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Abstract 
In previous work we have proposed the hierarchical modeling in 
order to reduce the dynamic priority Time Petri Nets (dPTPN) 
model. In the present paper, we focus on the demonstration of the 
impact of this modeling on the generation of a reduced states 
graph. We aim to explore the abstraction of the hierarchical 
modeling in order to produce a graph describing only the 
interaction states of a real-time system (RTS). Thus, a new 
definition of states graph is given in this paper, and the 
corresponding generation algorithm is detailed. 
Keywords: dPTPN, RTS, Hierarchical modeling, states graph. 

1. Introduction 

The system analysis at an early stage in the 
development cycle is always an open problem for 
researchers in computer science. In fact, Real-Time 
Systems (RTS) have been omnipresent in several domains 
over the past 30 years and their analysis has grown over 
the last decade [1]. Recently, a new generation of 
architectures (i.e. Multiprocessor and Multicore) has 
emerged [18]. Thus, new methods and techniques are 
required for modeling and analysis. 

The scheduling analysis of RTS running on 
multiprocessor architecture presents an interesting 
research field. In this vein, formal methods, based on 
mathematical principles and abstractions, are the 
cornerstone of analysis techniques.  The light is mainly 
shed on model checking approaches, which attempt to 
provide a push-button approach to verification and 
integrate well into standard development processes. 
However, since using such technique can derive a state-
explosion problem, it is primordial to master the states 
generation before the properties checking. 

Before verification can be applied, the system must 
be modeled in a formal description language such as Time 
Petri Nets [15], timed automata. In order to deal with the 
state-explosion problem, and based on Time Petri Nets 
model, Berthomieu in [3] proposed a graph of class states. 

In fact, starting from graph composed with infinite states, 
he suggests a technique for grouping states in a finite 
number of classes. This technique is used in the PrTPNs 
(Priority Time Petri Nets) [4] so as to analyze the 
schedulability. An improvement of this approach was 
proposed in [17], in which the authors propose a new 
extension of Time Petri Nets STPN (Scheduling Timed 
Petri Nets) and a reduced states graph compared to [3]. 

Both of [3] and [17], produce a reduced states graph 
that is not so expressive to check the schedulability on 
immediately. So, the authors use timed automata as 
observers to check properties of the Petri Model and 
deduce the schedulability. 

PrTPNs and STPN are concerned with the static 
priority for scheduling analysis. In multiprocessor systems, 
it is necessary to specify the scheduling analysis through 
dynamic priority [7]. So, it is not efficient to use them in 
scheduling analysis of multiprocessor system. 

In [11], the authors have proposed the first Time Petri 
Nets extension dPTPN (dynamic Priority Time Priority 
Time Petri Nets) dealing with dynamic priority via the 
introduction of a new component. Indeed, the priority is 
relative to the model state. The scheduling analysis is 
shown through the support of the scheduling policy LLF 
(Least Laxity First) [8] and a set of independent periodic 
tasks running on a multiprocessor architecture. However, 
the LLF is not frequently used in practice because the cost 
of preemption is so high compared to the Earliest Deadline 
First (EDF) [13]. In the same vein, the authors have 
proven the capacity of the dPTPN to deal with EDF as 
well as with the dependent tasks in [10].  

In this stage, the authors have proposed a Petri model 
for the scheduling analysis. Hence, a detailed model for 
the periodic dependent tasks is presented. However, the 
size and the complexity of the entire RTS system model 
have increased even though the considered RTS is more 
complex. Hence, the determination of all reachable states 
corresponding to the model and the checking of its 
properties is more difficult. 
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In [9], the authors present a new modeling strategy to 
master the complexity of the dPTPN model building on 
Object modeling, as well as a new dPTPN model 
component and identified how it can be instanced to 
specify the scheduling analysis model. Nevertheless, the 
exploitation of this abstraction of the model in the 
construction of model states and the properties checking is 
not detailed. 

Contrary to states graph reduction techniques, the 
current paper presents a technique of states graph 
generation based on a reduced Petri Nets Model. In fact, to 
master the state-explosion problem, we start from a 
reduced model and we produce a finite and oriented states 
graph where the schedulability can be checked on it 
immediately (without observer’s automata). We apply the 
proposed approach on a partitioned real-time 
multiprocessor system characterized with dependent 
periodic tasks. 
The present paper is organized as follows. Firstly, the 
definitions of the proposed dPTPN are overviewed in 
section 2. Next, section 3 presents the considered RTS and 
how it can be modeled with the hierarchical modeling 
strategy in order to provide a reduced dPTPN RTS model. 
As for section 4, it presents the generation of the states 
graph. Starting from the developed model, a set of states 
connected with edges are generated to describe a 
prediction of the RTS scheduling. Finally, the proposed 
approach is briefly outlined. 

2. dynamic Priority Time Petri Nets: dPTPN 

A Petri Nets [16] can be defined as 4-tuplet : 
PN = <P, T, B, F>  

(1) 
,where: 
(1) P = {p1, p2, ..., pn} is a finite set of places n> 0; 
(2) T = {t1, t2, ..., tm} is a finite set of transitions m> 0 
(3) B :(P × T) → N is the backward incidence function; 
(4) F :(P × T) → N is the forward incidence function; 
Each system state is represented by a marking M of the net 
and defined by : M : P → N. 
In the PN standard, the events (transitions) have the same 
grade of emergency. Thus, when transitions conflict, there 
are no favorable transition to cross before the other. 
Besides, the time is not specified in PN. 

A new extension, dynamic Priority time Petri Nets 
(dPTPN), is proposed to meet the time specification and 
solve the transitions conflict. In fact, two transition types 
are proposed. First, the T transition is characterized by a 
date of firing. Second, the Tcp is a transition with a 
preprocessing that precedes the crossing to calculate its 
priority. Indeed, if two Tcp transitions are enabled and 
share at least a place in entry, then the preprocessing is 
made to determine the transition which will be fired, with 

a priority changing according to the state of the network 
described by the marking M.  

The dPTPN is defined by the 7-tuplet : 
dPTPN =<PN,Tcp,Tf ,BT ,FT ,coef,M0>  

(2) 
(1) PN: is a Petri Nets; 
(2) Tcp = {Tcp1,Tcp2, ··· ,Tcp }: is a finite set of 
compound transition k> 0; 
(3) Tf : T → Q+ is the firing time of a transition.  
∀t ∈ T, t is a temporal transition ⇔ Tf (t) ≠0. 
If Tf (t)=0,then t is an immediate transition. Each temporal 
transition t is coupled with a local timer (Lt (t)),  
with Lt : T → Q+. 
(4) BT :(P ×Tcp) → N is the backward incidence function 
associated with compound transition; 
(5) FT :(P × Tcp) → N is the forward incidence function 
associated with compound transition; 
(6) coef :(P × Tcp) → Z is the coefficient function 
associated with compound transition; 
(7) M0 : is the initial marking; 
The semantics of firing in dPTPN is based on the partial 
order theory building on a relation of equivalence between 
various sequences of possible crossings, starting from the 
same state. In fact, when two sequences are found to be 
equivalent, then only one of them is selected. 
This relation of equivalence is based on the notion of 
independence of transitions. The dPTPN semantics is 
presented with a dPTPN firing machine (dPFM). For each 
marking M, the dpfm initializes a set of transitions dFTs 
composed of enabled temporal transitions FTs and enabled 
compound transitions FTsTcp . The initialization is called 
Firiability processing. 

dFTs = FTs ∪ FTsTcp 
(3) 

let t∈T, t∈dFTs ⇔ t∈ FTs ∨ t∈ FTsTcp 
with : FTs = {t∈T/B (., t)≤ M} 

      FTsTcp={t∈T/BTcp (., t)≤ M} 
(4) 

Next, valid transitions are selected from FTs to V Ts 
by applying the Validity processing. All urgent transitions 
must be indicated in V Ts to be ready for firing. 

VTs = {t∈FTs/Hl (t) = Tf (t)} 
(5) 

The dFTsTcp presents all concurrent transitions. To 
solve this conflict, the dpfm calculates the priority of each 
transition using the marking M and the coef matrix. Then, 
the dFTsTcp is filtered to present only the transitions with 
the highest priority. This filtering is made with the Step 
Selection processing. In fact, this processing is able to 
select the Tcp transition having the highest priority 
according to its neighborhood (eq. 6). 

∀Tcp1,Tcp2 ∈ Tcp, Tcp1 is a neighbor of Tcp2 ⇔ 
∃p∈P such that BTcp (p,Tcp1)≠ 0^BTcp (p,Tcp2) ≠ 0 

(6) 
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In this step, the proposed dPTPN is able to support a 
selection policy. In [11], the authors have proved that 
dPTPN can attribute the priorities to transitions sharing the 
place processor according to the LLF policy. In [10] the 
authors has further proven their extension with the Earliest 
Deadline First policy (EDF). 

Finally, the dpfm fires all transitions in the updated 
sets. The firing is described by the following equation: 

∀FT ∈{VTs, FTsTcp}, Firing (FT)⇒ 
FT = VTs, M’=M +∑t∈FT((F (., t)-B(.,t)) 
or 
FT = FTsTcp, M’=M +∑t∈FT((FTcp (., t)-BTcp(.,t)) 

(7) 
More details about the dpfm and the firing process 

can be found in [11]. 

3. Multiprocessor RTS modeling with dPTPN 

The dPTPN is dedicated for analyzing the 
schedulability of the RTS running on multiprocessor 
architecture [11, 10]. Such systems are characterized with 
dynamic priority-driven scheduling where the dPTPN has 
proved its capacity to deal with it. The present section 
defines the RTS and how it can be modeled with dPTPN.  

3.1 RTS definition 

The considered RTS in the current manuscript is a 
periodic system. Besides, it is partitioned over the 
processors via a partitioning tool. Our study highlights the 
analysis of all the generated partitions based on the 
dPTPN. 
Ω is the specification of the RTS and it is defined by the 4-
uplet: 

Ω= <Task, Proc, Alloc, Prec> 
(8) 

with: 
(1) Task : is a finite set of real-time tasks with each  

Taski∈  Task is determined by 
Taski = <Ri,Pi,Ci> 

(9) 
• Ri: the date of the first activation 
• Pi: the period associated with the task 
• Ci: the execution period of the task for the 
Pi period 

(2) Proc : a finite set of processors. 
(3) Alloc:Task→ Proc, a function which allocates a 
task to a processor. 

Alloc is a surjective function. In fact a processor is 
allocated to at least one task. But a task must be assigned 
to only one processor. 

∀t1 ∈ Task, ∀P1,P2 ∈ Proc,  
Alloc(t1)= P1∧Alloc(t1)= P2 ⇒ P1 = P2 

(10) 
(4) Prec: Task × Task → {0,1}, a function which 
initializes precedence relations between tasks. 

3.2. RTS Modeling 

The Task presents the first main component of Ω, that is 
why we are interested on presenting its dPTPN 
specification and later we define a prediction of its 
behavior according to its neighborhood.  
In previous research work [11, 10], we modeled the 
internal behavior of a real-time task with dPTPN. In 
scheduling analysis, although the external behavior of 
task is an important key, it depends on analyzing the 
internal one. In order to synchronize between those two 
behaviors, our proposal builds on hierarchical modeling 
to present only the external events. In fact, the states 
issues from internal events will be masked. Thus, a new 
dPTPN component for modeling the real-time task is 
defined [9]. TaskC is characterized by two Interfaces that 
assure the communication with its environment: Input and 
Output. Actually, each interface is a finite set of places. 
The graphical definition of TaskC is defined with the 
triplet: 

TaskC = <dPTPN,II,OI> 
(11) 

with: 
(1) dPTPN: is the task dPTPN model presented in ([9], 
Fig4); 
(2) II = {PUncreated,PReceivedData,PgetProc}: is the 
place that composes the Input Interface; 
(3) OI= {PReady, PRemainingPeriod, PSendData, 
PReleasing,PDeadline} : is the place that composes the 
Output Interface; 
The dependency between tasks is specified in Ω with the 
function Prec. However, in dPTPN modeling, we 
distinguish between two dependency relations.  
Concerning the first, it is the precedence relation between 
tasks as described with Prec function. 
As for the second, it is the precedence relation between 
the instances of the same task that must be specified in the 
dPTPN model. 
In order to model the exchange of information according 
the dependency relations, we propose a set of places, 
called PTask2Task, defined in the following: 
Let TaskC1,TaskC2 ∈ TaskC be two task models of  

T1,T2∈ Task, respectively. 
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∀ Ti ∈ {TaskC1,TaskC2} Create : 
PTi2Ti in PTask2Task; 
TSending,TReceiving in T; 
B (Ti →  PSendData,TSending)=1; 
B (PTi2Ti,TReceiving)=1; 
F (PTi2Ti,TSending)=1; 
F (Ti →  PReceivedData,TReceiving)=1; 

If Prec (T1,T2)=1Create:  
PT12T2 in PTask2Task; 
B (PT12T2 ,TReceiving)=1; 
F (PT12T2 ,TSending)=1; 

The second most important RTS component is the 
execution resource. In our study, we shed the light on the 
processor resources in order to execute the system tasks. 
Hence, the resource processor is a shared resource 
between the various tasks of the same partition, and for a 
given moment, a single task occupies it. With dPTPN, 
each processor Pi∈ Proc is modeled with a simple place 
and its marking describes the state of the resource. 
Let Pres : the set of places modeling the processors Proc 
(∈  Ω ), with |Pres| = |Proc|. 

∀ p ∈  Pres,M (p)= 
1: the resource is free and ready to execute a task; 
Or 
0: resource is occupied by a system taskΩ; 
The allocation of the processor depends on the used 
scheduling strategy. In the current paper, we are 
interested in the strategy based on the Earliest Deadline 
First (EDF) [13]. 
Ω offers the function Alloc in the aim to specify the 
different partitions Tasks/Processors. The corresponding 
modeling with dPTPN is detailed as follows: 
Let T1,T2 ∈  Task and P1 ∈  Proc with Alloc (T1)= 
Alloc (T2)= P1; 
In dPTPN, the corresponding components are: 
TaskC1,TaskC2 ∈  TaskC and P1 ∈  Pres, with: 

∀ Ti ∈ {TaskC1,TaskC2} Create : 
Tiallocation in Tcp; 
Tireleasing in T; 
BTcp (Ti →  PReady,Tiallocation)=1; 
BTcp (P1,Tiallocation)=1; 
coef (Ti →  PRemainingPeriod,Tiallocation)=1; 

FTcp (Ti →  PgetProc,Tiallocation)=1; 

B (Ti →  PReleasing,Tireleasing)=1; 
F (P1,Tireleasing)=1; 

After developing the RTS model with dPTPN, it is 
important to precise its initial marking as described in 
previous research works [10, 9]. 

At this stage, the dPTPN RTS model is ready for 
execution to determine all its reachable states. So, we 
propose, in the next section an algorithm for the 
generation of its corresponding states graph. 

4. dPTPN States Graph 

In order to present the reachable states of the dPTPN RTS 
model, we propose a states graph G, which defines all the 
states and edges connecting between them. 

4.1 Graph definition 

The dPTPN states graph is defined with the triplet: 
G = <S, τ, ρ> 

(12) 
with: 
• S = {S0,S1, ··· ,Sn}: is a finite set of states with n> 0; 
Each state Si ∈  S is determined with : 

Si = {II, OI, PTask2Task,Pres}× TaskC →  N 
(13) 

Si is presented as a matrix. The columns are the set of 
TaskC and the lines are the different places related to a 
TaskC. In fact, the input/output interfaces (II and OI) and 
the communications places (PTask2Task) are included in 
the Si lines. Besides, the processor resources places (Pres) 
are presented as matrix lines to describe the assignment of 
each task. 
• τ = {τ1, ··· ,τm}: is a finite set of edges connecting states 
with m> 0; 
• ρ: is an incidence relation indicating the successor of a 
given state through an edge and it is defined as follows: 
ρ :  S × τ  →  S ∪ Ø 

(Si,τj )  → Sh if Sh is a successor of Si; 
    Ø if Si has no successor; 

S0 is the initial state creating from the initial marking of 
the places (II, OI, PTask2Task, Pres) according to each 
component of TaskC. Next, we explain the generation of 
all successor states and the edges allowing the reachability. 

4.2. States Graph generation 

We aim to generate an oriented states graph. Indeed, it is a 
prediction of all states that RTS can reach them in 
scheduling. Thus, from an initial state, with respect to 
temporal constraints, a successor is generated with the 
firing of the set of dPTPN transitions constituting a graph 
edge. To do so, firstly, we present the step of finding the 
successor state and, secondly, the connection of all 
founded states with edges. 
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The procedure (Algo. 1) presents the arrangement of the 
dPFM activities. The procedure header defines three 
parameters: 

• dFTs: is an output parameter to present the fired 
transitions; 

• M: is an input/output parameter to present the 
input and the updated model marking; 

• Lt: is an input/output parameter to specify the 
transitions timers; 

4.2.1 Finding Successor 

Finding a successor, respecting the dPTPN semantic, is the 
main objective of the dPTPN firing machine. Thus, 
starting with a given marking, the dPFM looks for the next 
marking with the firing of the valid and highest priority 
transitions. 

 
The dPFM accelerates the firing process with the firing of 
a set of transitions, dFTs, simultaneously. This property is 
valid because the dPTPN deals with the conflict of 
enabled transitions problem via a dynamic calculus of 
priorities and only the transition with the highest value of 
priority is fired. Consequently, the dFTs contains only 
independent transitions [6, 14] that can all be crossed 
together. The novel resulting marking is the combination 
of a collection of sub-states that can be created if each 
enabled transition is fired apart. This technique is known 
as partial order reduction technique. The present work, we 
masks the marking of models into TaskCs and we are 
interested only to show the marking presenting the RTS 
model state. However, we respect the masked models 
implicitly in the firability, validity and selection steps. 
Hence, in addition to the fired transitions of the RTS 
model, the result parameter dFTs defines the fired 
transitions of the masked models into TaskC components. 

4.2.2 Algorithm of generation 

The Algorithm (Algo .2) describes all the necessary steps 
to create the states graph according the dPTPN RTS model. 
Starting from dPTPN model, the function 
initializeMarking(M) allows the initialization of the 
marking vector M and the function SetTimer initializes the 
local timers. Thus, the initial state is created via the 
function StateConstruction(M). From this state, a 
repetitive process is executed to define all reachable 
successors’ states and each one is added to S set. 

 
The dPFM respects the time constraints during the 
generation of states and searches for a successor from each 
current state. These two properties of dPFM give rise to an 
oriented states graph in which each state can exist only if 
their precedents are generated. 
The generation of the states and the relation of reachability 
are finished when one of three situations is verified. First, 
the marking of a place of the type PDeadline describes that 
its corresponding task is non-schedulable (the Boolean 
function CheckDeadline(Succ) is used in the algorithm for 
checking the marking of the PDeadline places). In fact, 
according to the dPTPN model of the task, this marking is 
defined as a stop-Marking but according to the entire RTS 
model it is not. Therefore, the algorithm is stopped at this 
stage and a final state is announced. The second situation 
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is when the current marking M of all the existing places 
cannot enable any dPTPN-Transitions and then the current 
state SindexState is considered as a final state. As for the 
third situation, the generation is terminated when the 
updated marking MI gives rise to a state existing in S and 
the corresponding edge τindexEdge connects the current 
state with the existing one. 
After the generation of the states graph corresponding to 
the dPTPN model, it is interesting now to check the 
schedulability in this graph. In fact, based on graph theory, 
many properties can be checked such as the vivacity of 
graph.  
Nevertheless, the schedulability is not a graph property, so, 
it is primordial to translate it into graph properties and 
then its checking is available. The checking provides a 
confirmation of the schedulability or a counter example 
otherwise. Thus, this result can be an efficient feedback to 
the partitioning tool in order to decrease the exploration 
complexity of the HW/SW space. 

5. Conclusions 

The dynamic Priority Time Petri Nets (dPTPN) is 
considered as the first Petri Nets extension dedicated for 
Real-Time System (RTS) scheduling analysis with 
dynamic priority. Its mathematical presentation is able to 
specify the time constrains and a dynamic calculation of 
priorities in order to deal with transitions conflict problem. 
Besides, its semantics, presented by the dynamic Firing 
Machine (dPFM), accelerates the firing process of 
transitions via the firing of independent transitions set 
detected with order partial techniques. 
In the aim to showing all reachable states of a dPTPN RTS 
model, we have proposed in the present manuscript, a 
generation method of states graph. Compared to the 
existing techniques of graph generation, we can benefit 
from a reduced RTS model and we generate its 
corresponding graph. In fact, the existing research works 
are interesting to generate a simple initial graph and then 
they apply reduction techniques. However, such methods 
require the validation of the resulting graph relating to 
conserving the properties compared to the initial one. In 
our case, we started from a reduced model, based on 
hierarchical modeling [9], conserving the main properties 
of the initial model, and we propose its corresponding 
graph. The generated graph is a prediction of the RTS 
scheduling, and analyzing its properties is an efficient 
solution to derive the schedulabilty of the system. 
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