
Constructing Sierpinski Gasket Using GPUs Arrays 

Amira Sallow
1
, Dhuha Abdullah

2
 

1 
Computer and I.T. College, Nawroz University 

Duhok, Iraq 
 

2
 Computer Sciences and Mathematics College, Mosul University 

Mosul, Iraq   

Abstract 
A fractal is a mathematical set that typically displays self-similar 
patterns, which means it is "the same from near as from far". 
Fractals may be exactly the same at every scale, they may be 
nearly the same at different scales. The concept of fractal extends 
beyond trivial self-similarity and includes the idea of a detailed 
pattern repeating itself. The algorithms to constructing different 
fractal shapes in many cases typically involve large amounts of 
floating point computation, to which modern GPUs are well 

suited. In this paper we will construct Sierpinski Gasket using 
GPUs arrays. 

Keywords: fractal, Sierpinski gasket, self-similar, GPU. 

1. Introduction

1.1 Fractal 

The formal mathematical definition of fractal is defined by 
Benoit Mandelbrot [??]. It says that a fractal is a set for 

which the Hausdorff Besicovich dimension strictly 

exceeds the topological dimension. However, this is a very 

abstract definition. Generally, we can define a fractal as a 

rough or fragmented geometric shape that can be 

subdivided in parts, each of which is (at least 

approximately) a reduced-size copy of the whole. Fractals 

are generally self-similar and independent of scale [5]. 

1.2 Properties of Fractal 

A fractal is a geometric figure or natural object that 

combines the following characteristics [3] :  

a) Its parts have the same form or structure as the whole,

except that they are at a different scale and may be slightly 

deformed;  

b) Its form is extremely irregular or fragmented, and

remains so, whatever the scale of examination; 

c) It contains "distinct elements" whose scales are very

varied and cover a large range; 

d) Formation by iteration;

e) Fractional dimension.

1.3 Sierpinski Triangle 

The Sierpinski's Triangle is named after the Polish 

mathematician Waclaw Sierpinski who described some of 

its interesting properties in 1916. It is one of the simplest 

fractal shapes in existence It can be generated by infinitely 

repeating a procedure of connecting the midpoints of each 
side of the triangle to form four separate triangles, and 

cuting out the triangle in the center.  

1.4 Constructing Algorithm 

Construct the Sierpinski Triangle Taking a equilateral 

triangle as an Table (1) [2]: 

Table 1: Constructing Sierpinski Triangle 

1. Start with the equilateral

triangle. 

4. Repeat the steps 1, 2 and 3 on the

three black triangle left behind. The 

center triangle of each black triangle at 

the corner was cut out as well.  

. Connet the midpoints of each 

side of the triangle to form 

four separate triangles.  

5. Further repetition with adequate

screen resolution will give the following 

pattern. 

3. Cut out the triangle in the

center. 

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 131

2014 International Journal of Computer Science Issues

mailto:amo_bibo@yahoo.com
mailto:rtdm2005@yahoo.com


 

2. Graphics Processing Units 

Graphics Processing Units (GPUs) used to be fixed 

function processors that helped the CPU with displaying 

images. This changed early 2001, when the first 

programmable GPU was launched. With the GPU being 

programmable, developers had much more opportunities to 

control the graphics operations themselves. 

 

Programming a GPU though, is very different from 
programming a conventional CPU.There are programming 

languages designed for programming a GPU that are easy 

to learn,but taking full advantage of the computational 

power of the GPU, requires knowledge about the GPU. To 

fully exploit the power of the GPU, it is advisable to 

understand its architecture and its capabilities. Also, 

knowing how the data exactly passes through the GPU is 

required in order to build efficient programs, [4]. 

3. GPU architecture 

A graphics processing unit (GPU) is a specialized 

processor that offloads 3D or 2D graphics rendering from 

the microprocessor. It is used in embedded systems, 

mobile phones, personal computers, workstations, and 

game consoles. Modern GPUs are very efficient at 

manipulating computer graphics, and their highly parallel 

structure makes them more effective than general-purpose 

CPUs for a range of complex algorithms. In a personal 

computer, a GPU can be present on a video card, or it can 
be on the motherboard [1]. 

 

The GPU is especially well-suited to address problems that 

can be expressed as data parallel computations the same 

program is executed on many data elements in parallel 

with high arithmetic intensity the ratio of arithmetic 

operations to memory operations. Because the same 

program is executed for each data element, there is a lower 

requirement for sophisticated flow control; and because it 

is executed on many data elements and has high arithmetic 

intensity, the memory access latency can be hidden with 

calculations instead of big data caches. Data-parallel 
processing maps data elements to parallel processing 

threads. Many applications that process large data sets can 

use a data-parallel programming model to speed up the 

computations. In 3D rendering large sets of pixels and 

vertices are mapped to parallel threads. Similarly, image 

and media processing applications such as post-processing 

of rendered images, video encoding and decoding, image 

scaling, stereo vision, and pattern recognition can map 

image blocks and pixels to parallel processing threads. In 

fact, many algorithms outside the field of image rendering 

and processing 

are accelerated by data-parallel processing, from general 

signal processing or physics simulation to computational 

finance or computational biology. Unlike modern CPUs, 

graphics chips are designed for parallel computations with 

lots of arithmetic operations. Much more transistors in 

GPUs work as they should they process data arrays instead 
of flow control of several sequential computing threads. 

Figure (1) shows how much room is occupied by various 

circuits in CPUs and GPUs: 

 

 

Figure 1: CPUs and GPUs 

Therefore, lots of molecular modeling applications are 

adapted perfectly for GPU computing, they require high 

processing power, and they are convenient for parallel 

computing. And using several GPUs gives even more 

computing power for such tasks. 

4. Conclusion 

In this paper, Constructing Sierpinski Gasket Using GPUs 

Arrays where considered. We conclude that Graphics 

Processing Units are highly useful in parallel computing 

and are designed for parallel computations with lots of 

arithmetic operations. The objective of this project was to 

show that GPUs were more effective than CPUs. 

 

References 
 [1]  Berillo, Alexey , "NVIDIA CUDA." iXBT Labs ,2010. 
Available online 

athttp://ixbtlabs.com/articles3/video/cuda-1-p1.html 
[2] Jessica Brazelton, “Matrix Multiplication using Graphics 

Processing Unit”, Tuskegee University, 2010. 
[3] Matthias Book, “Parallel Fractal Image Generation A Study 

of Generating Sequential data With Parallel Algorithms”, 
The University of Montana, Missoula, USA. Available 

online at http://matthiasbook.de/papers/parallelfractals/ 
[4]  Peter Geldof,  “Generic Computing on a Graphics Processing 

Unit”, M.S. thesis, Universities van Amsterdam, Amsterdam, 
Netherlands, 2007. 

[5] Werner Hodlmayr, “FRACTAL ANTENNAS: Introduction 
to fractal technology and presentation of a fractal antenna 
adaptable to any transmitting frequency”, antenneX, Issue No. 
81, 2004. 

 
 

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 132

2014 International Journal of Computer Science Issues

http://ixbtlabs.com/articles3/video/cuda-1-p1.html
http://matthiasbook.de/papers/parallelfractals/


 

1 
Amira Sallow is Lecturer in the Department of computer science 

in Computer and I.T. College at Nawroz University. She received 

her PhD degree in computer sciences in 2013 in the speciality of 
distributed real time system and operating system. She also leads 
and teaches modules at both BSc and MSc levels in computer 

science.  

 
 2 

Dhuha Albazaz is the head of Computer Sciences Department, 
College of Computers and Mathematics, University of Mosul. She 

received her PhD degree in computer sciences in 2004 in the 
speciality of computer architecture and operating system. She 
supervised many Master degree students in operating system, 

computer architecture, dataflow machines, mobile computing, 
realtime, and distributed databases. She has three PhD students 
in FPGA field, distributed real time systems, and Linux clustering. 

She also leads and teaches modules at BSc, MSc, and PhD levels 
in computer science. Also, she teaches many subjects for PhD 
and master students. 

 

 
 
 
 

 

IJCSI International Journal of Computer Science Issues, Volume 11, Issue 6, No 1, November 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 133

2014 International Journal of Computer Science Issues




