
LH*TH: New fast Scalable Distributed Data Structures

(SDDSs)
Dr ARIDJ Mohamed 1,

1 Hassiba Benbouali University of Chlef Algeria

Abstract
Proposed in 1993 the Scalable Distributed Data Structures

(SDDSs) became a profile of basis for the data management on

Multi computer. In this paper we propose an organization of a

LH* bucket based on the trie hashing in order to improve times

of different access request.

Keywords: Distributed hashing, SDDS, multi computers,

distributed system, access method

1. Introduction

A multi computer consists of set of workstations and PCs

interconnected by a high speed network (Ethernet, TM

Token Ring...).

It is well known that multi-computers offer best price-

performance ratio; offering some new perspectives thus to

high performances applications .

In order to permit the export of these performances, a new

class of data structures has been proposed. It is called

Scalables Distributed Data Structures (SDDS) [10] they

are based on client/server architecture.

 This new structure supports the parallel treatment the

address computations do not involve any centralized

directory. Data are typically stored in the distributed main

memory (DRAM). An SDDS may easily handle many

GByte files, accessible in a fraction of the disk access time.

An SDDS scales to new sites through splits of those that

fill up. Splits are transparently for the applications. All

SDDSs support the key searches; some offer the range

searches or multikey searches, Every client has his own

picture of the file. The update stakes of the file structure

are not sent to clients of a synchronous manner. A client

can make an addressing error of then by following as result

of incorrect picture.

Every server verifies the address of the received request. It

is routed toward another server if an address error is

detected. The adequate server sends an adjusting message

to the client having made the address error, this message is

called: a Picture Adjustment Message (PAM).

The PAM allows the client to adjust his picture in order

not to redo the same error. This picture is not nevertheless

necessarily globally exact.

Several SDDSs have been proposed. Historically, the first

family is based on the hashing: DDH [6], LH* [10]. It gave

rise to numerous variants, notably to high-availability [11]

[13] [7] [12].

Another family has been conceived for the ordered files [1]

[3],[4], [14], [6].

In this article, we present a new SDDS baptized LH*TH

that consists in indexed articles of a LH* bucket, by the

trie hashing [Lit 81], In order to improve the access times

of different s operations.

Sections 2 and 3 of the paper recall principles of the LH*

and TH respectively. The section 4 describes the principle

and the organization of new SDDS LH*TH. The section 5

is dedicated to performances of the SDDS LH*TH, A

comparative survey between LH*TH and LH * is

presented also in this section. In we conclude this article in

section 7.

2. The LH* SDDS

LH * [10] is a SDDS based on the linear hashing LH [8].

The extension of LH to LH * consists in putting every file

bucket on a different servers of multi computer (Fig. 1).

The i level of the hashing function is stocked in the

headline of every LH* bucket.

Fig. 1 : LH* principe

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 123

2014 International Journal of Computer Science Issues

mailto:Aridj_moh@yahoo.fr

Every client maintains his picture that consists of the two

indices i’ and n'; where i' is the level of his hashing

function, n’ is the pointer of the next server that must split.

 The client sends his request (insertion, modification,

suppression either or update) relative to the key c to the

server m determined by the algorithm A1 (the address is

not necessarily correct).

The server m that receives the client's request, must apply

his hashing function. If the result is different of the server's

number in question, the request is redirected to another

server. (Algorithm A2).

In case of redirection, an adjustment message will be

addressed to the client so he brings his picture update

(Algorithm 3)

The LH* file increase by the linear manner, to every

collision, a message is sent to the split coordinator which

sends the split order to the n server.

For more details of LH* algorithms, the reader can refer to

[10] [11].

3. Trie Hashing (TH)

Trie hashing [9] is one of the fastest access methods for

dynamic and ordered files. Its efficiency lies in the use of a

trie(Fig 2),. It starts out with a bucket in which all keys will

be stored. When an overow occurs, another bucket will be

appended at the end of the primary file. All keys will then

be redistributed into the overow bucket and the new

bucket just allocated by comparing the value of the first

character of each key with a discriminator which is a

suitable value that will usually divide the keys evenly. A

key having the first character smaller than or equal to the

discriminator will go into the original bucket, otherwise it

will go into the new bucket No secondary file is needed.

The result of splitting the buckets is described in a trie with

the discriminator and its associated position within the key

stored in each internal node, and the bucket addresses

stored in the leaf nodes. When the keys are numbers, a bit

is used for comparison instead of using the whole

character. As a result, the discriminators are not required to

be stored in the internal nodes. During the search, each bit

of the given key will be examined. If it is zero, proceed to

the left subtree otherwise go to the right subtree.This is the

digital searching .

It is possible that after redistribution, all keys go into the

same bucket and overow again. This may result in multiple

empty buckets being allocated and the depth of the trie will

be increased by more than one. If the keys are uniformly

distributed, these empty buckets will be filled

subsequently.

We may describe the bit checking by a family of functions

{sd} where sd(k) = (k=2d) mod 2, d is the depth of the

node in which sd is being used. Below are the algorithms

used to searcher and insert a key k.

m← hi’(c)= c mod2
i’

if m < n’

m ←hi’+1 (c)= c mod 2
i’+1

Algorithm A1

a’ ← hj(C)

if a’≠ m

 a’’ ←hj-1(C)

 if a’’ > a et a’’ < a’

 a’ ← a’’

Algorithm A2

1:if i >i’

 i’ ←i-1

 n’ ← a+1

2: if n’ ≥ 2i’

 n’ ← 0

 i’ ← i’+1

 Algorithm A3

 Fig 2 : Trie Hashing Principe

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 124

2014 International Journal of Computer Science Issues

4. Principle of LH*TH

LH*TH is a variant of LH * using two levels of indexing.

The 1st is network index managed by algorithms A1, A2,

A3 of the LH* diagram that permit to the client to find the

server (LH* bucket) containing the desired information.

The 2nd is local index managed by the TH’s algorithms

[9]. Every LH* bucket (server) contains several THs

buckets

4.1 Internal organization of an LH*TH bucket:

A LH*TH bucket is composed of the trie (hashing

function) and the TH buckets. Initially only one bucket

exists; that is the TH0 bucket, and the trie is composed of

only one node indexing TH0 bucket. From a b capacity

(definite in advance), the bucket TH0 splits and a bucket

TH1 is created, and so forth. This splitting is internal to

every LH* server. It bases on the local trie, which is

brought update after every internal splitting. The Figure

(Fig. 3) shows the internal architecture of an LH*TH

bucket.

4.2 Evolution of a SDDS LH*TH file

Either inserted the following key sequence: 320, 11, 10,

25, 31, 54, 126, 219, 250, 251, 280, 13, 322, 120, Under

the following hypothesis: b = 4 (capacity of the TH

bucket) and k=4 (number of TH bucket slot in the LH*

server) The insertion of keys: 320, 11, 10, 25 are placed

in TH0 bucket; the insertion of the key 31 provokes a

collision on the TH0 bucket that will split while using the

algorithm to TH1 bucket. And so forth until the key 322.

The figure (Fig 4) shows the content of the LH*TH

buckets without the key 120.

The insertion of the last key 120 provokes a general

collision on LH*TH bucket, the split will be treated by the

algorithm of the LH *. The figure Fig 5 gives the state of

the LH*TH file after splitting:

Searcher (k)

Trienode p

p← the root of the trie

d←0

while (p I an internal node)

 if sd(k) =0

 p ← p.left

 else

 p← p.right

 d ← d+1

return (p)

Searcher algorithm

Insert(k)

p←searcher(k)

Read in p:bucket

 If (p:bucket is not full)

 insert k

else

 Allocate one more bucket

Perform bucket splitting and update the trie

Insertion algorithm

Fig 3: internal architecture interne of an LH*TH

bucket.

 ,

1

1

TH0

TH1

TH2

TH3

Fig 4 : the LH*TH file state before splitting

2,0

1,0

2 3

0

5,1
1

LH*TH 0 bucket

110 111 1126 113

131 1320 154 1

1249 125 1250 1251

1280 1322 1120 1

TH0

TH1

TH2

TH3

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 125

2014 International Journal of Computer Science Issues

5. PERFORMANCES

This section presents the performances study of the new

SDDS LH*TH. we begin by presenting profile of the

system on which we have achieved tests, then we will

present results of the parameter observed that are load

factor and different coast of the access operations.

5.1 Experimental environment:

We have implemented the SDDSs LH*TH and LH * on

multi computer composed of 4 PC executing the LINUX

system (Mandrake 81) and connected as local network by

a Switcher 100 Mb/ses. Every machine can be client and/or

server.

The experiment that we achieved shows that performances

of access are not influenced by the size of file bucket. The

following exposed results are obtained with size of 1000

articles by bucket.

5.2 Load factor:

The table Tab1 summarizes the tests on the load factor.

We can conclude that the load factor of the LH*TH file

varies between 55% and 75%, it is practically same as the

one of LH *.

Article

number

Load factor

LH* LH*TH

10000 0,734 0,667

20000 0,605 0,510

30000 0,656 0,630

40000 0,595 0,597

50000 0,671 0,559

60000 0,746 0,657

70000 0,804 0,758

80000 0,493 0,448

90000 0,507 0,506

100000 0,680 0,666

Average 0.649 0.601

Tab 1: load factor

5.3 Insertion:

To value the average time of an insertion we have

launched the creation operation of the LH*TH (resp.LH *)

with number of different article (10000,20000…100000),

and at every insertion the time of answer is valued. The

table Tab 2 illustrate the average insertion time according

to the number of inserted articles. It is the order of 0,85

Ms/insertion for the LH* file and 0,87 Ms/insertions for

the one of LH*TH. One may notice that the average time

of an insertion for LH*TH is more important than the one

of LH*.this is due to the digital tree maintenance. While

increasing the size of the file the time of insertions remains

practically steady: insertions are scalable.

Articles

number

insertion Average time (Ms)

LH* LH*TH

10000 0,722 0,767

20000 0,860 0,901

30000 0,894 0,913

40000 0,871 0,904

50000 0,882 0,944

60000 0,845 0,850

70000 0,856 0,859

80000 0,870 0,875

90000 0,876 0,885

100000 0,886 0,892

Average 0,856 0,879

Tab 2: the insertion average time

 LH*TH 0 bucket

110 1126 1

1250 1380 1320 1

1322 154 1 1

1 1 1 1

TH0

TH1

TH2

TH3

0

1
2

0
3 , 1

1 , 0
1120

 LH*TH 1 bucket

111 1219

 1

TH0

TH1

TH2

TH3

113

 24 1251 1 , 1

3 , 0

2

1

0

Fig 5: the LH*TH file state after splitting

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 126

2014 International Journal of Computer Science Issues

5.4 The number message of an insertion:

To observe the behaviour of number of message

exchanged in the Multi-Computer, we have achieved an

experience under the same conditions as in section 5.3.

Table tab3 shows the average number of messages per

insert. It is practically the even for the two SDDSs

Articles

number

The average message number of the

insertion

LH* LH*TH

10000 2,36 2,50

20000 2,40 2,39

30000 2,34 2,34

40000 2,32 2,35

50000 2,31 2,37

60000 2,32 2,39

70000 2,32 2,40

80000 2,31 2,37

90000 2,31 2,38

100000 2,31 2,40

Average 2,330 1,389

Tab 3: The insertion average message number

3.1 Times of a research:

In the table Tab 4 we present results of tests of the average

research time of an article in the multi-computer. The

conditions of the tests were as follows: a client r launches a

set of 10000 article research then 20000 until 100000 and

to every research we calculate the answer time. From

obtained results, we can conclude that the SDDS LH*TH

gives very interesting research with regard to the one of

LH *. Note that the SDDS LH*TH permits a gain of time

of 0.3 MSS by research operation.

Articles

number

 Searcher average time

 LH* LH*TH

10000 0,50496 0,30634

20000 0,45466 0,30151

30000 0,47163 0,28572

40000 0,65496 0,28268

50000 0,58557 0,26345

60000 0,52163 0,26575

70000 0,49067 0,27439

80000 0,44965 0,27307

90000 0,39969 0,27602

100000 0,46301 0,25963

Average 0,49964 0,27886

Tab 4 : average time of key search

6. Conclusions

Nowadays, the technology of multi computer is among the

most promising research topics in data processing whose

repercussions will be fundamental. It is notably about the

technology of specific and more effective data structures as

the SDDSs.

In this paper we presented the new SDDS LH*TH that is

based on LH * as external hashing function and the Trie

hashing as internal function.

Our implementation has been achieved on a multi-

computer functioning with system Linux (Mandrake 8.1)

the measures of presented performances demonstrated that

in LH*TH an insertion is achieved with one time of access

of the order 0.87 Mses, a research is done in 0.27 MSS

and load factor is upper that 65%. Noting that all the

operations on the SDDS LH*TH are scalables.

The comparative analysis between LH*TH and LH * has

show that the new SDDS LH*TH preserves all properties

of LH * with the advantage of research that is distinctly

Better in LH*TH.

The future works must interested, on one hand, In the

parallel and intervals request, on the other in the

integration of the new SDDS in SGF and SGBD

distributed. Finally, we note that a SQL-LH*TH version is

in progress of implementation

Acknowledgments

The author would like to thank Pr Zegour Djamel Eddine

Director of LCSI and Pr Litwin Witold Director of CERIA

for taking the time discusses the ideas presented here.

References
[1] M.Aridj « Intégration des Structures de Données Distribuées

et Scalables (SDDS) ordonnées dans les systèmes

distribués » doctorate theses INI-2013.

 [2] M.Aridj : « Une nouvelle et rapide structure de données

distribuée et scalable » Procceeding de Congrès

International en Informatique Appliquée Ciia05 – Centre

Universitaire de Bordj Bou Arréridj 19-21 Novembre 2005.

[3] M.Aridj,D.E Zegour « Fast order keys preserving scalable

distributed data structure» International Journal of

Computer Science and Software Technology (IJCSST) Vol.3

No.2 (July-December issue, 2010).

[4] M.Aridj,D.E Zegour « TH*: Scalable Distributed Trie

Hashing» International Journal of Computer Science

Issues,(IJCSI) Volume 7, Issue 6, pp 109-115, November

2010.

[5] M.aridj ,D.E Zegour «Fast order keys preserving scalable

distributed data structure», First International Conference

on 'Networked Digital Technologies' (NDT2009)

VSB- Technical University of Ostrava, Czech Republic July

28 31, 2009

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 127

2014 International Journal of Computer Science Issues

[6] Devine, R. Design and Implementation of DDH: Distributed

Dynamic Hashing. Intl. Conf. On Foundations of Data

Organizations, FODO-93. Lecture Notes in Comp. Sc., Springer-

Verlag (publ.), Oct. 1993.

[7] Karlsson, J. Litwin, W., Risch, T. LH*lh: A Scalable High

Performance Data Structure for Switched Multicomputers. Intl.

Conf. on Extending Database Technology, EDBT-96, vignon,

March 1996.

[8] Litwin, W. Linear Hashing : a new tool for file and tables
addressing. Reprinted from VLDB-80 in READINGS IN
DATABASES. 2-nd ed. Morgan Kaufmann Publishers, Inc., 1994.
Stonebraker , M.(Ed.).1999.

[9] Litwin,W :‘Trie Haching’.Proc.ACM SIGMOD’81,pp.19-29.

[10]Neimat, M-A., Schneider, D. LH* : Linear Hashing for
Distributed Files. ACM-SIGMOD Intl. Conf. On Management of
Data, 1993.

[11] Litwin, W., Neimat, A.M. High Availability LH* Schemes

with Mirroring, Intl. Conf on Cooperating systems, Brussels,

IEEE Press 1996.

[12]Tung, S, Zha, H, Kefe, T. Concurrent Scalable Distributed

Data Structures , Proceedings of the ISCA International

Conference on Parallel and Distributed Computing Systems , pp.

131-136, Dijon, France, September,1996. Edited by

K. Yetongnon and S. Harini.

[13] Vingralek, R., Breitbart, Y., Weikum, G. Distributed File

Organization with ScalableCost/Performance. ACM-SIGMOD

Int. Conf. On Management of Data, 1994.

[14] D.E. Zegour :Scalable distributed compact trie hashing ,

Elsevier information and software technology 46 P923-935

November 2004.

Dr ARIDJ Mohamed is an Associate Professor at the Computer
Science Department of Chlef University Algeria. His current
research area includes distributed systems, multi computers,
Distributed hashing, Scalable Distributed Data Structures
(SDDSs), access method .He received his Doctorate degree in
distributed systems applications from Ecole Supérieur
d’Informatique (ESI) Oued Smar Algeria.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 2, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 128

2014 International Journal of Computer Science Issues

