
From XML Schema to ODL Schema: Aggregation and Composition

transformation

Doha Malki 1, Mohamed Bahaj2 and Ilyas Cherti3

1 Department of Mathematics and Computer Science, University Hassan 1st, Faculty of Sciences and Technology
Settat, 2600, Morocco

2 Department of Mathematics and Computer Science, University Hassan 1st, Faculty of Sciences and Technology
Settat, 2600, Morocco

 3 Department of Mathematics and Computer Science, University Hassan 1st, Faculty of Sciences and Technology
Settat, 2600, Morocco

Abstract
This paper presents an approach for transforming an existing XML
schema in ODL (Object Definition Language) schemas, We chose
oriented object database as a target database because there are
many common characteristics between XML and object-oriented
model, and we desire to have a large number of object-oriented
features, (e.g. user-defined data types, inheritance, substitutability,
etc.) and a permanent storage of data. Thus the mapping from
XML data into object-oriented databases is more interesting; also
the object-oriented data bases have become very widespread and
acceptable, they offer an evolutionary approach, so we agree that it
is time to develop a translation between XML and OO databases.
Our work is focused on preserving Semantics transformation of the
aggregation and composition relationships, we describe set of
rules and pseudo code has been developed to create ODL classes
from existing XML schema, the experimental show that the
approach is feasible, and results are the same, the source database
is transformed into target one without loss of data.
Keywords: XML schemas; ODL; mapping; aggregation;
composition; OODB;

1. Introduction

Recently XML is became the most dominant standard used
as new format of representing and exchanging data on the
world, it is able to run in the database, this increasing use
of XML technology implies an essential requirement for
managing XML documents and retrieving data , storing
XML data in object oriented databases (OODB) seems a
solution, this implies the need to describe the schemas
written in XML in the Object Oriented schemas without
disfiguring the structure as well as semantic constraints
from the source to the target database.

We believe that, Object Oriented databases are more and
more accepted. The Object Database Management Group
(ODMG) standard, has become more mature [1], so we can
assume that the object-oriented DBMS (OO DBMS) are
willing to store XML data, the XML document must be
structured, and once the XML data is stored, we can query
the database.

We chose the object model proposed by Object Database
Management Group (ODMG) , we will use the language of

object definition (ODL) to define and query the target
database.

The objective of this work is transforming XML Schema
structures to OODB schema based on the ODMG 3.0
standard (Cattell et al., 2000), and preserving the structure
as well as semantic constraints of the source XML schema
in the target OO schema and to take the strong points of OO
features, focusing on aggregation and composition
relationships .

1.1 Related Work

There are several researches to map an XML schema to
object relational database, in contrast, the mapping of XML
schemas in object-oriented database, has not received much
attention.

[2] Describes an XML storage system done for an OO/OR
DBMS. The work proposes an algorithm for mapping and
storing XML documents in an OO/OR database. But it does
not discuss the mapping of different types of relationships
notably aggregation and composition relationships.

[3] Proposes the mapping of the OO Conceptual Model into
the XML Schema. This work has included collection for
aggregation relationship.

[4] Addresses the mapping of the contents of an existing
object-oriented database into XML using object graph ; the
reverse process is also proposed to store XML data in
object-oriented database, in this work the author use object
graph for the transformation, but it does not cover all
possible types of relationships.

Number of transformation steps from the XML schema to
the ORDB are describing in [5], to preserve the collection.
The conversion of Relational to E/R to XML is described In
[6], as the mapping from XML to object-oriented databases
is concerned, which describes the reconstruction of the
semantic model, in the form of ER model from the logical
schema, then the conversion of XML document. However,
many-to-many (M: N) relationships and servants are not
considered properly,

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 67

2014 International Journal of Computer Science Issues

The work described in [7], is about the mapping from XML
to OODB, generates an object oriented database schema
from DTDs, stores it into the object-oriented database and
processes XML queries; it mainly concentrate on
representing the semi-structural part of XML data by
inheritance.

[8] Describes rules of transforming a simple ODL database
schema into an XML schema, but relationships are not
defined.

This document aims to define rules to transform an XML
Schema and ODL Schema, focusing on aggregation
relationship.

The rest of the paper is organized as follows: background
and needful terminology is presented in Section 2, Section 3
describes how existing XML schemas can be transformed in
a ODL schemas, and Section 4 concludes the paper.

2. Background and Needful Terminology

2.1 XML Schema: A brief review

Extensible Markup Language is a meta-markup language
made up of a set of tags to define and describe the
contextual meaning of data [9,10,11]. XML Schema is an
XML-based alternative to DTD, it describes the structure of
an XML document. The XML Schema language is also
referred to as XML Schema Definition (XSD), It is written
in XML and offers several important elements including :
xsd:element, xsd:attribute, xsd:complexType,….
An XML Schema defines:

• The element: xsd:element is used for defining an
element. the cardinality of an element is explicated
by “minOccurs” and “maxOccurs”[2].

• The element xsd:attribute is used for defining an
attribute. [2].

• The element xsd:complexType is used for defining
the type of an element having subelements or
attributes[2].

<xsd:element name="CT">
<xsd:complexType>

 <xsd:sequence>
 <xsd:element name="EL1" type="xsd:EL1_type"/>
 ...
 </xsd:sequence>
 <xsd:attribute name="attr1" type="xsd:att_type"

use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

2.2 Object Definition Language (ODL) Characteristics

The Object Definition Language is a specification language
used to define the specifications of object types that conform
to the ODMG Object Model [12]. ODL is used to support all
semantic constructs of the ODMG Object Model. ODL is

not intended to be a full programming language. It is a
definition language for object specification. Relational
Database management systems have traditionally provided
facilities that support data definition through Data Definition
Language--DDL) and Data Manipulation (through Data
Manipulation Language--DML). ODL defines only the
signatures of operations and does not address the definition
of methods that implement those operations [12].

A simple example of the class definition of CL is (keywords
in bold):

class <name>
(extent <name> key <attribute>…
 {
<list of elements = attributes, relationships, methods>
};

• Extent is used to define all instanced objects for
the interface;

• Key is used to specify the attribute or attributes
whose values uniquely identify an instance of a
class;

• Relationship is used to specify a relationship
between two classes, names of relationships handle
roles.

2.3 Aggregation and Composition: A brief review

An Aggregation relationship is a binary association
specifying a whole-part relationship [13], it is an
asymmetric association, which expresses a strong coupling
and a relationship of subordination. At the same time, an
associate member instance can be related to multiple
instances of other classes (the associate element can be
shared) in cases where there’s a part-of relationship between
Complex type CT1 (whole) and Complex type CT2 (part) it
doesn’t imply that CT1 owns CT2 or that there is a parent-
child relationship between the two.

A composition relationship is strong aggregation, at the
same time, a component instance can be bound to a single
aggregate, "Composite objects" are instances of classes
composed.(CT1 owns CT2)

• Aggregation: Since the “part” complex type can be
used inside another “whole” complex type
(aggregation : shared association) both the “whole”
and the “part” are defined as complex types, inside
the “whole” complex type, we define an element of
the “part” complex type, with maxoccurs
constraint[5].

• Composition: the “part” complex type is used
inside one “whole” complex type, at the same time
(composition: non shareable association). The
“part” component is defined as a complex type
inside the “Whole” type element, to prevent
another complex type to use the particular “part”,
and to be sure that any aggregated complex type is
destroyed when the composite is destroyed [5].

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 68

2014 International Journal of Computer Science Issues

Table -1: general syntax of aggregation refered to [5] Table -2: general syntax of composition refered to [5]
<xsd:complexType name = “ PART_Type” >
...
</xsd:complexType>
<xsd:complexType name = “ WHOLE_Type” >
<xsd:element name = “PART_Name” type =
“xsd:PART_Type” maxOccurs= _ unbounded_ />
...
</xsd:complexType>

<xsd:complexType name = “ WHOLE_Type” >
...
<xsd:element name = “ PART_Name” maxOccurs=”unbounded”/>>
<xsd:complexType>
...
</xsd:complexType>
</xsd:complexType>

3 Transforming Aggregation from XML
Schema into ODL Classes

The XML schema to ODL schema conversion implies
mapping all the XML elements/attributes, relationships into
their corresponding in ODL classes.
In this section, we present set of rules to transform an
existing XML schema with aggregation | composition
relationships to ODL schema;

3.1. Rules of transformation:

Rule1: the root element is transformed into the name of
database.
Rule 2: the element that is included in an anonymous
Complex Type, with the choice element, is transformed into
a higher level class in the ODL schema with the same name.

Rule 3: elements with built-in data types; which are included
in the sequence element; are translated into attributes of the
class results from rule2, with the same type (string, decimal,
integer, Boolean, date...) otherwise we can specify another
data type.

Rule 4: elements whose types are complex types; which are
not included in the sequence element and with maxoccurs
constraint; are transformed into an attribute in the class of
top level outcome from rule 2.

Aggregation is mapped onto an attribute in the aggregating
class in ODL[16] with single valued (if 0..1 or 1..1) or
collection valued (if 0..* or 1..*).the collection types
allowed in ODL are: SET, BAG, LIST, and ARRAY) [17]:
Rule 5: mapping aggregation depends on the multiplicity
that the “part” complex type CT2 participate in the
relationship[14].

• if “maxoccurs =1”, means the “part” complex type
participate with 1 occurrence, then “part CT2” is
included as attribute on the corresponding class to
represent the relationship: C= (CT2, X’,Y’,
(CT1)).

• When “maxoccurs =m” (m is known), implies that
CT2 participate in the aggregation with “m”
occurrences , then the aggregation is mapped to an
array of CT2. C= (CT1, X,Y, array((CT 2),m)) .

• When “maxoccurs = unbounded”, adequate
transformation is to define a bag or set of “part
CT2” to the other class in the relationship,
C=(CT1,X,Y, bag, set(CT2)) .

Rule 6: transforming composition:

The “part” complex type is transformed into a structure in
the class “whole”,

• If the “part” component of the composition is single,
we can use the single row, The inner complex type in
the XML Schema is
also mapped as an attribute of the class as struct
datatype, as follow: attribute Struct CT 2 {type1 att1,
type2 att2} ct2;

• If the “whole” component can have more than one
“part” component of the same type, we use set-valued
attributes, we map the outer complex type as class in
ODL and the inner complex type as the row attribute.
To preserve the multiple feature we implement the
row as a collection with this syntax : attribute
Set|Array<Struct CT2 {type1 att1, type2 att2}> ct2;

3.2. Aggregation XML schema:

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Customerassociation"/>
<xsd:complexType>
 <xsd:sequence>

<xsd:element name="identification"
type="xsd:string"/>
<xsd:element name="description"
type="xsd:string" />
<xsd:element maxOccurs="15" name="Customer"
type="Customer_type" />
</xsd:sequence>

</xsd:complexType>
<xsd:element name="Customer"/>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="customerName"
type="xsd:string"/>
<xsd:element name="phone" type="xsd:integer" />
</xsd:sequence>
<xsd:attribute name="customerId"

type="xsd:integer" use="required" />
</xsd:complexType>
<key name=" Customer_PK " >
<xsd:selector xpath=".//Customer"/>
<xsd:field xpath="@customerId"/>

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 69

2014 International Journal of Computer Science Issues

</key>
</xsd:complexType>
</xsd:element>
</xsd:schema>

3.3. Composition XML schema :

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Purchase_order"/>
<xsd:complexType>

<xsd:sequence>
<xsd:element name = "shipping" type
="xsd:string"/>
<xsd:element name = "toCity" type ="xsd:string"/>
<xsd:element name = "toStreet" type
="xsd:string"/>
<xsd:element name = "toZip" type ="xsd:integer"/>
<xsd:element name = "Orderlineitem"
maxOccurs="unbounded"/>
<xsd:complexType>
<xsd:attribute name = "line" type = "xsd:integer"
use = "required"/>
<xsd:element name = "quantity" type
="xsd:integer"/>

</xsd:complexType>
</xsd:sequence>
<xsd:attribute name = "order" type ="xsd:integer"
use="required"/>

</xsd:complexType>
<key name=" Pusrchase_order_PK">
 <xsd:selector xpath=".// Pusrchase_order "/>
 <xsd:field xpath="@order"/>
</key>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Related to the XML schema, we summarize the complex
type informations in the following table: (see table4)

AE_XML(complextype(CTn), element/attribute(AE), type,
occurrence(OCC), key, relationship(rel)p, CT2(dirCT)).
Where : CTn: name of complex type; AE: set of attributes
and elements of CTn; type: is the type of AE; occ: the
multiplicity that CT2 participate in relationship with CT1,
rel: type of relationship between CT1 and CT2, dirCT is the
name of CT2

Table4: AE_XML : a list of all elements and attributes in the xml schema aggregation and composition

Complextype (CTn) Attribute/Element
(AE)

Type Occurrence
 (occ)

key Relationship (rel) CT2 (dirCT)

Customerassociation
identification string
description string
Customer Customer 1..15 AG Customer

Customer
customerId integer PK
customerName string
phone integer

Puschase_order

order integer PK
shipping string
toCity string
toStreet string
toZip integer
Orderlineitem Orderlineitem unbounded CM Orderlineitem

Orderlineitem
line integer PK
quantity integer

3.4 Algorithm for transforming XML schema in an
ODL schema

Algorithm XML_ODL (ae_xml: AE_XML) return
ODLschema
Foreach complextype CT in AE_XML do

Foreach relationship rel in AE_XML do
If rel= ‘AG’ then
// create Class dirCT
Procedure create_class(dirCT)
// create Class CT
Procedure create_class(CT)

If occ= unbounded then
// Add an attribute dirCT as a set or bag
addAttribute dirCT SET|BAG <dirCT>;
Else if occ= m then
// Add an attribute dirCT as a array[m]
addAttribute dirCT ARRAY (dirCT, m);
If occ= 1 then

// Add an dirCT as an attribute
addAttribute (dirCT)
end if

Else if rel = ‘CM’ then
// create Class CT
Procedure create_class(CT)

If occ=1 then
//add dirCT as struct in CT
addStruct direct
else

//add dirCT as set|array (struct) in CT
Add set|array struct (dirCT)
End if

End Foreach
End Foreach
End Algorithm

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

2014 International Journal of Computer Science Issues

Thus, if the transformation rules and the algorithm
described above for the previous XML schema are

applied, we should get the ODL Schema shown in
Table 5,6

Table 5: The ODL classes corresponding to the XML schema aggregation Table 6:The ODL classes corresponding to the XML schema composition
class Customer{
(extent Customers key customer_id)
attribute integer customer_id;
attribute string customer_name;
attribute string phone ;
}
class Customer_assoc{
(extent Customer_assocs)
attribute string Identification;
attribute string Description;
attribute array <Customer 15> Customer ;
}

class Puschase_order {
(extent Puschase_orders key order)
attribute integer order;
attribute string shipping;
attribute string toCity ;
attribute string toStreet ;
attribute integer toZip ;
attribute strust set<Orderlineitem
{integer line; integer quantity}> orlnitem
;
}

4. Experimental Study

To evaluate our approach we test the query results provided
by OQL in eyedb , and XQUERY in stylus studios. Table 7

shows the description of queries, queries return the same
results. The source XML database is transformed into target
Object database ODL without loss of data.

Table 7 : Results of the queries

Description OQL Xquery Result

Find the name of all
Customers of the
customer_association
Identified by “ASS1”
Ordered by name of
customer

Select customer: c.name,
From customer_associations ca,
ca.customers c
Where ca.identification = ”ASS1”
Order by c.name asc;

 for $ca in
doc('customer.xml')/NewDataSet/Customerassociation ,

 $id in $ca/identification ,
 $c in $ca/Customer
 where $ca/identification='ASS1'
 order by $c/customerName

 return
 <customer>
 {$c}
 </customer>

12
Dupont
147852369
10
Scott
123456789
11
Smith
987654321

The first customer
name of the
customer_association
identified by “ASS1”

Fisrt(select(customer:c.name)
From customer_ associations ca,
ca.customers c
Where ca.identification = ”ASS1”

 for $ca in
doc('customer.xml')/NewDataSet/Customerassociation,

 $id in $ca/identification ,
 $c in $ca/Customer[1]
 where $ca/identification='ASS1'

 return
 <customer>
 {$c}
 </customer>

10
Scott
123456789

Compute the num ber
of all Customer of
customer_association

Select Cust_ASS :
ca.identification, number:
count(c.name) from
customer_associations ca,
ca.customers c
Group by ca.identification

for $x in
doc('customer.xml')/NewDataSet/Customerassociation
return
{$x/identification }
 {number=count($x/Customer)}

ASS1 3
ASS2 2
ASS3 1

Find the
identification of
all Customer
associations

Select customer_associations :
ca.identification,
From customer_associations ca

 for $b in doc("customer.xml")//Customerassociation,
 $id in $b/identification

 return
 <result>
 {$id}
 </result>

ASS1
ASS2

ASS3

5. CONCLUSIONS

In this article, we described a translation from XML schema
into ODL schema, focusing on mapping
aggregation|composition relationships; we have shown that
the semantic in the aggregation|composition of XML data
using can be preserved in the implementation using ODL. We

have a prototype to realize the solution, and we have
evaluated it by comparing query results the results of queries
are the same.
We proposed the use of collection types allows by the ODL
for aggregation|composition, in the mapping of the
aggregation|composition we distinguish different cases
according to the multiplicity of “part” participating on the
relationship.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

2014 International Journal of Computer Science Issues

Our proposed method describes a process from the
conceptual model to the implementation in the classes. With
this method, the results preserve the semantics specified in
the conceptual level, either to XML or ODL.

Our future work, will be on developing a better mapping
taking into account the definition ODL (OBJECT
DEFINITION LANGUAGE), allowing to establish
correspondences between concepts that were not taken into
account such as relationship one_to_many, many_to_many,
inheritance, besides the addition of these concepts allows to
specifically identifies semantic links between elements and
to provide information regarding the life cycle thereof.

REFERENCES
[1] Cattel, R. G. G. and Barry, D., “The Object Data Standard:

ODMG 3.0, Morgan Kaufmann”, 2000.
[2] Woo-Shin Han, Ki-Hoon Lee, Byung Suk Lee: “An XML

Storage System for Object-Oriented /Object-Relational
DBMSs”, in Journal of Object Technology, vol. 2, no. 3, May-
June 2003, pp. 113-126

[3] Xiou, R., Dillon, T.S., Chang, E., and, Feng, L. “Modeling and
Transformation of Object-Oriented Conceptual Models into
XML Schema”, DEXA 2001, Springer-Verlag, 2001, 795-804.

[4] Taher Naser, Reda Alhajj, Mick J. Ridley “Two-Way Mapping
between Object-Oriented Databases and XML”. Informatica 33
(2009) 297–308.

[5] Eric Pardede, J.Wenny Rahayu, David Taniar “On Using
Collection for Aggregation and Association Relationships in
XML Object-Relational Storage”, SAC’04 March 14-17, 2004,
Nicosia, Cyprus.

[6] J. Fong, F. Pang, and C. Bloor, “Converting Relational
Database into XML Document,” Proc. of the International
Workshop on Electronic Business Hubs, pp61-65, Sep. 2001.

[7] T.-S. Chung, S. Park, S.-Y. Han, and H.-J. Kim. “Extracting
Object-Oriented Database Schemas from XML DTDs Using
Inheritance,” Proc. of the International Conference on
Electronic Commerce and Web Technologies, pp.49-59, 2001.

[8] Artur Afonso de Sousa; José Luís Pereira, and João Carvalho,
"From ODL Schemas to XML-SCHEMA Schemas: A First Set
of Transformation Rules", Proc. of the XXII International
Conference of the Chilean Computer Science Society
(SCCC’02),

[9] Biron, P. and Malhotra, A.: “XML Schema Part 2: Datatypes”,
May 2001 (available from http://www .w3.org/ TR/
xmlschema-2).

[10]Fallside, D.: XML Schema Part 0: Primer, May 2001
(available from http://www.w3.org/TR/xmlschema-0).

[11]Thompson, H. et al.: XML Schema Part 1: Structures, May
2001 (available from http://www.w3.org/TR/ xmlschema-1).

[12]Roderic Geoffrey Galton Cattell,Douglas K. Barry, “The
Object Data Standard: ODMG 3.0”

[13]UML Semantics version 1.1, available from Rational's web-
site: http://www.rational.com/uml , September 1997.

[14]M.F. Golobisky, A. Vecchietti/Proc. of Argentine Symposium
on Software Engineering (2005) 65-79 65, "Mapping UML
Class Diagrams into Object-RelationalSchemas",

[15]M. Naci Akkøk "From ODL/OO-DBMS Design to Relational
Designs & Object-Relational Database Systems (ORDBS)"
25/2-2003, 20/2-2004 and 14/2-2005.

Doha Malki she is phd student in the Department of Mathematics
and computer sciences, Faculty of Sciences & Technologies of
Settat, University Hassan 1st, Settat, Morocco. her area of interest
includes Databases and semantic web.

Mohamed Bahaj He is a full Professor in Department of
Mathematics and Computer Sciences from the University Hassan
1st Faculty of Sciences & Technology Settat Morocco. He is co
chairs of International Conference on Software Engineering,
Databases and Expert Systems (SEDEXS’12) , NASCASE’11. He
has published over 60 peer-reviewed papers. His research interests
are intelligents systems, Ontologies Engineering, Partial and
differential equations, Numerical Analysis and scientific computing.

Ilyas Cherti He is a full Professor in Department of Mathematics
and Computer Sciences from the University Hassan 1st Faculty of
Sciences & Technology Settat Morocco. His research interests are
intelligents systems, partial and differential equations. He has
organized various national and international events.

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

2014 International Journal of Computer Science Issues

