en.wikipedia.org/wiki/Systems_development_life-

 cycle

[2] http://www.craiglarman.com/wiki/downloads/misc/history-

of-iterative-larman-and-basili-ieee-computer.pdf

[3] Craig Larman and Victor Basili, “Iterative and Incremental

Development: A Brief History”, IEEE Computer, 2003.

[4] Y. Bassil “A simulation model for the waterfall software

development life cycle. International Journal of Engineering &

Technology”, 2(5): 1-7, 2012.

[5] Nabil Mohammed Ali Munassar and A. Govardhan, “A

Comparison Between Five Models Of Software Engineering”,

IJCSI International Journal of Computer Science Issues, Vol. 7,

Issue 5, , pp. 94 – 101, September 2010.

[6] Ashwini Majumdar, Gayatri Masiwal, P.M.Chawan,

“Analysis of Various Software Process Models” International

Journal of Engineering Research and Applications, Vol. 2, No.

3, 2012, pp. 2015-2021.

[7] N. Munassar and A. Govardhan, “A Comparison Between

Five Models Of Software Engineering”, IJCSI International

Journal of Computer Science Issues, vol. 7, no. 5, 2010.

[8] Ian Sommerville, Software Engineering, Addison Wesley,

9th ed., 2010.

[9] Jim Hurst, “Comparing Software Development Life Cycles,”

SANNS Software Security, 2014.

[10] Sanjana Taya and Shaveta Gupta, “Comparative Analysis

of Software Development Life Cycle Models,” IJCST Vol. 2, Iss

ue 4, Oct . - Dec. 2011

Adel Alshamrani has obtained his Bachelor in Computer Science

from Umm Al-Qura University, Saudi Arabia in 2007, and has obtained
his Master degree in Computer Science from La Trobe University,

Australia in 2010. Adel is a lecturer in the Department of Computer
Science and Information Technology at King Abdul Aziz University.

Now, he is pursuing his Ph.D in Computer science (Information

Assurance) at Arizona State University, USA.

Abdullah Bahattab has obtained his B.S., Masters, and Ph.D. in

Computer Science from King Abdulaziz University, KSA in 1989,

Western Michigan University, USA in 1995, and Illinois Institute of

Technology, USA in 2000, respectively. He worked as the Dean of

College of Telecommunications and Electronics (CTE), Jeddah, KSA.

He is an arbitration committee member of International Chamber of

Commerce (ICC). His research interests are in Computer networks,

routing, switching, wireless networks, and E-learning researches. He got

two patents from the USA patent office. Because of the first patent, he

got an honor letter from King Abdullah bin Abdulaziz. He is the author

of two books and co-author of a book.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 111

2015 International Journal of Computer Science Issues

