
Hierarchical modeling impact on states graph generation for the
dynamic Priority Time Petri Nets

Adel Mahfoudhi1 and Walid Karamti2

 1 College of Computers and Information Technology, Taif University
Taif, Saudi Arabia

2 CES Laboratory, ENIS, University of Sfax

ENIS Soukra km 3,5, B.P.:w 1173-3000, Sfax, Tunisia

Abstract
In previous work we have proposed the hierarchical modeling in
order to reduce the dynamic priority Time Petri Nets (dPTPN)
model. In the present paper, we focus on the demonstration of the
impact of this modeling on the generation of a reduced states
graph. We aim to explore the abstraction of the hierarchical
modeling in order to produce a graph describing only the
interaction states of a real-time system (RTS). Thus, a new
definition of states graph is given in this paper, and the
corresponding generation algorithm is detailed.
Keywords: dPTPN, RTS, Hierarchical modeling, states graph.

1. Introduction

The system analysis at an early stage in the
development cycle is always an open problem for
researchers in computer science. In fact, Real-Time
Systems (RTS) have been omnipresent in several domains
over the past 30 years and their analysis has grown over
the last decade [1]. Recently, a new generation of
architectures (i.e. Multiprocessor and Multicore) has
emerged [18]. Thus, new methods and techniques are
required for modeling and analysis.

The scheduling analysis of RTS running on
multiprocessor architecture presents an interesting
research field. In this vein, formal methods, based on
mathematical principles and abstractions, are the
cornerstone of analysis techniques. The light is mainly
shed on model checking approaches, which attempt to
provide a push-button approach to verification and
integrate well into standard development processes.
However, since using such technique can derive a state-
explosion problem, it is primordial to master the states
generation before the properties checking.

Before verification can be applied, the system must
be modeled in a formal description language such as Time
Petri Nets [15], timed automata. In order to deal with the
state-explosion problem, and based on Time Petri Nets
model, Berthomieu in [3] proposed a graph of class states.

In fact, starting from graph composed with infinite states,
he suggests a technique for grouping states in a finite
number of classes. This technique is used in the PrTPNs
(Priority Time Petri Nets) [4] so as to analyze the
schedulability. An improvement of this approach was
proposed in [17], in which the authors propose a new
extension of Time Petri Nets STPN (Scheduling Timed
Petri Nets) and a reduced states graph compared to [3].

Both of [3] and [17], produce a reduced states graph
that is not so expressive to check the schedulability on
immediately. So, the authors use timed automata as
observers to check properties of the Petri Model and
deduce the schedulability.

PrTPNs and STPN are concerned with the static
priority for scheduling analysis. In multiprocessor systems,
it is necessary to specify the scheduling analysis through
dynamic priority [7]. So, it is not efficient to use them in
scheduling analysis of multiprocessor system.

In [11], the authors have proposed the first Time Petri
Nets extension dPTPN (dynamic Priority Time Priority
Time Petri Nets) dealing with dynamic priority via the
introduction of a new component. Indeed, the priority is
relative to the model state. The scheduling analysis is
shown through the support of the scheduling policy LLF
(Least Laxity First) [8] and a set of independent periodic
tasks running on a multiprocessor architecture. However,
the LLF is not frequently used in practice because the cost
of preemption is so high compared to the Earliest Deadline
First (EDF) [13]. In the same vein, the authors have
proven the capacity of the dPTPN to deal with EDF as
well as with the dependent tasks in [10].

In this stage, the authors have proposed a Petri model
for the scheduling analysis. Hence, a detailed model for
the periodic dependent tasks is presented. However, the
size and the complexity of the entire RTS system model
have increased even though the considered RTS is more
complex. Hence, the determination of all reachable states
corresponding to the model and the checking of its
properties is more difficult.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 43

2014 International Journal of Computer Science Issues

In [9], the authors present a new modeling strategy to
master the complexity of the dPTPN model building on
Object modeling, as well as a new dPTPN model
component and identified how it can be instanced to
specify the scheduling analysis model. Nevertheless, the
exploitation of this abstraction of the model in the
construction of model states and the properties checking is
not detailed.

Contrary to states graph reduction techniques, the
current paper presents a technique of states graph
generation based on a reduced Petri Nets Model. In fact, to
master the state-explosion problem, we start from a
reduced model and we produce a finite and oriented states
graph where the schedulability can be checked on it
immediately (without observer’s automata). We apply the
proposed approach on a partitioned real-time
multiprocessor system characterized with dependent
periodic tasks.
The present paper is organized as follows. Firstly, the
definitions of the proposed dPTPN are overviewed in
section 2. Next, section 3 presents the considered RTS and
how it can be modeled with the hierarchical modeling
strategy in order to provide a reduced dPTPN RTS model.
As for section 4, it presents the generation of the states
graph. Starting from the developed model, a set of states
connected with edges are generated to describe a
prediction of the RTS scheduling. Finally, the proposed
approach is briefly outlined.

2. dynamic Priority Time Petri Nets: dPTPN

A Petri Nets [16] can be defined as 4-tuplet :
PN = <P, T, B, F>

(1)
,where:
(1) P = {p1, p2, ..., pn} is a finite set of places n> 0;
(2) T = {t1, t2, ..., tm} is a finite set of transitions m> 0
(3) B :(P × T) → N is the backward incidence function;
(4) F :(P × T) → N is the forward incidence function;
Each system state is represented by a marking M of the net
and defined by : M : P → N.
In the PN standard, the events (transitions) have the same
grade of emergency. Thus, when transitions conflict, there
are no favorable transition to cross before the other.
Besides, the time is not specified in PN.

A new extension, dynamic Priority time Petri Nets
(dPTPN), is proposed to meet the time specification and
solve the transitions conflict. In fact, two transition types
are proposed. First, the T transition is characterized by a
date of firing. Second, the Tcp is a transition with a
preprocessing that precedes the crossing to calculate its
priority. Indeed, if two Tcp transitions are enabled and
share at least a place in entry, then the preprocessing is
made to determine the transition which will be fired, with

a priority changing according to the state of the network
described by the marking M.

The dPTPN is defined by the 7-tuplet :
dPTPN =<PN,Tcp,Tf ,BT ,FT ,coef,M0>

(2)
(1) PN: is a Petri Nets;
(2) Tcp = {Tcp1,Tcp2, ··· ,Tcp }: is a finite set of
compound transition k> 0;
(3) Tf : T → Q+ is the firing time of a transition.
∀t ∈ T, t is a temporal transition ⇔ Tf (t) ≠0.
If Tf (t)=0,then t is an immediate transition. Each temporal
transition t is coupled with a local timer (Lt (t)),
with Lt : T → Q+.
(4) BT :(P ×Tcp) → N is the backward incidence function
associated with compound transition;
(5) FT :(P × Tcp) → N is the forward incidence function
associated with compound transition;
(6) coef :(P × Tcp) → Z is the coefficient function
associated with compound transition;
(7) M0 : is the initial marking;
The semantics of firing in dPTPN is based on the partial
order theory building on a relation of equivalence between
various sequences of possible crossings, starting from the
same state. In fact, when two sequences are found to be
equivalent, then only one of them is selected.
This relation of equivalence is based on the notion of
independence of transitions. The dPTPN semantics is
presented with a dPTPN firing machine (dPFM). For each
marking M, the dpfm initializes a set of transitions dFTs
composed of enabled temporal transitions FTs and enabled
compound transitions FTsTcp . The initialization is called
Firiability processing.

dFTs = FTs ∪ FTsTcp
(3)

let t∈T, t∈dFTs ⇔ t∈ FTs ∨ t∈ FTsTcp
with : FTs = {t∈T/B (., t)≤ M}

 FTsTcp={t∈T/BTcp (., t)≤ M}
(4)

Next, valid transitions are selected from FTs to V Ts
by applying the Validity processing. All urgent transitions
must be indicated in V Ts to be ready for firing.

VTs = {t∈FTs/Hl (t) = Tf (t)}
(5)

The dFTsTcp presents all concurrent transitions. To
solve this conflict, the dpfm calculates the priority of each
transition using the marking M and the coef matrix. Then,
the dFTsTcp is filtered to present only the transitions with
the highest priority. This filtering is made with the Step
Selection processing. In fact, this processing is able to
select the Tcp transition having the highest priority
according to its neighborhood (eq. 6).

∀Tcp1,Tcp2 ∈ Tcp, Tcp1 is a neighbor of Tcp2 ⇔
∃p∈P such that BTcp (p,Tcp1)≠ 0^BTcp (p,Tcp2) ≠ 0

(6)

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 44

2014 International Journal of Computer Science Issues

In this step, the proposed dPTPN is able to support a
selection policy. In [11], the authors have proved that
dPTPN can attribute the priorities to transitions sharing the
place processor according to the LLF policy. In [10] the
authors has further proven their extension with the Earliest
Deadline First policy (EDF).

Finally, the dpfm fires all transitions in the updated
sets. The firing is described by the following equation:

∀FT ∈{VTs, FTsTcp}, Firing (FT)⇒
FT = VTs, M’=M +∑t∈FT((F (., t)-B(.,t))
or
FT = FTsTcp, M’=M +∑t∈FT((FTcp (., t)-BTcp(.,t))

(7)
More details about the dpfm and the firing process

can be found in [11].

3. Multiprocessor RTS modeling with dPTPN

The dPTPN is dedicated for analyzing the
schedulability of the RTS running on multiprocessor
architecture [11, 10]. Such systems are characterized with
dynamic priority-driven scheduling where the dPTPN has
proved its capacity to deal with it. The present section
defines the RTS and how it can be modeled with dPTPN.

3.1 RTS definition

The considered RTS in the current manuscript is a
periodic system. Besides, it is partitioned over the
processors via a partitioning tool. Our study highlights the
analysis of all the generated partitions based on the
dPTPN.
Ω is the specification of the RTS and it is defined by the 4-
uplet:

Ω= <Task, Proc, Alloc, Prec>
(8)

with:
(1) Task : is a finite set of real-time tasks with each

Taski∈ Task is determined by
Taski = <Ri,Pi,Ci>

(9)
• Ri: the date of the first activation
• Pi: the period associated with the task
• Ci: the execution period of the task for the
Pi period

(2) Proc : a finite set of processors.
(3) Alloc:Task→ Proc, a function which allocates a
task to a processor.

Alloc is a surjective function. In fact a processor is
allocated to at least one task. But a task must be assigned
to only one processor.

∀t1 ∈ Task, ∀P1,P2 ∈ Proc,
Alloc(t1)= P1∧Alloc(t1)= P2 ⇒ P1 = P2

(10)
(4) Prec: Task × Task → {0,1}, a function which
initializes precedence relations between tasks.

3.2. RTS Modeling

The Task presents the first main component of Ω, that is
why we are interested on presenting its dPTPN
specification and later we define a prediction of its
behavior according to its neighborhood.
In previous research work [11, 10], we modeled the
internal behavior of a real-time task with dPTPN. In
scheduling analysis, although the external behavior of
task is an important key, it depends on analyzing the
internal one. In order to synchronize between those two
behaviors, our proposal builds on hierarchical modeling
to present only the external events. In fact, the states
issues from internal events will be masked. Thus, a new
dPTPN component for modeling the real-time task is
defined [9]. TaskC is characterized by two Interfaces that
assure the communication with its environment: Input and
Output. Actually, each interface is a finite set of places.
The graphical definition of TaskC is defined with the
triplet:

TaskC = <dPTPN,II,OI>
(11)

with:
(1) dPTPN: is the task dPTPN model presented in ([9],
Fig4);
(2) II = {PUncreated,PReceivedData,PgetProc}: is the
place that composes the Input Interface;
(3) OI= {PReady, PRemainingPeriod, PSendData,
PReleasing,PDeadline} : is the place that composes the
Output Interface;
The dependency between tasks is specified in Ω with the
function Prec. However, in dPTPN modeling, we
distinguish between two dependency relations.
Concerning the first, it is the precedence relation between
tasks as described with Prec function.
As for the second, it is the precedence relation between
the instances of the same task that must be specified in the
dPTPN model.
In order to model the exchange of information according
the dependency relations, we propose a set of places,
called PTask2Task, defined in the following:
Let TaskC1,TaskC2 ∈ TaskC be two task models of

T1,T2∈ Task, respectively.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 45

2014 International Journal of Computer Science Issues

∀ Ti ∈ {TaskC1,TaskC2} Create :
PTi2Ti in PTask2Task;
TSending,TReceiving in T;
B (Ti → PSendData,TSending)=1;
B (PTi2Ti,TReceiving)=1;
F (PTi2Ti,TSending)=1;
F (Ti → PReceivedData,TReceiving)=1;

If Prec (T1,T2)=1Create:
PT12T2 in PTask2Task;
B (PT12T2 ,TReceiving)=1;
F (PT12T2 ,TSending)=1;

The second most important RTS component is the
execution resource. In our study, we shed the light on the
processor resources in order to execute the system tasks.
Hence, the resource processor is a shared resource
between the various tasks of the same partition, and for a
given moment, a single task occupies it. With dPTPN,
each processor Pi∈ Proc is modeled with a simple place
and its marking describes the state of the resource.
Let Pres : the set of places modeling the processors Proc
(∈ Ω), with |Pres| = |Proc|.

∀ p ∈ Pres,M (p)=
1: the resource is free and ready to execute a task;
Or
0: resource is occupied by a system taskΩ;
The allocation of the processor depends on the used
scheduling strategy. In the current paper, we are
interested in the strategy based on the Earliest Deadline
First (EDF) [13].
Ω offers the function Alloc in the aim to specify the
different partitions Tasks/Processors. The corresponding
modeling with dPTPN is detailed as follows:
Let T1,T2 ∈ Task and P1 ∈ Proc with Alloc (T1)=
Alloc (T2)= P1;
In dPTPN, the corresponding components are:
TaskC1,TaskC2 ∈ TaskC and P1 ∈ Pres, with:

∀ Ti ∈ {TaskC1,TaskC2} Create :
Tiallocation in Tcp;
Tireleasing in T;
BTcp (Ti → PReady,Tiallocation)=1;
BTcp (P1,Tiallocation)=1;
coef (Ti → PRemainingPeriod,Tiallocation)=1;

FTcp (Ti → PgetProc,Tiallocation)=1;

B (Ti → PReleasing,Tireleasing)=1;
F (P1,Tireleasing)=1;

After developing the RTS model with dPTPN, it is
important to precise its initial marking as described in
previous research works [10, 9].

At this stage, the dPTPN RTS model is ready for
execution to determine all its reachable states. So, we
propose, in the next section an algorithm for the
generation of its corresponding states graph.

4. dPTPN States Graph

In order to present the reachable states of the dPTPN RTS
model, we propose a states graph G, which defines all the
states and edges connecting between them.

4.1 Graph definition

The dPTPN states graph is defined with the triplet:
G = <S, τ, ρ>

(12)
with:
• S = {S0,S1, ··· ,Sn}: is a finite set of states with n> 0;
Each state Si ∈ S is determined with :

Si = {II, OI, PTask2Task,Pres}× TaskC → N
(13)

Si is presented as a matrix. The columns are the set of
TaskC and the lines are the different places related to a
TaskC. In fact, the input/output interfaces (II and OI) and
the communications places (PTask2Task) are included in
the Si lines. Besides, the processor resources places (Pres)
are presented as matrix lines to describe the assignment of
each task.
• τ = {τ1, ··· ,τm}: is a finite set of edges connecting states
with m> 0;
• ρ: is an incidence relation indicating the successor of a
given state through an edge and it is defined as follows:
ρ : S × τ → S ∪ Ø

(Si,τj) → Sh if Sh is a successor of Si;
 Ø if Si has no successor;

S0 is the initial state creating from the initial marking of
the places (II, OI, PTask2Task, Pres) according to each
component of TaskC. Next, we explain the generation of
all successor states and the edges allowing the reachability.

4.2. States Graph generation

We aim to generate an oriented states graph. Indeed, it is a
prediction of all states that RTS can reach them in
scheduling. Thus, from an initial state, with respect to
temporal constraints, a successor is generated with the
firing of the set of dPTPN transitions constituting a graph
edge. To do so, firstly, we present the step of finding the
successor state and, secondly, the connection of all
founded states with edges.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 46

2014 International Journal of Computer Science Issues

The procedure (Algo. 1) presents the arrangement of the
dPFM activities. The procedure header defines three
parameters:

• dFTs: is an output parameter to present the fired
transitions;

• M: is an input/output parameter to present the
input and the updated model marking;

• Lt: is an input/output parameter to specify the
transitions timers;

4.2.1 Finding Successor

Finding a successor, respecting the dPTPN semantic, is the
main objective of the dPTPN firing machine. Thus,
starting with a given marking, the dPFM looks for the next
marking with the firing of the valid and highest priority
transitions.

The dPFM accelerates the firing process with the firing of
a set of transitions, dFTs, simultaneously. This property is
valid because the dPTPN deals with the conflict of
enabled transitions problem via a dynamic calculus of
priorities and only the transition with the highest value of
priority is fired. Consequently, the dFTs contains only
independent transitions [6, 14] that can all be crossed
together. The novel resulting marking is the combination
of a collection of sub-states that can be created if each
enabled transition is fired apart. This technique is known
as partial order reduction technique. The present work, we
masks the marking of models into TaskCs and we are
interested only to show the marking presenting the RTS
model state. However, we respect the masked models
implicitly in the firability, validity and selection steps.
Hence, in addition to the fired transitions of the RTS
model, the result parameter dFTs defines the fired
transitions of the masked models into TaskC components.

4.2.2 Algorithm of generation

The Algorithm (Algo .2) describes all the necessary steps
to create the states graph according the dPTPN RTS model.
Starting from dPTPN model, the function
initializeMarking(M) allows the initialization of the
marking vector M and the function SetTimer initializes the
local timers. Thus, the initial state is created via the
function StateConstruction(M). From this state, a
repetitive process is executed to define all reachable
successors’ states and each one is added to S set.

The dPFM respects the time constraints during the
generation of states and searches for a successor from each
current state. These two properties of dPFM give rise to an
oriented states graph in which each state can exist only if
their precedents are generated.
The generation of the states and the relation of reachability
are finished when one of three situations is verified. First,
the marking of a place of the type PDeadline describes that
its corresponding task is non-schedulable (the Boolean
function CheckDeadline(Succ) is used in the algorithm for
checking the marking of the PDeadline places). In fact,
according to the dPTPN model of the task, this marking is
defined as a stop-Marking but according to the entire RTS
model it is not. Therefore, the algorithm is stopped at this
stage and a final state is announced. The second situation

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 47

2014 International Journal of Computer Science Issues

is when the current marking M of all the existing places
cannot enable any dPTPN-Transitions and then the current
state SindexState is considered as a final state. As for the
third situation, the generation is terminated when the
updated marking MI gives rise to a state existing in S and
the corresponding edge τindexEdge connects the current
state with the existing one.
After the generation of the states graph corresponding to
the dPTPN model, it is interesting now to check the
schedulability in this graph. In fact, based on graph theory,
many properties can be checked such as the vivacity of
graph.
Nevertheless, the schedulability is not a graph property, so,
it is primordial to translate it into graph properties and
then its checking is available. The checking provides a
confirmation of the schedulability or a counter example
otherwise. Thus, this result can be an efficient feedback to
the partitioning tool in order to decrease the exploration
complexity of the HW/SW space.

5. Conclusions

The dynamic Priority Time Petri Nets (dPTPN) is
considered as the first Petri Nets extension dedicated for
Real-Time System (RTS) scheduling analysis with
dynamic priority. Its mathematical presentation is able to
specify the time constrains and a dynamic calculation of
priorities in order to deal with transitions conflict problem.
Besides, its semantics, presented by the dynamic Firing
Machine (dPFM), accelerates the firing process of
transitions via the firing of independent transitions set
detected with order partial techniques.
In the aim to showing all reachable states of a dPTPN RTS
model, we have proposed in the present manuscript, a
generation method of states graph. Compared to the
existing techniques of graph generation, we can benefit
from a reduced RTS model and we generate its
corresponding graph. In fact, the existing research works
are interesting to generate a simple initial graph and then
they apply reduction techniques. However, such methods
require the validation of the resulting graph relating to
conserving the properties compared to the initial one. In
our case, we started from a reduced model, based on
hierarchical modeling [9], conserving the main properties
of the initial model, and we propose its corresponding
graph. The generated graph is a prediction of the RTS
scheduling, and analyzing its properties is an efficient
solution to derive the schedulabilty of the system.
References
[1] D. B. Abdullah and Z. A. Thanoon. Real time network server

monitoring using smartphone with dynamic load balancing.
IJSCI, 10(1):227–232, july 2013.

[2] V. Antti. Stubborn sets for reduced state space generation. In
Applications and Theory of Petri Nets, pages 491–515, 1989.

[3] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time petri nets. IEEE Trans.
Softw. Eng., 17(3):259–273, 1991.

[4] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap
between timed automata and bounded time petri nets. In
FORMATS, pages 82–97, 2006.

[5] U. Buy and R.H. Sloan. Analysis of real-time programs with
simple time petri nets. In ISSTA ’94: Proceedings of the
1994 ACM SIGSOFT international symposium on Software
testing and analysis, pages 228–239, New York, NY, USA,
1994. ACM.

[6] Y. Hadj Kacem, W. Karamti, A. Mahfoudhi, and M. Abid. A
petri net extension for schedulability analysis of real time
embedded systems. In PDPTA, pages 304–314, 2010.

[7] J.Carpenter, S.Funk, P.Holman, A.Srinivasan, J.Anderson,
and S.Baruah. A categorization of real-time multiprocessor
scheduling problems and algorithms. In Handbook on
Scheduling Algorithms, Methods, and Models. Chapman
Hall/CRC, Boca, 2004.

[8] J.Goossens and P.Richard. Overview of real-time scheduling
problems. In Euro Workshop on Project Management and
Scheduling, 2004.

[9] W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Hierarchical
modeling with dynamic priority time petri nets for
multiprocessor scheduling analysis. In ESA, The 2012
International Conference on Embedded Systems and
Applications, pages 114–121, 2012.

[10] W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Using
dynamic priority time petri nets for scheduling analysis via
earliest deadline first policy. In ISPA, pages 332–339,
Madrid, Spain, 2012.

[11] W. Karamti, A. Mahfoudhi, Y. Hadj Kacem, and M. Abid.
A formal method for scheduling analysis of a partitioned
multiprocessor system: dynamic priority time petri nets. In
PECCS, pages 317–326, 2012.

[12] V. Kimmo. On combining the stubborn set method with the
sleep set method. In Robert Valette, editor, Application and
Theory of Petri Nets 1994: 15th International Conference,
Zaragoza, Spain, June 20–24, 1994, Proceedings, volume
815 of Lecture Notes in Computer Science, pages 548–567.
Springer-Verlag, Berlin, Germany, 1994. Springer-Verlag
Berlin Heidelberg 1994.

[13] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20:46–61, January 1973.

[14] A. Mahfoudhi, Y. Hadj Kacem, W. Karamti, and M. Abid.
Compositional specification of real time embedded systems
by priority time petri nets. The Journal of Supercomputing,
59(3):1478–1503, 2012.

[15] P. M. Merlin. A Study of the Recoverability of Computing
Systems. Irvine: Univ. California, PhD Thesis, 1974.
available from Ann Arbor: Univ Microfilms, No. 75–11026.

[16] C. A. Petri. Fundamentals of a theory of asynchronous
information flow. In IFIP Congress, pages 386–390, 1962.

[17] O. H. Roux and A. M. Déplanche. A t-time Petri net
extension for real time-task scheduling modeling. European
Journal of Automation (JESA), 36(7):973–987, 2002.

[18] M. Safar, M. A. El-Moursy, M. Abdelsalam, and A. Salem.
Architecture exploration of multicore systems-on-chip using
a TLM-based framework. IJSCI, 10(1):4–7, july 2013.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 48

2014 International Journal of Computer Science Issues

Adel MAhfoudhi is currently an Associate Professor at the
University of Taif in Saudi Arabia. He obtained a Diploma in
computer engineering in 1992 from the University of Monastir in
Tunisia, received his Ph.D. degree in Computer Engineering in
1997 from the University of Valenciennes in France. His current
research interests are formal methods for Embedded Real Time
System modeling and verification. He is author/co-author of
several papers in international conferences and journals.
.

Walid Karamti received a Master degree in Computer science in
2010 from the University of Sfax, Tunisia where he is now
completing his Ph.D. thesis. His fields of interest are Real-Time
System, Multiprocessor architecture and Model checking methods
for scheduling analysis.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 49

2014 International Journal of Computer Science Issues

